[en] Integrated Pest Management, especially pheromone-based pest management technology is an ecological strategy to pest management that may minimize risk posed by pesticides to human health and the environment. In order to avoid the burst release of pheromones and extend their duration in the field, novel matrices and encapsulating methods are intensively studied to decrease the release rate of pheromones, thereby achieving efficient, labor-saving and economical control effect. With the development and application of nanotechnology, some nanomaterials have been applied in agriculture, especially in the controlled-release of agrochemicals. In this review, we summarize the current developments of novel matrices of pheromones dispensers, including their classification, properties, efficacy, and potential application prospect. Nanomaterial-based novel pheromone matrices are at an early stage of development, and several challenges must be solved before future marketing. These challenges include the reduction of their production cost and assessment of their performance, especially at the field level. There are also concerns about the potential safety risks of nanomaterials. It is necessary to develop transdisciplinary risk governance frameworks based on clear understanding of nanotechnology risk, management practices and societal perceptions.
Disciplines :
Entomology & pest control
Author, co-author :
Sun, Changjiao; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
Wang, Anqi; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
Shen, Yue; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
Li, Xingye; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
Zhan, Shenshan; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
Wang, Chong; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
Verheggen, François ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Wang, Yan; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Innovative matrices to release pheromones for Integrated Pest Management
Ahmad, R., Hussein, M. Z., Sarijo, S. H., Wan Abdul Kadir, W. R., & Yun Hin, T. (2016). Synthesis and Characteristics of Valeric Acid-Zinc Layered Hydroxide Intercalation Material for Insect Pheromone Controlled Release Formulation. Journal of Materials, 2016, 1–9. https://doi.org/10.1155/2016/1285721
Ahmad, R., Hussein, M. Z., Wan Abdul Kadir, W. R., Sarijo, S. H., & Yun Hin, T. (2015). Evaluation of Controlled-Release Property and Phytotoxicity Effect of Insect Pheromone Zinc-Layered Hydroxide Nanohybrid Intercalated with Hexenoic Acid. Journal of Agricultural and Food Chemistry, 63(51), 10893–10902. https://doi.org/10.1021/acs.jafc.5b03102
Ali, S., Ahmad, N., Dar, M. A., Manan, S., Rani, A., Alghanem, S., … Zhu, D. (2023). Nano-Agrochemicals as Substitutes for Pesticides: Prospects and Risks. Plants, 13(1), 109. https://doi. org/10.3390/plants13010109
An, C., Sun, C., Li, N., Huang, B., Jiang, J., Shen, Y., … Wang, Y. (2022). Nanomaterials and Nanotechnology for The Delivery of Agrochemicals: Strategies Towards Sustainable Agriculture. Journal of Nanobiotechnology, 20(1), 11. https://doi.org/10.1186/s12951-021-01214-7
Avellan, A., Yun, J., Zhang, Y., Spielman-Sun, E., Unrine, J. M., Thieme, J., … Lowry, G. V. (2019). Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. ACS Nano, 13(5), 5291–5305. https://doi.org/10.1021/acsnano.8b09781
Bansal, P., Bubel, K., Agarwal, S., & Greiner, A. (2012). Water-Stable All-Biodegradable Microparticles in Nanofibers by Electrospinning of Aqueous Dispersions for Biotechnical Plant Protection. Biomacromolecules, 13(2), 439–444. https://doi.org/10.1021/bm2014679
Bartolucci, C., Antonacci, A., Arduini, F., Moscone, D., Fraceto, L., Campos, E., … Scognamiglio, V. (2020). Green Nanomaterials Fostering Agrifood Sustainability. Trends in Analytical Chemistry, 125, 115840. https://doi.org/10.1016/j. trac.2020.115840
Benelli, G., Pavela, R., Maggi, F., Petrelli, R., & Nicoletti, M. (2017). Commentary: Making Green Pesticides Greener? The Potential of Plant Products for Nanosynthesis and Pest Control. Journal of Cluster Science, 28(1), 3–10. https://doi.org/10.1007/s10876-016-1131-7
Bhagat, D., Samanta, S. K., & Bhattacharya, S. (2013). Efficient Management of Fruit Pests by Pheromone Nanogels. Scientific Reports, 3(1), 1294. https://doi.org/10.1038/srep01294
Bölgen, N., Demir, D., Aşık, M., Sakım, B., & Vaseashta, A. (2022). Introduction and Fundamentals of Electrospinning. In N. Bölgen, A. Vaseashta, A. Vaseashta, & N. Bölgen (Eds.), (pp. 3–34). Springer International Publishing AG; https://doi. org/10.1007/978-3-030-99958-2_1
Brezolin, A. N., Martinazzo, J., Steffens, J., & Steffens, C. (2020a). Nanostructured Cantilever Sensor Using with Pani/MWCNT-COOH Nanocomposites Applied in the Detection of Pheromone. Journal of Materials Science Materials in Electronics, 31(8), 6008–6016. https://doi.org/10.1007/s10854-020-03152-w
Brezolin, A. N., Martinazzo, J., Steffens, J., & Steffens, C. (2020b). Polyaniline-Graphene Oxide Nanocomposite Micro-electromechanical Sensor for Stink Bugs Pheromone Detection. Sensors and Actuators. B, Chemical, 305, 127426. https://doi. org/10.1016/j.snb.2019.127426
Ceriani-Nakamurakare, E., Slodowicz, M., Carmaran, C., & Gonzalez-Audino, P. (2017). Development of Natural Waxes Dispensers for Pheromones and Use in Mating Disruption of the Ambrosia Beetle Megaplatypus Mutatus in Poplar (Populus spp) Plantations. Agroforestry Systems, 91(3), 415–421. https://doi.org/10.1007/s10457-016-9938-7
Chandel, M., Kaur, K., Sahu, B. K., Sharma, S., Panneerselvam, R., & Shanmugam, V. (2022). Promise of Nano-Carbon to the Next Generation Sustainable Agriculture. Carbon, 188, 461–481. https://doi.org/10.1016/j.carbon.2021.11.060
Correia, P. R. C., Santana, J. S., Ramos, I. G., Sant Ana, A. E. G., Goulart, H. F., & Druzian, J. I. (2019). Development of Membranes Composed of Poly(butylene adipate-co-terephthalate) and Activated Charcoal for Use in a Controlled Release System of Pheromone. Journal of Polymers and the Environment, 27(8), 1781–1789. https://doi.org/10.1007/s10924-019-01471-6
Cui, G. Z., & Zhu, J. J. (2016). Pheromone-Based Pest Management in China: Past, Present, and Future Prospects. Journal of Chemical Ecology, 42(7), 557–570. https://doi.org/10.1007/s10886-016-0731-x
De Jorge, C. B., Bisotto De Oliveira, R., Pereira, C. N., & Sant’Ana, J. (2017). Novel Nanoscale Pheromone Dispenser for More Accurate Evaluation of Grapholita Molesta (Lepidoptera: Tortricidae) Attract‐and‐Kill Strategies in the Laboratory. Pest Management Science, 73(9), 1921–1926. https://doi.org/10.1002/ps.4558
Danaye-Tous, A., Jafari, S., Heidary-Alizadeh, B., & Farazmand, H. (2022). Efficacy of Nanocapsules Loaded with Ectomyelois Ceratoniae (Zeller) (Lepidoptera: Pyralidae) Sex Pheromone as Evaluated in Wind Tunnel and Field Trapping Experiments. Journal of Plant Diseases and Protection, 129(4), 853–860. https://doi.org/10.1007/s41348-022-00632-5
de Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2014). Application of Nanotechnology for the Encapsulation of Botanical Insecticides for Sustainable Agriculture: Prospects and Promises. Biotechnology Advances, 32(8), 1550–1561. https://doi.org/10.1016/j.biotechadv.2014. 10.010
Desauziers, V., Sicre, E., Vignau-Laulhère, J., Bourrigaud, S., & Plaisance, H. (2022). Suspension of Pheromone Microcapsules on Vine Leaves Acting as Passive Dispensers against Pests. Environmental Science and Pollution Research International, 29(10), 14975–14986. https://doi.org/10.1007/s11356-021-16878-9
Dharanivasan, G., Sithanantham, S., Kannan, M., Chitra, S., Kathiravan, K., & Janarthanan, S. (2017). Metal Oxide Nanoparticles Assisted Controlled Release of Synthetic Insect Attractant for Effective and Sustainable Trapping of Fruit Flies. Journal of Cluster Science, 28(4), 2167–2183. https://doi. org/10.1007/s10876-017-1215-z
El-Aassar, M. R., Ibrahim, O. M., & Al-Oanzi, Z. H. (2021). Biotechnological Applications of Polymeric Nanofiber Platforms Loaded with Diverse Bioactive Materials. Polymers, 13(21), 3734. https://doi.org/10.3390/polym13213734
El-Ghany, N. M. A. (2019). Semiochemicals for Controlling Insect Pests. Journal of Plant Protection Research, 59(1), 1–11. https://doi.org/10.24425/jppr.2019.126036
El-Wahab, A. S. A., El-Fattah, A. Y. A., El-Shafei, W. K. M., & Helaly, A. A. E. (2021). Efficacy of Aggregation Nano Gel Pheromone Traps on The Catchability of Rhynchophorus Ferrugineus (Olivier) in Egypt. Brazilian Journal of Biology, 81(2), 452–460. https://doi.org/10.1590/1519-6984.231808
Ezzat, S. M., Jeevanandam, J., Egbuna, C., Merghany, R. M., Akram, M., Daniyal, M., … Sharif, A. (2020). Semiochemicals: A Green Approach to Pest and Disease Control. In C. Egbuna & B. Sawicka (Eds.), Natural Remedies for Pest, Disease and Weed Control (pp. 81–89). Elsevier Inc. https://doi.org/10.1016/B978-0-12-819304-4.00007-5
Fadil, F., Affandi, N. D. N., Misnon, M. I., Bonnia, N. N., Harun, A. M., & Alam, M. K. (2021). Review on Electrospun Nanofiber-Applied Products. Polymers, 13(13), 2087. https://doi.org/10.3390/polym13132087
Gilbertson, L. M., Pourzahedi, L., Laughton, S., Gao, X., Zimmerman, J. B., Theis, T. L., … Lowry, G. V. (2020). Guiding the Design Space for Nanotechnology to Advance Sustainable Crop Production. Nature Nanotechnology, 15(9), 801–810. https://doi.org/10.1038/s41565-020-0706-5
Gohari, G., Jiang, M., Manganaris, G. A., Zhou, J., & Fotopoulos, V. (2024). Next Generation Chemical Priming: With A Little Help from Our Nanocarrier Friends. Trends in Plant Science, 29(2), 150–166. https://doi.org/10.1016/j.tplants.2023.11.024
Gomes, S. I. L., Scott-Fordsmand, J. J., & Amorim, M. J. B. (2021). Alternative Test Methods for (Nano)Materials Hazards Assessment: Challenges and Recommendations for Regulatory Preparedness. Nano Today, 40, 101242. https://doi. org/10.1016/j.nantod.2021.101242
Gregg, P. C., Del Socorro, A. P., & Landolt, P. J. (2018). Advances in Attract-and-Kill for Agricultural Pests: Beyond Pheromones. Annual Review of Entomology, 63(1), 453–470. https://doi. org/10.1146/annurev-ento-031616-035040
Hamedi, H., Moradi, S., Hudson, S. M., & Tonelli, A. E. (2018). Chitosan Based Hydrogels and Their Applications for Drug Delivery in Wound Dressings: A review. Carbohydrate Polymers, 199, 445–460. https://doi.org/10.1016/j.carbpol.2018.06.114
Hellmann, C., Greiner, A., & Wendorff, J. H. (2011). Design of Pheromone Releasing Nanofibers for Plant Protection. Polymers for Advanced Technologies, 22(4), 407–413. https://doi.org/10.1002/pat.1532
Hochella, M. J., Jr., Mogk, D. W., Ranville, J., Allen, I. C., Luther, G. W., Marr, L. C., … Yang, Y. (2019). Natural, Incidental, and Engineered Nanomaterials and Their Impacts on the Earth System. Science, 363(6434), eaau8299. https://doi.org/10.1126/science.aau8299
Hiwrale, A., Bharati, S., Pingale, P., & Rajput, A. (2023). Nanofibers: A Current Era in Drug Delivery System. Heliyon, 9(9), e18917. https://doi.org/10.1016/j.heliyon.2023.e18917
Joudeh, N., & Linke, D. (2022). Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. Journal of Nano-biotechnology, 20(1), 262. https://doi.org/10.1186/s12951-022-01477-8
Kabanov, A. V., & Vinogradov, S. V. (2009). Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities. Angewandte Chemie International Edition, 48(30), 5418–5429. https://doi.org/10.1002/anie.200900441
Kah, M., Johnston, L. J., Kookana, R. S., Bruce, W., Haase, A., Ritz, V., … Gubala, V. (2021). Comprehensive Framework for Human Health Risk Assessment of Nanopesticides. Nature Nanotechnology, 16(9), 955–964. https://doi.org/10.1038/s41565-021-00964-7
Kah, M., & Hofmann, T. (2014). Nanopesticide Research: Current Trends and Future Priorities. Environment International, 63, 224–235. https://doi.org/10.1016/j.envint.2013.11.015
Kaur, K., Sharma, S., Gupta, R., Munikrishnappa, V. K. T., Chandel, M., Ahamed, M., … Shanmugam, V. (2021). Nanomaze Lure: Pheromone Sandwich in Graphene Oxide Interlayers for Sustainable Targeted Pest Control. ACS Applied Materials & Interfaces, 13(41), 48349–48357. https://doi.org/10.1021/acsami.1c09118
Kerstens, D., Smeyers, B., Van Waeyenberg, J., Zhang, Q., Yu, J., & Sels, B. F. (2020). State of the Art and Perspectives of Hierarchical Zeolites: Practical Overview of Synthesis Methods and Use in Catalysis. Advanced Materials, 32(44), 2004690. https://doi.org/10.1002/adma.202004690
Kikionis, S., Ioannou, E., Konstantopoulou, M., & Roussis, V. (2017). Electrospun Micro/Nanofibers as Controlled Release Systems for Pheromones of Bactrocera oleae and Prays oleae. Journal of Chemical Ecology, 43(3), 254–262. https://doi. org/10.1007/s10886-017-0831-2
Klassen, D., Lennox, M. D., Dumont, M., Chouinard, G., & Tavares, J. R. (2023). Dispensers for Pheromonal Pest Control. Journal of Environmental Management, 325, 116590. https://doi.org/10.1016/j.jenvman.2022.116590
Kookana, R. S., Boxall, A. B. A., Reeves, P. T., Ashauer, R., Beulke, S., Chaudhry, Q., … Van den Brink, P. J. (2014). Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. Journal of Agricultural and Food Chemistry, 62(19), 4227–4240. https://doi.org/10.1021/jf500232f
Kuenen, L. P. S., & Siegel, J. P. (2015). Measure Your Septa Release Ratios: Pheromone Release Ratio Variability Affected by Rubber Septa and Solvent. Journal of Chemical Ecology, 41(3), 303–310. https://doi.org/10.1007/s10886-015-0557-y
Larsson, M. C. (2016). Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species. Journal of Chemical Ecology, 42(9), 853–868. https://doi.org/10.1007/s10886-016-0753-4
Li, N., Sun, C., Jiang, J., Wang, A., Wang, C., Shen, Y., … Wang, Y. (2021). Advances in Controlled-Release Pesticide Formulations with Improved Efficacy and Targetability. Journal of Agricultural and Food Chemistry, 69(43), 12579–12597. https://doi.org/10.1021/acs.jafc.0c05431
Li, X., Wen, Y., Zhang, Y., & Ge, Z. (2022). Pheromone Enclosed in Halloysite with N-Octadecane Releases Rhythmically under Simulated Diurnal Temperature. Applied Clay Science, 217, 106386. https://doi.org/10.1016/j.clay.2021.106386
Lowry, G. V., Avellan, A., & Gilbertson, L. M. (2019). Opportunities and Challenges for Nanotechnology in the Agri-Tech Revolution. Nature Nanotechnology, 14(6), 517–522. https://doi.org/10.1038/s41565-019-0461-7
Meredith, A. N., Harper, B., & Harper, S. L. (2016). The Influence of Size on the Toxicity of An Encapsulated Pesticide: A Comparison of Micron-and Nano-Sized Capsules. Environment International, 86, 68–74. https://doi.org/10.1016/j.envint.2015.10.012
Mubeen, I., Fawzi, B. M. M., Razaq, Z., Iqbal, S., Naqvi, S., Hakim, F., … Li, B. (2023). Nanopesticides in Comparison with Agrochemicals: Outlook and Future Prospects for Sustainable Agriculture. Plant Physiology and Biochemistry, 198, 107670. https://doi.org/10.1016/j.plaphy.2023.107670
Pasquoto-Stigliani, T., Campos, E. V. R., Oliveira, J. L., Silva, C. M. G., Bilesky-José, N., Guilger, M., … de Lima, R. (2017). Nanocapsules Containing Neem (Azadirachta Indica) Oil: Development, Characterization, and Toxicity Evaluation. Scientific Reports, 7(1), 5929. https://doi.org/10.1038/s41598-017-06092-4
Pellá, M. C. G., Lima-Tenório, M. K., Tenório-Neto, E. T., Guilherme, M. R., Muniz, E. C., & Rubira, A. F. (2018). Chitosan-Based Hydrogels: From Preparation to Biomedical Applications. Carbohydrate Polymers, 196, 233–245. https://doi.org/10.1016/j.carbpol.2018.05.033
Preti, M., Verheggen, F., & Angeli, S. (2021). Insect Pest Monitoring with Camera-Equipped Traps: Strengths and Limitations. Journal of Pest Science, 94(2), 203–217. https://doi.org/10.1007/s10340-020-01309-4
Rempel, S. P., Engler, L. G., Soares, M. R. F., Catafesta, J., Moura, S., & Bianchi, O. (2019). Nano/microfibers of EVA Copolymer Obtained by Solution Blow Spinning: Processing, Solution Properties, and Pheromone Release Application. Journal of Applied Polymer Science, 136(24), 47647. https://doi.org/10.1002/app.47647
Samuel, M. S., Ravikumar, M., John, J. A., Selvarajan, E., Patel, H., Chander, P. S., … Chandrasekar, N. (2022). A Review on Green Synthesis of Nanoparticles and Their Diverse Biomedical and Environmental Applications. Catalysts, 12(5), 459. https://doi. org/10.3390/catal12050459
Seo, S. M., Lee, J. M., Lee, H. Y., An, J., Choi, S. J., & Lim, W. T. (2016). Synthesis of Nanoporous Materials to Dispense Pheromone for Trapping Agricultural Pests. Journal of Porous Materials, 23(2), 557–562. https://doi.org/10.1007/s10934-015-0109-4
Sembada, A. A., & Lenggoro, I. W. (2024). Transport of Nanoparticles into Plants and Their Detection Methods. Nanomaterials (Basel, Switzerland), 14(2), 131. https://doi. org/10.3390/nano14020131
Servin, A. D., & White, J. C. (2016). Nanotechnology in agriculture: Next Steps for Understanding Engineered Nanoparticle Exposure and Risk. NanoImpact, 1, 9–12. https://doi.org/10.1016/j.impact.2015.12.002
Shangguan, W., Huang, Q., Chen, H., Zheng, Y., Zhao, P., Cao, C., … Cao, L. (2024). Making the Complicated Simple: A Minimizing Carrier Strategy on Innovative Nanopesticides. Nano-Micro Letters, 16(1), 193. https://doi.org/10.1007/s40820-024-01413-5
Shangguan, W., Xu, H., Ding, W., Chen, H., Mei, X., Zhao, P., … Cao, L. (2023). Nano-Micro Core-Shell Fibers for Efficient Pest Trapping. Nano Letters, 23(24), 11809–11817. https://doi. org/10.1021/acs.nanolett.3c03817
Stenberg, J. A. (2017). A Conceptual Framework for Integrated Pest Management. Trends in Plant Science, 22(9), 759–769. https://doi.org/10.1016/j.tplants.2017.06.010
Su, Y., Zhou, X., Meng, H., Xia, T., Liu, H., Rolshausen, P., … Jassby, D. (2022). Cost-Benefit Analysis of Nanofertilizers and Nanopesticides Emphasizes the Need to Improve the Efficiency of Nanoformulations for Widescale Adoption. Nature Food, 3(12), 1020–1030. https://doi.org/10.1038/s43016-022-00647-z
Sun, C., Zeng, Z., Cui, H., & Verheggen, F. (2020). Polymer-Based Nanoinsecticides: Current Developments, Environmental Risks and Future Challenges. A review. Biotechnologie, Agronomie, Société et Environnement, 24(2), 59–69. https://doi. org/10.25518/1780-4507.18497
Tang, J., Tong, X., Chen, Y., Wu, Y., Zheng, Z., Kayitmazer, A. B., … Xu, Y. (2023). Deposition and Water Repelling of Temperature-Responsive Nanopesticides on Leaves. Nature Communications, 14(1), 6401. https://doi.org/10.1038/s41467-023-41878-3
Walker, G. W., Kookana, R. S., Smith, N. E., Kah, M., Doolette, C. L., Reeves, P. T., … Navarro, D. A. (2018). Ecological Risk Assessment of Nano-enabled Pesticides: A Perspective on Problem Formulation. Journal of Agricultural and Food Chemistry, 66(26), 6480–6486. https://doi.org/10.1021/acs. jafc.7b02373
Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-Demessie, E., Luxton, T. P., … Su, C. (2022). Nano-Enabled Pesticides for Sustainable Agriculture and Global Food Security. Nature Nanotechnology, 17(4), 347–360. https://doi.org/10.1038/s41565-022-01082-8
Xiang, Y., Zhang, G., Chi, Y., Cai, D., & Wu, Z. (2017). Fabrication of a Controllable Nanopesticide System with Magnetic Collectability. Chemical Engineering Journal, 328, 320–330. https://doi.org/10.1016/j.cej.2017.07.046
Zhang, A., Leskey, T. C., Bergh, J. C., & Walgenbach, J. F. (2013). Sex Pheromone Dispenser Type and Trap Design Affect Capture of Dogwood Borer. Journal of Chemical Ecology, 39(3), 390– 397. https://doi.org/10.1007/s10886-013-0251-x
Zhang, J., Kothalawala, S., & Yu, C. (2023). Engineered Silica Nanomaterials in Pesticide Delivery: Challenges and Perspectives. Environmental Pollution, 320, 121045. https://doi. org/10.1016/j.envpol.2023.121045
Zhang, P., Guo, Z., Zhang, Z., Fu, H., White, J. C., & Lynch, I. (2020). Nanomaterial Transformation in the Soil – Plant System: Implications for Food Safety and Application in Agriculture. Small, 16(21), e2000705. https://doi.org/10.1002/smll.202000705
Zhang, Y., & Goss, G. G. (2022). Nanotechnology in agriculture: Comparison of the Toxicity between Conventional and Nano-Based Agrochemicals on Non-Target Aquatic Species. Journal of Hazardous Materials, 439, 129559. https://doi.org/10.1016/j. jhazmat.2022.129559
Zhang, Z., Hao, G., Liu, C., Fu, J., Hu, D., Rong, J., & Yang, X. (2021). Recent Progress in the Preparation, Chemical Interactions and Applications of Biocompatible Polysaccharide-Protein Nanogel Carriers. Food Research International, 147, 110564. https://doi.org/10.1016/j.foodres.2021.110564
Zisopoulou, S. A., Chatzinikolaou, C. K., Gallos, J. K., Ofrydopoulou, A., Lambropoulou, D. A., Psochia, E., … Nanaki, S. G. (2020). Synthesis of Dacus Pheromone, 1,7-Dioxaspiro[5.5]Undecane and Its Encapsulation in PLLA Microspheres for Their Potential Use as Controlled Release Devices. Agronomy (Basel), 10(7), 1053. https://doi.org/10.3390/agronomy10071053