[en] In addition to the known therapeutic indications for cannabidiol, its administration by inhalation appears to be of great interest. Indeed, there is evidence of cannabidiol's efficacy in several physiological pathways, suggesting its potential for a wide range of applications for both local and systemic pulmonary administration like cancers. Significant advances in pulmonary drug delivery have led to innovative strategies to address the challenges of increasing the respirable fraction of drugs and standardizing inhalable products. Among different devices, dry powder inhalers offer significant advantages including high stability and ease of use. Particle engineering using techniques such as spray drying is now the focus of research and is expected to improve upon, rather than completely replace, traditional carrier-based formulations. The development of carrier-free powders (without lactose-carrier) is mainly used for medicines with low active ingredient doses, which limits the technology. Previously, we demonstrated the benefits of using a cyclodextrin to obtain deflated spherical-shaped powders by spray drying. In this study the potential of this excipient with a very poorly water-soluble active molecule was investigated. Inhalable cannabidiol powders were developed by spray drying, using the solubility enhancers hydroxypropyl-beta-cyclodextrin and ethanol to optimize cannabidiol water-solubility. Electron microscopy images revealed consistent deflated spherical shapes, while particle size analysis showed low polydispersity and suitable sizes for deep lung deposition (2 µm). The selected engineered powders (without ethanol) had very high fine particle fractions (> 60%) due to their deflated surface. Finally, the powder was instantly solubilized leading to drug dissolution, which is important for therapeutic efficacy. In conclusion, this study successfully develops a cannabidiol inhalation powder by particle engineering having suitable aerosolization behavior. Due to the speed of the process and the performance of the finished product, this work opens the door for future studies. It has been shown that active molecules that are only slightly soluble in water can be formulated effectively as a powder for inhalation. Other molecules could be tested and subsequent in vivo studies conducted to demonstrate correlation with these in vitro results.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Santos Gomes, Bernardo Filipe; Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, 4000, Liège, Belgium ; Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
Bya, Laure-Anne ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Koch, Nathan ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Cabral-Marques, Helena; Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
Evrard, Brigitte ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Lechanteur, Anna ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Language :
English
Title :
Cannabidiol and Hydroxypropyl-β-Cyclodextrin for the Development of Deflated Spherical-Shaped Inhalable Powder.
Publication date :
17 January 2025
Journal title :
AAPS Journal
eISSN :
1550-7416
Publisher :
Springer Science and Business Media Deutschland GmbH, United States
The authors thank Dr. Erwan Plougonven and Prof. Ang\u00E9lique L\u00E9onard from PEPs, Laboratory of Chemical Engineering, Department of Applied Chemistry, University of Li\u00E8ge, for SEM images and analysis.Authors also want to thank the Erasmus\u2009+\u2009program for funding the researcher's mobility.
Dhir A. Cannabidiol in Refractory Epilepsy, 2018.pp. 419–38. https://doi.org/10.1016/B978-0-444-64056-7.00014-3.
A. Kicman M. Toczek The Effects of Cannabidiol, a Non-Intoxicating Compound of Cannabis, on the Cardiovascular System in Health and Disease Int J Mol Sci 21 6740 1:CAS:528:DC%2BB3cXisFWjtb3L 10.3390/ijms21186740 32937917 7554803
Dos Reis Rosa Franco G, Smid S, Viegas C. Phytocannabinoids: General Aspects and Pharmacological Potential in Neurodegenerative Diseases. Curr Neuropharmacol 2021;19:449–64. https://doi.org/10.2174/1570159X18666200720172624.
S.D. Pennypacker K. Cunnane M.C. Cash E.A. Romero-Sandoval Potency and Therapeutic THC and CBD Ratios: U.S. Cannabis Markets Overshoot Front Pharmacol 13 921493 1:CAS:528:DC%2BB38Xhsl2nsbzJ 10.3389/fphar.2022.921493 35734402 9207456
D.L. de Almeida L.A. Devi Diversity of molecular targets and signaling pathways for CBD Pharmacol Res Perspect 8 e00682 e00682 1:CAS:528:DC%2BB3cXis1ajurrM 10.1002/prp2.682 33169541 7652785
J. Castillo-Arellano A. Canseco-Alba S.J. Cutler F. León The Polypharmacological Effects of Cannabidiol Molecules 28 3271 1:CAS:528:DC%2BB3sXotVKqtLc%3D 10.3390/molecules28073271 37050032 10096752
L. Grifoni G. Vanti R. Donato C. Sacco A.R. Bilia Promising Nanocarriers to Enhance Solubility and Bioavailability of Cannabidiol for a Plethora of Therapeutic Opportunities Molecules 27 6070 1:CAS:528:DC%2BB38XisFWntLrO 10.3390/molecules27186070 36144803 9502382
K.J. Olejar C.A. Kinney Evaluation of thermo-chemical conversion temperatures of cannabinoid acids in hemp (Cannabis sativa L.) biomass by pressurized liquid extraction J Cannabis Res 3 40 10.1186/s42238-021-00098-6 34465400 8408919
O. Jennotte N. Koch A. Lechanteur B. Evrard Formulation and quality consideration of cannabidiol printed forms produced by fused-deposition modeling J Drug Deliv Sci Technol 87 1:CAS:528:DC%2BB3sXhs12is7%2FE 10.1016/j.jddst.2023.104837 104837
N. Koch O. Jennotte Q. Bourcy A. Lechanteur M. Deville C. Charlier et al. Evaluation of amorphous and lipid-based formulation strategies to increase the in vivo cannabidiol bioavailability in piglets Int J Pharm 657 1:CAS:528:DC%2BB2cXpsFKntb4%3D 10.1016/j.ijpharm.2024.124173 38685441 124173
N. Koch O. Jennotte Y. Gasparrini F. Vandenbroucke A. Lechanteur B. Evrard Cannabidiol aqueous solubility enhancement: Comparison of three amorphous formulations strategies using different type of polymers Int J Pharm 589 1:CAS:528:DC%2BB3cXhslKgsbbF 10.1016/j.ijpharm.2020.119812 32882367 119812
J.M. Borghardt C. Kloft A. Sharma Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes Can Respir J 2018 2732017 10.1155/2018/2732017 30018677 6029458
Y. Ye Y. Ma J. Zhu The future of dry powder inhaled therapy: Promising or discouraging for systemic disorders? Int J Pharm 614 1:CAS:528:DC%2BB38XhsVajur0%3D 10.1016/j.ijpharm.2022.121457 35026316 8744475 121457
D. Schwotzer J. Kulpa K. Trexler W. Dye J. Jantzi H. Irshad et al. Pharmacokinetics of Cannabidiol in Sprague-Dawley Rats After Oral and Pulmonary Administration Cannabis Cannabinoid Res 10.1089/can.2022.0121 36301522
W. Pruett B.E. Perman L.E. Morrow M.A. Malesker Oral Inhaled Medications- Beyond Bronchodilators US Pharm 46 4 12
H. Khodadadi É.L. Salles A. Alptekin D. Mehrabian M. Rutkowski A.S. Arbab et al. Inhalant Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor Microenvironment Cannabis Cannabinoid Res 8 824 834 1:CAS:528:DC%2BB3sXitFersLrJ 10.1089/can.2021.0098 34918964 10589502
S.P. Newman Drug Delivery to the lungs: Challenges and Opportunities Ther Deliv 8 647 661 1:CAS:528:DC%2BC2sXhtF2ksb7N 10.4155/tde-2017-0037 28730933
S. Türker E. Onur Y. Ózer Nasal route and drug delivery systems Pharm World Sci 26 137 142 10.1023/b:phar.0000026823.82950.ff 15230360
A.M. Healy M.I. Amaro K.J. Paluch L. Tajber Dry powders for oral inhalation free of lactose carrier particles Adv Drug Deliv Rev 75 32 52 1:CAS:528:DC%2BC2cXntFCqu7g%3D 10.1016/j.addr.2014.04.005 24735676
A.R. Mohan Q. Wang S. Dhapare E. Bielski A. Kaviratna L. Han et al. Advancements in the Design and Development of Dry Powder Inhalers and Potential Implications for Generic Development Pharmaceutics 14 2495 1:CAS:528:DC%2BB38XjtFGgtbrK 10.3390/pharmaceutics14112495 36432683 9695470
M.L. Levy W. Carroll J.L. Izquierdo Alonso C. Keller F. Lavorini L. Lehtimäki Understanding Dry Powder Inhalers: Key Technical and Patient Preference Attributes Adv Ther 36 2547 2557 10.1007/s12325-019-01066-6 31478131 6822825
O. Abiona D. Wyatt J. Koner A. Mohammed The Optimisation of Carrier Selection in Dry Powder Inhaler Formulation and the Role of Surface Energetics Biomedicines 10 2707 1:CAS:528:DC%2BB38XivVymsrfF 10.3390/biomedicines10112707 36359226 9687551
Ógáin ON, Li J, Tajber L, Corrigan OI, Healy AM. Particle engineering of materials for oral inhalation by dry powder inhalers. I—Particles of sugar excipients (trehalose and raffinose) for protein delivery. Int J Pharm 2011;405:23–35. https://doi.org/10.1016/j.ijpharm.2010.11.039.
B. Chaurasiya Y.-Y. Zhao Dry Powder for Pulmonary Delivery: A Comprehensive Review Pharmaceutics 13 31 1:CAS:528:DC%2BB3MXhvFygtr%2FJ 10.3390/pharmaceutics13010031 33379136 7824629
R. Scherließ S. Bock N. Bungert A. Neustock L. Valentin Particle engineering in dry powders for inhalation Eur J Pharm Sci 172 1:CAS:528:DC%2BB38XmtlKrtLw%3D 10.1016/j.ejps.2022.106158 35248734 106158
M. Hoppentocht P. Hagedoorn H.W. Frijlink A.H. de Boer Technological and practical challenges of dry powder inhalers and formulations Adv Drug Deliv Rev 75 18 31 1:CAS:528:DC%2BC2cXntFCqu7k%3D 10.1016/j.addr.2014.04.004 24735675
A. Lechanteur B. Evrard Influence of Composition and Spray-Drying Process Parameters on Carrier-Free DPI Properties and Behaviors in the Lung: A review Pharmaceutics 12 55 1:CAS:528:DC%2BB3cXhtVGksrfE 10.3390/pharmaceutics12010055 31936628 7022846
R.Y.K. Chang H.-K. Chan Advancements in Particle Engineering for Inhalation Delivery of Small Molecules and Biotherapeutics Pharm Res 39 3047 3061 1:CAS:528:DC%2BB38XitlCiu7bE 10.1007/s11095-022-03363-2 36071354 9451127
Kaialy W, Nokhodchi A. Particle Engineering for Improved Pulmonary Drug Delivery Through Dry Powder Inhalers. Pulmonary Drug Delivery, Wiley; 2015, pp. 171–98. https://doi.org/10.1002/9781118799536.ch8.
M.A. Boraey S. Hoe H. Sharif D.P. Miller D. Lechuga-Ballesteros R. Vehring Improvement of the dispersibility of spray-dried budesonide powders using leucine in an ethanol–water cosolvent system Powder Technol 236 171 178 1:CAS:528:DC%2BC3sXisVOhsL8%3D 10.1016/j.powtec.2012.02.047
N. Alhajj N.J. O’Reilly H. Cathcart Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties Powder Technol 384 313 331 1:CAS:528:DC%2BB3MXltlymtbg%3D 10.1016/j.powtec.2021.02.031
Arpargaus C, Rütti D, Meuri M. Enhanced Solubility of Poorly Soluble Drugs Via Spray Drying. Drug Delivery Strategies for Poorly Water‐Soluble Drugs, Wiley; 2013, pp. 551–85. https://doi.org/10.1002/9781118444726.ch17.
A. Lechanteur E. Plougonven L. Orozco G. Lumay N. Vandewalle A. Léonard et al. Engineered-inhaled particles: Influence of carbohydrates excipients nature on powder properties and behavior Int J Pharm 613 1:CAS:528:DC%2BB3MXislOntbzE 10.1016/j.ijpharm.2021.121319 34875354 121319
A. Lechanteur E. Gresse L. Orozco E. Plougonven A. Léonard N. Vandewalle et al. Inhalation powder development without carrier: How to engineer ultra-flying microparticles? Eur J Pharm Biopharm 191 26 35 1:CAS:528:DC%2BB3sXhslelu7%2FF 10.1016/j.ejpb.2023.08.010 37595762
E. Gresse J. Rousseau M. Akdim A. du Bois A. Lechanteur B. Evrard Enhancement of inhaled micronized powder flow properties for accurate capsules filling Powder Technol 437 1:CAS:528:DC%2BB2cXltFCls7w%3D 10.1016/j.powtec.2024.119576 119576
O. Devinsky K. Kraft L. Rusch M. Fein A. Leone-Bay Improved Bioavailability with Dry Powder Cannabidiol Inhalation: A Phase 1 Clinical Study J Pharm Sci 110 3946 3952 1:CAS:528:DC%2BB3MXit1Wjt77E 10.1016/j.xphs.2021.08.012 34400185
W. Tai J.C. Arnold H.-K. Chan P.C.L. Kwok Spray freeze dried cannabidiol with dipalmitoylphosphatidylcholine (DPPC) for inhalation and solubility enhancement Int J Pharm 659 1:CAS:528:DC%2BB2cXhtFentbbK 10.1016/j.ijpharm.2024.124235 38762165 124235
European Directorate for the Quality of Medicines & HealthCare (EDQM). European Pharmacopoeia (Ph. Eur.). 11th ed.2022. pp. 2904–7. https://www.EdqmEu/En/European-Pharmacopoeia-Ph-Eur-11th-Edition.
E.M. Littringer A. Mescher H. Schroettner L. Achelis P. Walzel N.A. Urbanetz Spray dried mannitol carrier particles with tailored surface properties – The influence of carrier surface roughness and shape Eur J Pharm Biopharm 82 194 204 1:CAS:528:DC%2BC38XotVWjtb8%3D 10.1016/j.ejpb.2012.05.001 22595133
Y. Sun Z. Cui Y. Sun L. Qin X. Zhang Q. Lu et al. Exploring the potential influence of drug charge on downstream deposition behaviour of DPI powders Int J Pharm 588 1:CAS:528:DC%2BB3cXhs12qtb3O 10.1016/j.ijpharm.2020.119798 32828976 119798
G. Dufour W. Bigazzi N. Wong F. Boschini P. de Tullio G. Piel et al. Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide Int J Pharm 495 869 878 1:CAS:528:DC%2BC2MXhslGmurzE 10.1016/j.ijpharm.2015.09.052 26410753
V. Vartiainen L.M. Bimbo J. Hirvonen E.I. Kauppinen J. Raula Aerosolization, Drug Permeation and Cellular Interaction of Dry Powder Pulmonary Formulations of Corticosteroids with Hydroxypropyl-β-Cyclodextrin as a Solubilizer Pharm Res 34 25 35 1:CAS:528:DC%2BC28XhsVyjsrnF 10.1007/s11095-016-2035-9 27604893
Cabral Marques HM, Hadgraft J, Kellaway IW, Taylor G. Studies of cyclodextrin inclusion complexes. IV. The pulmonary absorption of salbutamol from a complex with 2-hydroxypropyl-β-cyclodextrin in rabbits. Int J Pharm 1991;77:303–7. https://doi.org/10.1016/0378-5173(91)90331-h.
Cabral Marques HM, Hadgraft J, Kellaway IW, Taylor G. Studies of cyclodextrin inclusion complexes. III. The pulmonary absorption of β-, DM-β- and HP-β-cyclodextrins in rabbits. Int J Pharm 1991;77:297–302. https://doi.org/10.1016/0378-5173(91)90330-q.
L. Matilainen T. Toropainen H. Vihola J. Hirvonen T. Järvinen P. Jarho et al. In vitro toxicity and permeation of cyclodextrins in Calu-3 cells J Control Release 126 10 16 1:CAS:528:DC%2BD1cXhtlGjt7s%3D 10.1016/j.jconrel.2007.11.003 18160169
Y. Wang C. Selomulya Spray drying strategy for encapsulation of bioactive peptide powders for food applications Adv Powder Technol 31 409 415 1:CAS:528:DC%2BC1MXitFOrsbfI 10.1016/j.apt.2019.10.034
J. Montharu S. Le Guellec B. Kittel Y. Rabemampianina J. Guillemain F. Gauthier et al. Evaluation of Lung Tolerance of Ethanol, Propylene Glycol, and Sorbitan Monooleate as Solvents in Medical Aerosols J Aerosol Med Pulm Drug Deliv 23 41 46 1:CAS:528:DC%2BC3cXhsFagu70%3D 10.1089/jamp.2008.0740 20131984
Y. Cui X. Zhang W. Wang Z. Huang Z. Zhao G. Wang et al. Moisture-Resistant Co-Spray-Dried Netilmicin with l-Leucine as Dry Powder Inhalation for the Treatment of Respiratory Infections Pharmaceutics 10 252 1:CAS:528:DC%2BC1MXitFWktLnK 10.3390/pharmaceutics10040252 30513738 6321429
N.Y.K. Chew H. Chan Use of solid corrugated particles to enhance powder aerosol performance Pharm Res 18 1570 1577 1:CAS:528:DC%2BD3MXos1ejsr8%3D 10.1023/A:1013082531394 11758765
K. Boonyarattanakalin H. Viernstein P. Wolschann L. Lawtrakul Influence of Ethanol as a Co-Solvent in Cyclodextrin Inclusion Complexation: A Molecular Dynamics Study Sci Pharm 83 387 399 1:CAS:528:DC%2BC2MXpvVGqtb4%3D 10.3797/scipharm.1412-08 26839825 4727776
H. Li Q. Zhao L. Wang P. Wang B. Zhao Cannabidiol/hydroxypropyl-β-cyclodextrin inclusion complex: structure analysis, release behavior, permeability, and bioactivity under in vitro digestion New J Chem 46 4700 4709 1:CAS:528:DC%2BB38XkvFehsro%3D 10.1039/d1nj05998j
Z. Zhao X. Zhang Y. Cui Y. Huang Z. Huang G. Wang et al. Hydroxypropyl-β-cyclodextrin as anti-hygroscopicity agent inamorphous lactose carriers for dry powder inhalers Powder Technol 358 29 38 1:CAS:528:DC%2BC1cXhvFSis7zJ 10.1016/j.powtec.2018.09.098
J.C.K. Lo H.W. Pan J.K.W. Lam Inhalable Protein Powder Prepared by Spray-Freeze-Drying Using Hydroxypropyl-β-Cyclodextrin as Excipient Pharmaceutics 13 615 1:CAS:528:DC%2BB3MXis1aisLfE 10.3390/pharmaceutics13050615 33923196 8145196
C. Molina W. Kaialy Q. Chen D. Commandeur A. Nokhodchi Agglomerated novel spray-dried lactose-leucine tailored as a carrier to enhance the aerosolization performance of salbutamol sulfate from DPI formulations Drug Deliv Transl Res 8 1769 1780 1:CAS:528:DC%2BC2sXitVSmtL%2FK 10.1007/s13346-017-0462-8 29260462
W. Tai G.T.Y. Yau J.C. Arnold H.-K. Chan P.C.L. Kwok High-loading cannabidiol powders for inhalation Int J Pharm 660 1:CAS:528:DC%2BB2cXhtlyqtbrP 10.1016/j.ijpharm.2024.124370 38906498 124370
T.P. Learoyd J.L. Burrows E. French P.C. Seville Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate Eur J Pharm Biopharm 68 224 234 1:CAS:528:DC%2BD1cXlsF2msQ%3D%3D 10.1016/j.ejpb.2007.04.017 17560772
PriceR, ShurJ, Ganley W, Farias G, Fotaki N, Conti DS, et al.Development of an Aerosol Dose Collection Apparatus for In Vitro Dissolution Measurements of Orally Inhaled Drug Products. AAPS J2020;22:47. https://doi.org/10.1208/s12248-020-0422-y.
D.J. Sholler L. Schoene T.R. Spindle Therapeutic Efficacy of Cannabidiol (CBD): a Review of the Evidence From Clinical Trials and Human Laboratory Studies Curr Addict Rep 7 405 412 10.1007/s40429-020-00326-8 33585159 7880228
Bifulco M, Fiore D, Piscopo C, Gazzerro P, Proto MC. Commentary: Use of Cannabinoids to Treat Acute Respiratory Distress Syndrome and Cytokine Storm Associated With Coronavirus Disease-2019. Front Pharmacol 2021;12. https://doi.org/10.3389/fphar.2021.631646.