Infectious diseases; clinical trials; everyday functioning; quality of life
Abstract :
[en] OBJECTIVE: A subset of COVID-19 patients continues to experience cognitive difficulties 24 months post-infection. The factors driving these symptoms are complex, and the underlying pathophysiology is unclear. This study aimed to characterize individuals with Long COVID reporting cognitive issues.
METHOD: One hundred twenty-three patients underwent a comprehensive neuropsychological evaluation resulting from the baseline of an RCT study (COVCOG), along with questionnaires assessing cognitive complaints, fatigue, sleep difficulties, quality of life, psychological distress, and impact on daily activities. Latent Profile Analyses on cognitive scores were conducted to investigate the presence of different patient profiles. Robust analyses of variance and Pearson's chi-square examined the profiles' effects on demographic variables and questionnaire scores.
RESULTS: Patients had had predominantly mild to moderate infections (87.8%) and were assessed an average of 20.9 (±8.6) months post-infection. Neuropsychological assessment showed cognitive impairment in at least one domain in 72% of the patients, mainly in attention and executive functions. Over 80% reported sleep problems and fatigue, 97% concentration problems, and some 80% memory and word-finding problems. The self-report questionnaires also revealed significant complaints. Three profiles emerged (all ps < .001). Profiles 1 and 2 both experienced widespread cognitive issues; Profile 1 patients expressed more complaints about cognitive functioning and daily fatigue (all ps < .045). Patients in Profile 3 were more frequently men (all ps < .049) with a specific impairment of verbal long-term memory and fewer complaints.
CONCLUSIONS: The study identifies three different profiles of individuals with Long COVID, highlighting the need for comprehensive evaluations including neuropsychological, psychological, somatic, and functional aspects to implement effective, tailored interventions. Clinicaltrials.gov: NCT05167266.
Disciplines :
Neurosciences & behavior
Author, co-author :
Cabello Fernandez, Carmen ; Université de Liège - ULiège > Psychologie et Neuroscience Cognitives (PsyNCog)
Didone, Vincent ; Université de Liège - ULiège > Psychologie et Neuroscience Cognitives (PsyNCog)
Slama, Hichem; Department of Neuropsychology and Speech Therapy, Erasme Hospital, ULB, Brussels, Belgium ; UR2NF-Neuropsychology and Functional Neuroimaging Research Group at CRCN-Research Centre in Cognitive Neurosciences, ULB, Brussels, Belgium
Dupuis, Gilles; Department of Psychology, UQAM, Montreal, Québec, Canada
Fery, Patrick; Department of Neuropsychology and Speech Therapy, Erasme Hospital, ULB, Brussels, Belgium
Delrue, Gaël ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie de l'adulte
Lesoinne, Alexia ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie de l'adulte ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Aging & Memory
Collette, Fabienne ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Aging & Memory ; Université de Liège - ULiège > Psychologie et Neuroscience Cognitives (PsyNCog) > Cognition et Langage
Willems, Sylvie ; Université de Liège - ULiège > Psychologie et Neuroscience Cognitives (PsyNCog)
Language :
English
Title :
Profiles of Individuals With Long COVID Reporting Persistent Cognitive Complaints.
Anderson, J. F. (2021). Cognitive complaint and objective cognition during the post-acute period after mild traumatic brain injury in pre-morbidly healthy adults. Brain Injury, 35 (1), 103 113. 10.1080/02699052.2020.1859613.
Arentsen, T. J., Boone, K. B., Lo, T. T. Y., Goldberg, H. E., Cottingham, M. E., Victor, T. L., et al. (2013). Effectiveness of the comalli stroop test as a measure of negative response bias. The Clinical Neuropsychologist, 27 (6), 1060 1076. 10.1080/13854046.2013.803603.
Ayoubkhani, D., Bosworth, M. L., King, S., Pouwels, K. B., Glickman, M., Nafilyan, V., et al. (2022). Risk of long COVID in people infected with severe acute respiratory syndrome coronavirus 2 after 2 doses of a coronavirus disease 2019 vaccine: Community-based, matched cohort study. Open Forum Infectious Diseases, 9 (9), ofac464. 10.1093/ofid/ofac464.
Azouvi, P., Vallat-Azouvi, C., Joseph, P. A., Meulemans, T., Bertola, C., Gall, D. L., et al. (2015). Executive functions deficits after severe traumatic brain injury: The GREFEX study. The Journal of Head Trauma Rehabilitation, 31 (3), E10 E20.
Benedict, R. H., Schretlen, D., Groninger, L., Dobraski, M., & Shpritz, B. (1996). Revision of the brief visuospatial memory test: Studies of normal performance, reliability, and validity. Psychological Assessment, 8 (2), 145 153. 10.1037/1040-3590.8.2.145.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57 (1), 289 300. 10.1111/j.2517-6161.1995.tb02031.x.
Bensing, J. M., Hulsman, R. L., & Schreurs, K. M. G. (1999). Gender differences in fatigue: Biopsychosocial factors relating to fatigue in men and women. Medical Care, 37 (10), 1078 1083. 10.1097/00005650-199910000-00011.
Bertrand, J. A., Chartrand, J. P., Gauthier, A. K., Kennepohl, S., & Monette, S. (2023). Validité de performance aux tests neuropsychologiques: Prise de position de l ' association québécoise des neuropsychologues. Neuropsychologie Clinique et Appliquée, (5), 1 16. 10.46278/j.ncacn.20231211.
Bland, A. R., Barraclough, M., Trender, W. R., Mehta, M. A., Hellyer, P. J., Hampshire, A., et al. (2024). Profiles of objective and subjective cognitive function in post-COVID syndrome, COVID-19 recovered, and COVID-19 naïve individuals. Scientific Reports, 14 (1), 13368. 10.1038/s41598-024-62050-x.
Brickenkamp, R., Schmidt-Atzert, L., & Liepmann, D. (2015). D2-R: Test d'attention concentrée Éditions. France: Hogrefe.
Buysse, D. J., Reynolds, C. F., III, Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28 (2), 193 213. 10.1016/0165-1781(89)90047-4.
Byrne, C., Coetzer, R., & Addy, K. (2017). Investigating the discrepancy between subjective and objective cognitive impairment following acquired brain injury: The role of psychological affect. NeuroRehabilitation, 41 (2), 501 512. 10.3233/NRE-162015.
Carmona-Cervelló, M., León-Gómez, B. B., Dacosta-Aguayo, R., Lamonja-Vicente, N., Montero-Alía, P., Molist, G., et al. (2024). Long COVID: Cognitive, balance, and retina manifestations. Frontiers in Medicine, 11 (July), 1 12. 10.3389/fmed.2024.1399145.
Castanares-Zapatero, D., Chalon, P., Kohn, L., Dauvrin, M., Detollenaere, J., Maertens de Noordhout, C., et al. (2022). Pathophysiology and mechanism of long COVID: A comprehensive review. Annals of Medicine, 54 (1), 1473 1487. 10.1080/07853890.2022.2076901.
Ceban, F., Kulzhabayeva, D., Rodrigues, N. B., Di Vincenzo, J. D., Gill, H., Subramaniapillai, M., et al. (2023). COVID-19 vaccination for the prevention and treatment of long COVID: A systematic review and meta-analysis. Brain, Behavior, and Immunity, 111 (September 2022), 211 229. 10.1016/j.bbi.2023.03.022.
Chafetz, M. (2011). Reducing the probability of false positives in malingering detection of social security disability claimants detection of social security disability claimants. The Clinical Neuropsychologist, 25 (7), 1239-1252. 10.1080/13854046.2011.586785.
Cheng, A. L., Anderson, J., Didehbani, N., Fine, J. S., Fleming, T. K., Karnik, R., et al. (2023). Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of mental health symptoms in patients with post-acute sequelae of SARS-CoV-2 infection (PASC). PM & R: The Journal of Injury, Function, and Rehabilitation, 15 (12), 1588 1604. 10.1002/pmrj.13085.
Chi, S. Y., Chua, E. F., Kieschnick, D. W., & Rabin, L. A. (2021). Prospective metamemory monitoring of episodic visual memory in community-dwelling older adults with subjective cognitive decline and mild cognitive impairment. Archives of Clinical Neuropsychology, 36 (8), 1404 1425. 10.1093/arclin/acab008.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York, NY: Routledge.
Collins, L. M., & Lanza, S. T. (2009). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences (Vol. 718). Hoboken, NJ: John Wiley & Sons. 10.1002/9780470567333.
COVID-19 Treatment Guidelines Panel. Coronavirus Disease (2019). (COVID-19) treatment guidelines. Bethesda, MD: National Institutes of Health. Available at https://www.covid19treatmentguidelines.nih.gov/.
Crawford, J. R., & Garthwaite, P. H. (2005). Testing for suspected impairments and dissociations in single-case studies in neuropsychology: Evaluation of alternatives using Monte Carlo simulations and revised tests for dissociations. Neuropsychology, 19 (3), 318 331. 10.1037/0894-4105.19.3.318.
Dalmaijer, E. S., Nord, C. L., & Astle, D. E. (2022). Statistical power for cluster analysis. BMC Bioinformatics, 23 (1), 1 28. 10.1186/s12859-022-04675-1.
Dani, M., Dirksen, A., Taraborrelli, P., Torocastro, M., Panagopoulos, D., Sutton, R., et al. (2021). Autonomic dysfunction in 'long COVID': Rationale, physiology and management strategies. Clinical Medicine, 21 (1), e63 e67. 10.7861/clinmed.2020-0896.
Davies, A., Rogers, J. M., Baker, K., Li, L., Llerena, J., Nair, R., et al. (2023). Combined cognitive and psychological interventions improve meaningful outcomes after acquired brain injury: A systematic review and meta-analysis. Neuropsychology Review, 34 (4), 1095-1114.
Delgado-Alonso, C., Valles-Salgado, M., Delgado-Álvarez, A., Yus, M., Gómez-Ruiz, N., Jorquera, M., et al. (2022). Cognitive dysfunction associated with COVID-19: A comprehensive neuropsychological study. Journal of Psychiatric Research, 150, 40 46. 10.1016/j.jpsychires.2022.03.033.
Diar Bakerly, N., Smith, N., Darbyshire, J. L., Kwon, J., Bullock, E., Baley, S., et al. (2024). Pathophysiological mechanisms in long COVID: A mixed method systematic review. International Journal of Environmental Research and Public Health, 21 (4), 473. 10.3390/ijerph21040473.
Dondaine, T., Ruthmann, F., Vuotto, F., Carton, L., Gelé, P., Faure, K., et al. (2022). Long-term cognitive impairments following COVID-19: A possible impact of hypoxia. Journal of Neurology, 269 (8), 3982 3989. 10.1007/s00415-022-11077-z.
Dotson, V. M., Szymkowicz, S. M., Kirton, J. W., McLaren, M. E., Green, M. L., & Rohani, J. Y. (2014). Unique and interactive effect of anxiety and depressive symptoms on cognitive and brain function in young and older adults. Journal of Depression & Anxiety, S1 (01). 10.4172/2167-1044.S1-003.
Duff, E. P., Zetterberg, H., Heslegrave, A., Dehghan, A., Elliot, P., Allen, N., et al. (2024). Plasma proteomic evidence for increased Alzheimer's disease-related brain pathology after SARS-CoV-2 infection. MedRxiv, 31 (March), 2024.02.02.24302132.
Duquette, R. L., Dupuis, G., & Perrault, J. (1994). A new approach for quality of life assessment in cardiac patients: Rationale and validation of the quality of life systemic inventory. The Canadian Journal of Cardiology, 10 (1), 106 112.
Erausquin, G. A., Zwir, J. I., Snyder, H. M., Gonzalez-Aleman, G., Zamponi, H. P., Figueredo-Aguiar, M., et al. (2023). Cognitive sequelae of COVID-19 is not predicted by SARS-CoV-2 variants. Alzheimer's & Dementia, 19 (S24), 1 2. 10.1002/alz.083028.
Espinoza, C., & Martella, D. (2023). Cognitive functions in COVID-19 survivors, approaches strategies, and impact on health systems: A qualitative systematic review. European Archives of Psychiatry and Clinical Neuroscience, 275 (1), 1 45.
Fernandez-de-las-Peñas, C., Notarte, K. I., Macasaet, R., Velasco, J. V., Catahay, J. A., Ver, A. T., et al. (2024). Persistence of post-COVID symptoms in the general population two years after SARS-CoV-2 infection: A systematic review and meta-analysis. Journal of Infection, 88 (2), 77 88. 10.1016/j.jinf.2023.12.004.
Fery, P., & Claes, T. (2025). AUTONORMES: an open-access spreadsheet performing statistical analysis of scores from a wide range of cognitive tests. Revue de Neuropsychologie, 17 (1), 19-29. 10.1684/nrp.2025.0801
García-Molina, A., Espiña-Bou, M., Rodríguez-Rajo, P., Sánchez-Carrión, R., & Enseñat-Cantallops, A. (2021). Neuropsychological rehabilitation program for patients with post-COVID-19 syndrome: A clinical experience. Neurologia (English Edition), 36 (7), 565 566. 10.1016/j.nrleng.2021.03.003.
García-Sánchez, C., Calabria, M., Grunden, N., Pons, C., Arroyo, J. A., Gómez-Anson, B., et al. (2022). Neuropsychological deficits in patients with cognitive complaints after COVID-19. Brain and Behavior: A Cognitive Neuroscience Perspective, 12 (3), e2508. 10.1002/brb3.2508.
Geurten, M., Vincent, E., Van Der Linden, M., Coyette, F., & Meulemans, T. (2016). Working memory assessment: Construct validity of the Brown-Peterson test. Canadian Journal of Behavioural Science/Revue Canadienne Des Sciences Du Comportement, 48 (4), 328 336. 10.1037/cbs0000057.
Gheorghita, R., Soldanescu, I., Lobiuc, A., Caliman Sturdza, O. A., Filip, R., Constantinescu - Bercu, A., et al. (2024). The knowns and unknowns of long COVID-19: From mechanisms to therapeutical approaches. Frontiers in Immunology, 15 (March), 1 21. 10.3389/fimmu.2024.1344086.
Gibney, S. M., & Drexhage, H. A. (2013). Evidence for a dysregulated immune system in the etiology of psychiatric disorders. Journal of Neuroimmune Pharmacology, 8 (4), 900 920. 10.1007/s11481-013-9462-8.
Gouraud, C., Bottemanne, H., Lahlou-Laforêt, K., Blanchard, A., Günther, S., Batti, S. E., et al. (2021). Association between psychological distress, cognitive complaints, and neuropsychological status after a severe COVID-19 episode: A cross-sectional study. Frontiers in Psychiatry, 12, 725861. 10.3389/fpsyt.2021.725861.
Guilmette, T. J., Sweet, J. J., Hebben, N., Koltai, D., Mahone, E. M., Spiegler, B. J., et al. (2020). American Academy of clinical neuropsychology consensus conference statement on uniform labeling of performance test scores. The Clinical Neuropsychologist, 34 (3), 437 453. 10.1080/13854046.2020.1722244.
Gulick, S. H., Mandel, S., Maitz, E. A., & Brigham, C. R. (2021). Cognitive screening after COVID-19. Practical Neurology, 19-23.
Han, Q., Zheng, B., Daines, L., & Sheikh, A. (2022). Long-term sequelae of COVID-19: A systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms. Pathogens, 11 (2), 269. 10.3390/pathogens11020269.
Herrera, E., Pérez-Sánchez, M. D. C., San Miguel-Abella, R., Barrenechea, A., Blanco, C., Solares, L., et al. (2023). Cognitive impairment in young adults with post COVID-19 syndrome. Scientific Reports, 13 (1), 6378. 10.1038/s41598-023-32939-0.
Honarmand, K., Lalli, R. S., Priestap, F., Chen, J. L., McIntyre, C. W., Owen, A. M., et al. (2020). Natural history of cognitive impairment in critical illness survivors a systematic review. American Journal of Respiratory and Critical Care Medicine, 202 (2), 193 201. 10.1164/rccm.201904-0816CI.
Howard, M. C., & Hoffman, M. E. (2018). Variable-centered, person-centered, and person-specific approaches: Where theory meets the method. Organizational Research Methods, 21 (4), 846 876. 10.1177/1094428117744021.
Jaywant, A., Vanderlind, W. M., Alexopoulos, G. S., Fridman, C. B., Perlis, R. H., & Gunning, F. M. (2021). Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacology, 46 (13), 2235 2240. 10.1038/s41386-021-00978-8.
Kohn, L., Dauvrin, M., Detollenaere, J., Primus-de Jong, C., Maertens de Noordhout, C., Castanares-Zapatero, D., et al. (2024). Long COVID and return to work: A qualitative study. Occupational Medicine, 74 (1), 29 36. 10.1093/occmed/kqac119.
Kos, D., Kerckhofs, E., Carrea, I., Verza, R., Ramos, M., & Jansa, J. (2005). Evaluation of the modified fatigue impact scale in four different European countries. Multiple Sclerosis Journal, 11 (1), 76 80. 10.1191/1352458505ms1117oa.
Krishnan, K., Miller, A. K., Reiter, K., & Bonner-Jackson, A. (2022). Neurocognitive profiles in patients with persisting cognitive symptoms associated with COVID-19. Archives of Clinical Neuropsychology, 37 (4), 729 737. 10.1093/arclin/acac004.
Lambert, M. J., Burlingame, G. M., Umphress, V., Hansen, N. B., Vermeersch, D. A., Clouse, G. C., et al. (1996). The reliability and validity of the outcome questionnaire. Clinical Psychology & Psychotherapy: An International Journal of Theory and Practice, 3 (4), 249 258. 10.1002/(SICI)1099-0879(199612)3:4<249::AID-CPP106>3.0.CO;2-S.
Levine, K. S., Leonard, H. L., Blauwendraat, C., Iwaki, H., Johnson, N., Bandres-Ciga, S., et al. (2023). Virus exposure and neurodegenerative disease risk across national biobanks. Neuron, 111 (7), 1086 1093.e2. 10.1016/j.neuron.2022.12.029.
Marquine, M. J., Madriaga, C., Blumstein, Y., Hughes, C., Cancela, V., Muniz-Terrera, G., et al. (2023). Cognitive symptoms among middle-and older-age adults in Latin America during the coronavirus disease 2019 (COVID-19) pandemic: Risk and protective factors. Alzheimer's & Dementia, 19 (S8), e061678. 10.1002/alz.061678.
Mazza, M. G., De Lorenzo, R., Conte, C., Poletti, S., Vai, B., Bollettini, I., et al. (2020). Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain, Behavior, and Immunity, 89, 594 600. 10.1016/j.bbi.2020.07.037.
McDermott, L. M., & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119 (1-3), 1 8. 10.1016/j.jad.2009.04.022.
Meinhardt, J., Radke, J., Dittmayer, C., Franz, J., Thomas, C., Mothes, R., et al. (2021). Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nature Neuroscience, 24 (2), 168 175. 10.1038/s41593-020-00758-5.
Melillo, A., Perrottelli, A., Caporusso, E., Coltorti, A., Giordano, G. M., Giuliani, L., et al. (2024). Research evidence on the management of the cognitive impairment component of the post-COVID condition: A qualitative systematic review. European Psychiatry, 67 (1), e60 1-11. 10.1192/j.eurpsy.2024.1770.
Miskowiak, K. W., Johnsen, S., Sattler, S. M., Nielsen, S., Kunalan, K., Rungby, J., et al. (2021). Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. European Neuropsychopharmacology, 46, 39 48. 10.1016/j.euroneuro.2021.03.019.
Miskowiak, K. W., Pedersen, J. K., Gunnarsson, D. V., Roikjer, T. K., Podlekareva, D., Hansen, H., et al. (2023). Cognitive impairments among patients in a long-COVID clinic: Prevalence, pattern and relation to illness severity, work function and quality of life. Journal of Affective Disorders, 324, 162 169. 10.1016/j.jad.2022.12.122.
Molnar, T., Lehoczki, A., Fekete, M., Varnai, R., Zavori, L., Erdo-Bonyar, S., et al. (2024). Mitochondrial dysfunction in long COVID: Mechanisms, consequences, and potential therapeutic approaches. GeroScience, 46 (5), 5267 5286. 10.1007/s11357-024-01165-5.
Multiple Sclerosis Council for Clinical Practice Guidelines (1998). Fatigue and multiple sclerosis: Evidence-based management strategies for fatigue in multiple sclerosis. Washington, DC: Paralyzed Veterans of America.
Najjar, S., Najjar, A., Chong, D. J., Pramanik, B. K., Kirsch, C., Kuzniecky, R. I., et al. (2020). Central nervous system complications associated with SARS-CoV-2 infection: Integrative concepts of pathophysiology and case reports. Journal of Neuroinflammation, 17 (1), 1 14. 10.1186/s12974-020-01896-0.
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005). The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53 (4), 695 699. 10.1111/j.1532-5415.2005.53221.x.
Nuber-Champier, A., Breville, G., Voruz, P., Jacot de Alcântara, I., Cionca, A., Allali, G., et al. (2024). Systemic cytokines related to memory function 6-9 months and 12-15 months after SARS-CoV-2 infection. Scientific Reports, 14 (1), 22660. 10.1038/s41598-024-72421-z.
Nuber-Champier, A., Cionca, A., Breville, G., Voruz, P., Alcântara, I. J., Allali, G., et al. (2023). Acute TNFα levels predict cognitive impairment 6-9 months after COVID-19 infection. Psychoneuroendocrinology, 153 (March), 106104. 10.1016/j.psyneuen.2023.106104.
Pastor, D. A., Barron, K. E., Miller, B. J., & Davis, S. L. (2007). A latent profile analysis of college students' achievement goal orientation. Contemporary Educational Psychology, 32 (1), 8 47. 10.1016/j.cedpsych.2006.10.003.
Peluso, M. J., & Deeks, S. G. (2024). Mechanisms of long COVID and the path toward therapeutics. Cell, 187 (20), 5500 5529. 10.1016/j.cell.2024.07.054.
Pihlaja, R. E., Kauhanen, L. L. S., Ollila, H. S., Tuulio-Henriksson, A. S., Koskinen, S. K., Tiainen, M., et al. (2023). Associations of subjective and objective cognitive functioning after COVID-19: A six-month follow-up of ICU, ward, and home-isolated patients. Brain, Behavior, & Immunity-Health, 27, 100587. 10.1016/j.bbih.2023.100587.
Poletti, S., Palladini, M., Mazza, M. G., De Lorenzo, R., Irene, B., Sara, B., et al. (2022). Long-term consequences of COVID-19 on cognitive functioning up to 6 months after discharge: Role of depression and impact on quality of life. European Archives of Psychiatry and Clinical Neuroscience, 272 (5), 773 782. 10.1007/s00406-021-01346-9.
Poletti, S., Vai, B., Mazza, M. G., Zanardi, R., Lorenzi, C., Calesella, F., et al. (2021). A peripheral inflammatory signature discriminates bipolar from unipolar depression: A machine learning approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 105, 110136. 10.1016/j.pnpbp.2020.110136.
Politi, L. S., Salsano, E., & Grimaldi, M. (2020). Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurology, 77 (8), 1028 1029. 10.1001/jamaneurol.2020.2125.
Price, J. K., Avila, L., Stepanova, M., Weinstein, A. A., Pham, H., Keo, W., et al. (2023). Severe, persistent, disruptive fatigue post-SARS-CoV-2 disproportionately affects young women. International Journal of General Medicine, Volume 16 (September), 4393 4404. 10.2147/IJGM.S423910.
R Core Team (2021). R: A language and environment for statistical computing. (Version 4.1), Vienna, Austria. Retrieved from https://www.R-project.org/.
Rabaiotti, P., Ciracì, C., Donelli, D., Oggioni, C., Rizzi, B., Savi, F., et al. (2023). Effects of multidisciplinary rehabilitation enhanced with neuropsychological treatment on post-acute SARS-CoV-2 cognitive impairment (brain fog): An observational study. Brain Sciences, 13 (5), 791. 10.3390/brainsci13050791.
Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The repeatable battery for the assessment of neuropsychological status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20 (3), 310 319. 10.1076/jcen.20.3.310.823.
Reilly, M. C., Zbrozek, A. S., & Dukes, E. M. (1993). The validity and reproducibility of a work productivity and activity impairment instrument. PharmacoEconomics, 4 (5), 353 365. 10.2165/00019053-199304050-00006.
Saigal, A., Nagoda Niklewicz, C., Naidu, S. B., Bintalib, H. M., Shah, A. J., Seligmann, G., et al. (2023). Cross-sectional study evaluating the impact of SARS-CoV-2 variants on long COVID outcomes in UK hospital survivors. BMJ Open Respiratory Research, 10 (1), 1 12. 10.1136/bmjresp-2023-001667.
Schild, A. K., Scharfenberg, D., Kirchner, L., Klein, K., Regorius, A., Goereci, Y., et al. (2023). Subjective and objective cognitive deficits in patients with post-COVID syndrome. Zeitschrift für Neuropsychologie, 34 (2), 99 110. 10.1024/1016-264X/a000374.
Schultheiß, C., Willscher, E., Paschold, L., Gottschick, C., Klee, B., Henkes, S. S., et al. (2022). The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Reports Medicine, 3 (6), 100663. 10.1016/j.xcrm.2022.100663.
Shi, S., Picon, E. L., Rioux, M., Panenka, W. J., & Silverberg, N. D. (2024). Catastrophizing is associated with excess cognitive symptom reporting after mild traumatic brain injury. Neuropsychology, 38 (2), 126 133. 10.1037/neu0000930.
Siedlecki, K. L., Falzarano, F., & Salthouse, T. A. (2019). Examining gender differences in neurocognitive functioning across adulthood. Journal of the International Neuropsychological Society, 25 (10), 1051 1060. 10.1017/S1355617719000821.
Song, X., Song, W., Cui, L., Duong, T. Q., Pandy, R., Liu, H., et al. (2024). A comprehensive review of the global epidemiology, clinical management, socio-economic impacts, and National Responses to long COVID with future research directions. Diagnostics, 14 (11), 1 17. 10.3390/diagnostics14111168.
Spurk, D., Hirschi, A., Wang, M., Valero, D., & Kauffeld, S. (2020). Latent profile analysis: A review and "how to" guide of its application within vocational behavior research. Journal of Vocational Behavior, 120, 103445. 10.1016/j.jvb.2020.103445.
Sugarman, M. A., & Axelrod, B. N. (2015). Embedded measures of performance validity using verbal fluency tests in a clinical sample. Applied Neuropsychology. Adult, 22 (2), 141 146. 10.1080/23279095.2013.873439.
Taquet, M., Skorniewska, Z., Hampshire, A., Chalmers, J. D., Ho, L. P., Horsley, A., et al. (2023). Acute blood biomarker profiles predict cognitive deficits 6 and 12 months after COVID-19 hospitalization. Nature Medicine, 29 (10), 2498 2508. 10.1038/s41591-023-02525-y.
Téllez, N., Río, J., Tintoré, M., Nos, C., Galán, I., & Montalban, X. (2005). Does the modified fatigue impact scale offer a more comprehensive assessment of fatigue in MS? Multiple Sclerosis Journal, 11 (2), 198 202. 10.1191/1352458505ms1148oa.
Troyer, A. K., & Rich, J. B. (2002). Psychometric properties of a new metamemory questionnaire for older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 57 (1), P19 P27. 10.1093/geronb/57.1.P19.
Rijsbergen, M. W., Mark, R. E., Kort, P. L., & Sitskoorn, M. M. (2014). Subjective cognitive complaints after stroke: A systematic review. Journal of Stroke and Cerebrovascular Diseases, 23 (3), 408 420. 10.1016/j.jstrokecerebrovasdis.2013.05.003.
Vandierendonck, A. (2018). Further tests of the utility of integrated speed-accuracy measures in task switching. Journal of Cognition, 1 (1), 8. 10.5334/joc.6.
Veleri, S. (2022). Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Experimental Brain Research, 240 (1), 9 25. 10.1007/s00221-021-06244-z.
Victoria, L. W., Oberlin, L. E., Ilieva, I. P., Jaywant, A., Kanellopoulos, D., Mercaldi, C., et al. (2024). A digital intervention for cognitive deficits following COVID-19: A randomized clinical trial. Neuropsychopharmacology, 50 (2), 472 479. 10.1038/s41386-024-01995-z.
Voruz, P., Cionca, A., Jacot de Alcântara, I., Nuber-Champier, A., Allali, G., Benzakour, L., et al. (2022). Functional connectivity underlying cognitive and psychiatric symptoms in post-COVID-19 syndrome: Is anosognosia a key determinant? Brain Communications, 4 (2), fcac057. 10.1093/braincomms/fcac057.
Voruz, P., Alcântara, I. J., Nuber-Champier, A., Cionca, A., Guérin, D., Allali, G., et al. (2024). Persistence and emergence of new neuropsychological deficits following SARS-CoV-2 infection: A follow-up assessment of the Geneva COVID-COG cohort. Journal of Global Health, 14, 05008. 10.7189/jogh.14.05008.
Wahlgren, C., Forsberg, G., Divanoglou, A., Balkhed, Å. Ö., Niward, K., Berg, S., et al. (2023). Two-year follow-up of patients with post-COVID-19 condition in Sweden: A prospective cohort study. The Lancet Regional Health-Europe, 28, 100595. 10.1016/j.lanepe.2023.100595.
Waid-Ebbs, J. K., Wen, P. S., Heaton, S. C., Donovan, N. J., & Velozo, C. (2012). The item level psychometrics of the behaviour rating inventory of executive function-adult (BRIEF-A) in a TBI sample. Brain Injury, 26 (13-14), 1646 1657. 10.3109/02699052.2012.700087.
Whiteside, D. M., Basso, M. R., Naini, S. M., Porter, J., Holker, E., Waldron, E. J., et al. (2022). Outcomes in post-acute sequelae of COVID-19 (PASC) at 6 months post-infection part 1: Cognitive functioning. The Clinical Neuropsychologist, 36 (4), 806 828. 10.1080/13854046.2022.2030412.
Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (4th ed.). San Diego, CA: Academic Press.
Willems, S., Didone, V., Cabello Fernandez, C., Delrue, G., Slama, H., Fery, P., et al. (2023). COVCOG: Immediate and long-term cognitive improvement after cognitive versus emotion management psychoeducation programs-a randomized trial in covid patients with neuropsychological difficulties. BMC Neurology, 23 (1), 307. 10.1186/s12883-023-03346-9.
Woo, M. S., Malsy, J., Pöttgen, J., Seddiq Zai, S., Ufer, F., Hadjilaou, A., et al. (2020). Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Communications, 2 (2), fcaa205. 10.1093/braincomms/fcaa205.
World Health Organization (2019). International statistical classification of diseases and related health problems, ICD-11 (11th ed.). Geneva, Switzerland: World Health Organization.
World Health Organization (2021). Une définition de cas clinique pour l'affection post-COVID-19 établie par un consensus Delphi, 6 octobre 2021 (No. WHO/2019-nCoV/Post_COVID-19_condition/Clinical_case_definition/2021.1). Geneva, Switzerland: Organisation mondiale de la Santé.
Wu, X., Xiang, M., Jing, H., Wang, C., Novakovic, V. A., & Shi, J. (2024). Damage to endothelial barriers and its contribution to long COVID. Angiogenesis, 27 (1), 5 22. 10.1007/s10456-023-09878-5.
Zimmermann, P., & Fimm, B. (2004). A test battery for attentional performance. In M. Leclercq & P. Zimmermann (Eds.), Applied neuropsychology of attention (pp. 124 165). London, UK: Psychology Press.