[en] Dysprosium-doped Bi-based 2212 materials have been synthesized in the presence of a magnetic field, applied perpendicularly to the lateral face of a cylinder, by a melt-textured growth process. Thick (well oriented) layers of different chemical composition have been observed. A dysprosium-doped 2212 phase (the expected D phase) and a dysprosium-free bismuth-rich and strontium-deficient 2212 phase have been found. It is argued that the latter is a so-called M phase. Other impurity phases have been observed, connected with both 2212-type layers. A novel aspect of this work is the calcium solubility at the strontium site in the 2201 structure, and inversely the strontium solubility at the calcium site in the 8250 structure.
Disciplines :
Chemistry
Author, co-author :
Stassen, S; SUPRAS, University of Liège, Chemistry Institute B6, Sart-Tilman, B-4000 Liège, Belgium
Rulmont, André ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale
Krekels, T; EMAT, University of Antwerpen, B-2020 Antwerpen, Groenenborgerlaan 171, Belgium
Ausloos, Marcel ; Université de Liège - ULiège > Département de physique > S.U.P.R.A.S.
Cloots, Rudi ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie générale et chimie physique
Language :
English
Title :
Chemical composition and microstructure of magnetically melt-textured Bi2Sr2Ca0.8Dy0.2Cu2O 8-y
Chen, F., Markiewicz, R. S. & Giessen, B. C. (1988). Superconductivity and Applications, edited by H. S. Kwok, Y.-H. Kao & D. T. Shaw, pp. 541-546. New York/London: Plenum Press.
Cloots, R., Rulmont, A., Hannay, C., Godelaine, P. A., Vanderschueren, H. W., Régnier, P. & Ausloos, M. (1992). Appl Phys. Lett. 61, 2718-2720.
Hendrix, B. C., Abe, T., Borofka, J. C., Tien, J. K. & Caulfield, T. (1989). Appl. Phys. Lett. 55, 313-315.
Hong, B., Hahn, J. & Mason, T. O. (1990). J. Am. Ceram. Soc. 73, 1965-1974.
Ichinose, N. & Saito, K. (1991). Physica (Utrecht), C190, 177-179.
Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W, Fastnacht, R. A. & Keith, H. D. (1988). Appl. Phys. Lett. 52, 2074-2076.
McGinn, P. J., Chen, W, Zhu, N., Tan, L., Varanasi, C. & Sengupta, S. (1991). Appl. Phys. Lett. 59, 120-122.
Murakami, M. (1994). Prog. Mater. Sci. 38, 311-357.
Nash, A. S., Nash, P., Shi, H., Poeppel, R. P. & Goretta, K. C. (1990). Supercond. Sci. Technol. 3, 556-559.
Pham, A. Q., Hervieu, M., Maignan, A., Michel, C., Provost, J. & Raveau, B. (1992). Physica (Utrecht), C194, 243-252.
Pollard, R. G., McCartney, D. G., McN'Alford, N. & Button, T. (1989). Supercond. Sci Technol. 2, 169-172.
Rango, P. de, Lees, M. R, Lejay, P., Sulpice, A., Tournier, R., Ingold, M., Germi, P. & Pernet, M. (1991). Nature (London), 349, 770-772.
Régnier, P., Le Hazif, R. & Chaffron, L. (1990). Proc. International Conference on Modern Aspects of Superconductivity, IITT, Paris, pp. 177-180.
Salama, K. & Lee, D. F. (1994). Supercond. Sci. Technol. 7, 177-193.
Salama, K., Selvamanickam, V., Gao, L. & Sun, K. (1989). Appl. Phys. Lett. 54, 2352-2354.
Sandiumenge, F., Pinol, S., Obradors, X., Snoeck, E. & Roucau, C. (1994). Phys. Rev. B, 50, 7032-7046.
Stassen, S., Cloots, R., Rulmont, A. & Ausloos, M. (1995). J. Mater. Res. 10, 1878-1883.
Yoo, S. I., Sakai, N., Takaichi, H., Higuchi, T. & Murakami, M., (1994). Appl. Phys. Lett. 65, 633-635.
Zhang, X. F., Van Tendeloo, G., Ge, S. L., Emmen, J. H. P. M. & Brabers, V. A. M. (1993). Physica (Utrecht), C215, 39-50.