Chen, Yu ; Université de Liège - ULiège > GIGA > GIGA Stem Cells - Medical Chemistry ; State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
Quan, Yudong; State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
Verheggen, François ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Wang, Zhenying; State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
He, Kanglai; State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
Language :
English
Title :
Differential thermal tolerance across life stages under extreme high temperatures crossed with feeding status in corn leaf aphid
Publication date :
16 December 2020
Journal title :
Ecological Entomology
ISSN :
0307-6946
Publisher :
Blackwell Publishing Ltd
Volume :
46
Issue :
3
Pages :
533 - 540
Peer reviewed :
Peer Reviewed verified by ORBi
Funding number :
2017YFD0201802
Funding text :
National Key R&D Program of China (2017YFD0201802)
Alford, L., Burel, F. & van Baaren, J. (2016) Improving methods to measure critical thermal limits in phloem-feeding pest insects. Entomologia Experimentalis et Applicata, 159, 61–69.
Ali, S., Li, P., Ali, A. & Hou, M. (2019) Comparison of upper sublethal and lethal temperatures in three species of rice planthoppers. Scientific Reports, 9, 1–8.
Angilletta, M.J. (2009) Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, New York, New York.
Asin, L. & Pons, X. (2001) Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their population dynamics on the Northeastern Iberian peninsula. Environmental Entomology, 30, 1127–1134.
Bale, J.S. & Hayward, S.A. (2010) Insect overwintering in a changing climate. Journal of Experimental Biology, 213, 980–994.
Bauerfeind, S.S. & Fischer, K. (2013) Increased temperature reduces herbivore host-plant quality. Global Change Biology, 19, 3272–3282.
Beitinger, T.L., Bennett, W.A. & McCauley, R.W. (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58, 237–275.
Benoit, J.B., Lopez-Martinez, G., Robert Michaud, M., Elnitsky, M.A., Lee, R.E. Jr. & Denlinger, D.L. (2007) Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgicaantarctica. Journal of Insect Physiology, 53, 656–667.
Bicego, K.C., Barros, R.C. & Branco, L.G. (2007) Physiology of temperature regulation, comparative aspects. Comparative Biochemistry and Physiology—Part A: Molecular & Integrative Physiology, 147, 616–639.
Blackman, R.L. & Eastop, V.F. (2000) Aphids on the World's Crops: an Identification and Information Guide. John Wiley & Sons, Chichester, U.K.
Blanckenhorn, W.U. & Demont, M. (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integrative and Comparative Biology, 44, 413–424.
Bodlah, M.A., Gu, L.L., Tan, Y. & Liu, X.D. (2017) Behavioural adaptation of the rice leaf folder Cnaphalocrocismedinalis to short-term heat stress. Journal of Insect Physiology, 100, 28–34.
Braendle, C., Davis, G.K., Brisson, J.A. & Stern, D.L. (2006) Wing dimorphism in aphids. Heredity, 97, 192–199.
Chen, Y. & Ma, C.S. (2010) Effect of global warming on insect, a literature review. Acta Ecologica Sinica, 30, 2159–2172.
Chen, Y., Martin, C., FinguMabola, J.C., Verheggen, F., Wang, Z., He, K. et al. (2019a) Effects of host plants reared under elevated CO2 concentrations on the foraging behavior of different stages of corn leaf aphids Rhopalosiphummaidis. Insects, 10, 182.
Chen, Y., Verheggen, F.J., Sun, D., Wang, Z., Francis, F. & He, K. (2019b) Differential wing polyphenism adaptation across life stages under extreme high temperatures in corn leaf aphid. Scientific Reports, 9, 8744.
Cherif, A., Attia-Barhoumi, S., Mansour, R., Zappalà, L. & Grissa-Lebdi, K. (2019) Elucidating key biological parameters of Tutaabsolutaon different host plants and under various temperature and relative humidity regimes. Entomologia Generalis, 39, 1–7.
Chown, S. & Nicolson, S.W. (2004) Insect Physiological Ecology, Mechanisms and Patterns. Oxford University Press, New York, New York.
Chown, S.L. & Terblanche, J.S. (2006) Physiological diversity in insects, ecological and evolutionary contexts. Advances in Insect Physiology, 33, 50–152.
Colinet, H., Siaussat, D., Bozzolan, F. & Bowler, K. (2013) Rapid decline of cold tolerance at young age is associated with expression of stress genes in Drosophila melanogaster. Journal of Experimental Biology, 216, 253–259.
Colinet, H., Sinclair, B.J., Vernon, P. & Renault, D. (2015) Insects in fluctuating thermal environments. Annual Review of Entomology, 60, 123–140.
Cox, R.M., Parker, E.U., Cheney, D.M., Liebl, A.L., Martin, L.B. & Calsbeek, R. (2010) Experimental evidence for physiological costs underlying the trade-off between reproduction and survival. Functional Ecology, 24, 1262–1269.
Davidowitz, G., D'Amico, L.J. & Nijhout, H.F. (2004) The effects of environmental variation on a mechanism that controls insect body size. Evolutionary Ecology Research, 6, 49–62.
Dean, G.J. (1974) Effect of temperature on cereal aphids Metopolophiumdirhodum (Wlk.), Rhopalosiphumpadi (L.) and Macrosiphumavenae (F.) (Hem., Aphididae). Bulletin of Entomological Research, 63, 401–409.
Denny, M.W., Hunt, L.J., Miller, L.P. & Harley, C.D. (2009) On the prediction of extreme ecological events. Ecological Monographs, 79, 397–421.
Diamond, S.E. & Kingsolver, J.G. (2010) Environmental dependence of thermal reaction norms: host plant quality can reverse the temperature-size rule. American Naturalist, 175, 1–10.
Diaz, B.M. & Fereres, A. (2005) Life table and population parameters of Nasonoviaribisnigri (Homoptera: Aphididae) at different constant temperatures. Environmental Entomology, 34, 527–534.
Dillon, M.E., Wang, G. & Huey, R.B. (2010) Global metabolic impacts of recent climate warming. Nature, 467, 704–706.
Fischer, K., Dierks, A., Franke, K., Geister, T.L., Liszka, M., Winter, S. et al. (2010) Environmental effects on temperature stress resistance in the tropical butterfly Bicyclusanynana. PLoS One, 5, e15284–e15284.
Forster, J. & Hirst, A.G. (2012) The temperature-size rule emerges from ontogenetic differences between growth and development rates. Functional Ecology, 26, 483–492.
Gao, G., Feng, L., Perkins, L.E., Sharma, S. & Lu, Z. (2018) Effect of the frequency and magnitude of extreme temperature on the life history traits of the large cotton aphid, Acyrthosiphongossypii (Hemiptera: Aphididae): implications for their population dynamics under global warming. Entomologia Generalis, 37, 103–113.
Geister, T.L. & Fischer, K. (2007) Testing the beneficial acclimation hypothesis: temperature effects on mating success in a butterfly. Behavioral Ecology, 18, 658–664.
Goldansaz, S.H. & McNeil, J.N. (2006) Effect of wind speed on the pheromone-mediated behavior of sexual morphs of the potato aphid, Macrosiphumeuphorbiae (Thomas) under laboratory and field conditions. Journal of Chemical Ecology, 32, 1719–1729.
Green, C.K., Moore, P.J. & Sial, A.A. (2019) Impact of heat stress on development and fertility of Drosophila suzukii Matsumura (Diptera: Drosophilidae). Journal of Insect Physiology, 114, 45–52.
Gutschick, V.P. & Bassirirad, H. (2003) Extreme events as shaping physiology, ecology, and evolution of plants, toward a unified definition and evaluation of their consequences. New Phytologist, 160, 21–42.
Hoffmann, A.A., Chown, S.L. & Clusella-Trullas, S. (2013) Upper thermal limits in terrestrial ectotherms, how constrained are they? Functional Ecology, 27, 934–949.
Hoffmann, A.A., Sørensen, J.G. & Loeschcke, V. (2003) Adaptation of Drosophila to temperature extremes, bringing together quantitative and molecular approaches. Journal of Thermal Biology, 28, 175–216.
Hu, C., Hou, M., Wei, G., Shi, B. & Huang, J. (2015) Potential overwintering boundary and voltinism changes in the brown planthopper, Nilaparvatalugens, in China in response to global warming. Climatic Change, 132, 337–352.
Huey, R.B. & Berrigan, D. (2001) Temperature, demography, and ectotherm fitness. The American Naturalist, 158, 204–210.
IPCC (2018) Summary for policymakers. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Vol. 32 (ed. by V. Masson-Delmotte, P. Zhai, H. O. Pörtner, et al.). World Meteorological Organization, Geneva, Switzerland.
Kingsolver, J.G., Higgins, J.K. & Augustine, K.E. (2015) Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects. Journal of Experimental Biology, 218, 2218–2225.
Kingsolver, J.G., Ragland, G.J. & Diamond, S.E. (2009) Evolution in a constant environment: thermal fluctuations and thermal sensitivity of laboratory and field populations of Manducasexta. Evolution, 63, 537–541.
Klok, C.J. & Chown, S.L. (2001) Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractoradreuxi (Diptera, Helcomyzidae). Journal of Insect Physiology, 47, 95–109.
Koussoroplis, A.M. & Wacker, A. (2016) Covariance modulates the effect of joint temperature and food variance on ectotherm life-history traits. Ecology Letters, 19, 143–152.
Kuo, M.H., Chiu, M.C. & Perng, J.J. (2006) Temperature effects on life history traits of the corn leaf aphid, Rhopalosiphummaidis (Homoptera, Aphididae) on corn in Taiwan. Applied Entomology and Zoology, 92, 2177–2186.
Lutterschmidt, W.I. & Hutchison, V.H. (1997) The critical thermal maximum, history and critique. Canadian Journal of Zoology, 75, 1561–1574.
Ma, C.S., Wang, L., Zhang, W. & Rudolf, V.H.W. (2018) Resolving biological impacts of multiple heat waves: interaction of hot and recovery days. Oikos, 127, 622–633.
Ma, C.S., Hau, B. & Poehling, H.M. (2004) The effect of heat stress on the survival of the rose grain aphid, Metopolophiumdirhodum (Hemiptera, Aphididae). European Journal of Entomology, 101, 327–332.
Ma, G., Hoffmann, A.A. & Ma, C.S. (2015) Daily temperature extremes play an important role in predicting thermal effects. Journal of Experimental Biology, 218, 2289–2296.
Marshall, K.E. & Sinclair, B.J. (2010) Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proceedings of the Royal Society of London. Series B, 277, 963–969.
Martin, T.L. & Huey, R.B. (2008) Why “suboptimal” is optimal: Jensen's inequality and ectotherm thermal preferences. American Naturalist, 171, E102–E118.
Nottingham, S.F., Hardie, J., Dawson, G.W., Hick, A.J., Pickett, J.A., Wadhams, L.J. et al. (1991) Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. Journal of Chemical Ecology, 17, 1231–1242.
Overgaard, J., Kearney, M.R. & Hoffmann, A.A. (2014) Sensitivity to thermal extremes in Australian drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Global Change Biology, 20, 1738–1750.
Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.
Pumhan, N., Tian, M., Xu, L.L., Jiang, J., Liu, T.X. & Zhang, S.Z. (2020) Effects of heat stress and exposure duration on survival characteristics of different developmental stages of Propylaea japonica, a dominant aphidophagous ladybeetle in China. Crop Protection, 130, 105054.
Sørensen, J. & Loeschcke, V. (2002) Decreased heat-shock resistance and down-regulation of Hsp70 expression with increasing age in adult Drosophila melanogaster. Functional Ecology, 16, 379–384.
Sarup, P. & Loeschcke, V. (2010) Developmental acclimation affects clinal variation in stress resistance traits in Drosophila buzzatii. Journal of Evolutionary Biology, 23, 957–965.
Satar, S., Kersting, U. & Uygun, N. (2005) Effect of temperature on development and fecundity of Aphis gossypii glover (Homoptera, Aphididae) on cucumber. Journal of Pest Science, 78, 133–137.
Semenov, M.A. (2009) Impacts of climate change on wheat in England and Wales. Journal of the Royal Society Interface, 6, 343–350.
Somero, G.N. (2010) The physiology of climate change, how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. Journal of Experimental Biology, 213, 912–920.
Terblanche, J.S. & Chown, S.L. (2007) The effects of temperature, body mass and feeding on metabolic rate in the tsetse fly Glossinamorsitanscentralis. Physiological Entomology, 32, 175–180.
Woods, H.A. (2013) Ontogenetic changes in the body temperature of an insect herbivore. Functional Ecology, 27, 1322–1331.
Xie, H., Zhao, L., Wang, W., Wang, Z., Ni, X., Cai, W. et al. (2014) Changes in life history parameters of Rhopalosiphummaidis (homoptera: aphididae) under four different elevated temperature and CO2 combinations. Journal of Economic Entomology, 107, 1411–1418.
Xing, K., Hoffmann, A.A., Zhao, F. & Ma, C.S. (2019) Wide diurnal temperature variation inhibits larval development and adult reproduction in the diamondback moth. Journal of Thermal Biology, 84, 8–15.
Zhang, W., Chang, X.Q., Hoffmann, A.A., Zhang, S. & Ma, C.S. (2015) Impact of hot events at different developmental stages of a moth, the closer to adult stage, the less reproductive output. Scientific Reports, 5, 10436.
Zhang, Y.B., Zhang, G.F., Liu, W.X. & Wan, F.H. (2019) Continuous heat waves change the life history of a host-feeding parasitoid. Biological Control, 135, 57–65.
Zhao, F., Hoffmann, A.A., Xing, K. & Ma, C.S. (2017) Life stages of an aphid living under similar thermal conditions differ in thermal performance. Journal of Insect Physiology, 99, 1–7.
Zhao, F., Xing, K., Hoffmann, A.A. & Ma, C.S. (2019) The importance of timing of heat events for predicting the dynamics of aphid pest populations. Pest Management Science, 75, 1866–1874.
Zhao, F., Zhang, W., Hoffmann, A.A. & Ma, C.S. (2014) Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. Journal of Animal Ecology, 83, 769–778.
Zhou, X. & Carter, N. (1992) Effects of temperature, feeding position and crop growth stage on the population dynamics of the rose grain aphid, Metopolophiumdirhodum (Hemiptera: Aphididae). Annals of Applied Biology, 121, 27–37.
Zizzari, Z.V. & Ellers, J. (2014) Rapid shift in thermal resistance between generations through maternal heat exposure. Oikos, 123, 1365–1370.