Eprint first made available on ORBi (E-prints, working papers and research blog)
Autonomous Drone Combat: A Multi-Agent Reinforcement Learning Approach
Hansen, Julien; Louette, Arthur; Leroy, Pascal et al.
2025
 

Files


Full Text
_article_quad_combat.pdf
(1.92 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
defense, drones, drone warfare, simulation, isaaclab
Abstract :
[en] Drones have become essential tool in various industries, from agriculture to surveillance and are now increasingly deployed on battlefields for detection, recognition, identification, and combat. While most systems remain controlled by human, the shift toward autonomy is intensifying, driven by breakthroughs in artificial intelligence, notably in reinforcement learning and scalable simulation techniques. This paper presents two contributions. A multi agent reinforcement learning environment for drone combat built on IsaacLab. An in-depth comparison between decentralized learning and self-play scheme in competitive settings. Our work confirmed the benefits of self-play methods for autonomous drone combat.
Disciplines :
Computer science
Author, co-author :
Hansen, Julien ;  Université de Liège - ULiège > Faculté des Sciences Appliquées > Master ing. civ. inf. fin. spéc.int. sys.
Louette, Arthur  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Leroy, Pascal  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Ernst, Damien  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Language :
English
Title :
Autonomous Drone Combat: A Multi-Agent Reinforcement Learning Approach
Publication date :
10 September 2025
Available on ORBi :
since 20 August 2025

Statistics


Number of views
100 (15 by ULiège)
Number of downloads
252 (8 by ULiège)

Bibliography


Similar publications



Contact ORBi