Anharmonicities; Electron phonon couplings; First order; G-modes; Graphenes; Mode frequencies; Spectra's; Strong-coupling; Temperature dependence; Temperature-dependent raman; Modeling and Simulation; Materials Science (all); Mechanics of Materials; Computer Science Applications
Abstract :
[en] The Raman active G mode in graphene exhibits a strong coupling to electrons, yet the comprehensive treatment of this interaction in the calculation of its temperature-dependent Raman spectrum remains incomplete. In this study, we calculate the temperature dependence of the G-mode frequency and linewidth, and successfully explain the experimental trend by accounting for the contributions arising from the first-order electron-phonon coupling, electron-mediated phonon-phonon coupling, and standard lattice anharmonicity. The generality of our approach enables its broad applicability to study phonon dynamics in materials where both electron-phonon coupling and anharmonicity are important.
Disciplines :
Physics
Author, co-author :
Erhardt, Nina Girotto; Centre for Advanced Laser Techniques, Institute of Physics, Zagreb, Croatia
Castellano, Aloïs ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Bianco, Raffaello; Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, Modena, Italy ; Centro S3, Istituto Nanoscienze-CNR, Modena, Italy
Lončarić, Ivor; Ruđer Bošković Institute, Zagreb, Croatia
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; ITP, Physics Department, Utrecht University, Utrecht, Netherlands
Novko, Dino; Centre for Advanced Laser Techniques, Institute of Physics, Zagreb, Croatia
Language :
English
Title :
Electron-mediated anharmonicity and its role in the Raman spectrum of graphene
N.G.E., I.L., and D.N. acknowledge financial support from the Croatian Science Foundation (Grant no. UIP-2019-04-6869 and UIP-2020-02-5675) and from the European Regional Development Fund for the ``Center of Excellence for Advanced Materials and Sensing Devices'' (Grant No. KK.01.1.1.01.0001), as well as from the project \"Podizanje znanstvene izvrsnosti Centra za napredne laserske tehnike (CALTboost)\" financed by the European Union through the National Recovery and Resilience Plan 2021-2026 (NRPP). J.P.B., A.C., and M.J.V. acknowledge computing time from a PRACE award granting access to Discoverer at SofiaTech in Bulgaria (OptoSpin project id. 2020225411), EuroHPC (Extreme grant EHPC-EXT-2023E02-050) on Marenostrum5 at BSC, Spain, by the CECI (FRS-FNRS Belgium Grant No. 2.5020.11), as well as the Lucia Tier-1 of the F\u00E9d\u00E9ration Wallonie-Bruxelles (Walloon). They also acknowledge financial support from ARC project DREAMS (G.A. 21/25-11) funded by Federation Wallonie Bruxelles and ULiege; the EUSpecLab MSCA DTN network funded by EU Horizon Europe (G.A. 101073486); and the Excellence of Science project CONNECT (G.A. 40007563) funded by FWO and FNRS.
F. Giustino Electron-phonon interactions from first principles Rev. Mod. Phys. 89 015003 10.1103/RevModPhys.89.015003
A.C. Ferrari D.M. Basko Raman spectroscopy as a versatile tool for studying the properties of graphene Nat. Nanotechnol. 8 235 1:CAS:528:DC%2BC3sXltFCktLY%3D 23552117 10.1038/nnano.2013.46
X. Zhang et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material Chem. Soc. Rev. 44 2757 1:CAS:528:DC%2BC2MXislKju74%3D 25679474 10.1039/C4CS00282B
A. Das et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor Nat. Nanotechnol. 3 210 1:CAS:528:DC%2BD1cXkt1Slu74%3D 18654505 10.1038/nnano.2008.67
Tan, P.-H. et al. The shear mode of multi-layer graphene. Nat. Mater. 294https://doi.org/10.1038/nmat3245 (2011).
Zhao, Y. et al. Inter layer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13 (2013).
P. Rafailov M. Dworzak C. Thomsen Luminescence and raman spectroscopy on mgb2 Solid State Commun. 122 455 458 1:CAS:528:DC%2BD38XktFKjsbo%3D 10.1016/S0038-1098(02)00158-8
D. Yoon et al. Fano resonance in Raman scattering of graphene Carbon 61 373 378 1:CAS:528:DC%2BC3sXovVeqtLY%3D 10.1016/j.carbon.2013.05.019
T. Sohier et al. Enhanced electron-phonon interaction in multivalley materials Phys. Rev. X 9 031019 1:CAS:528:DC%2BC1MXitl2rsrfP
S. Sarkar et al. Anharmonicity in Raman-active phonon modes in atomically thin MoS2 Phys. Rev. B 101 205302 1:CAS:528:DC%2BB3cXhsFChtb7M 10.1103/PhysRevB.101.205302
Paul, S., Karak, S., Mathew, A., Ram, A. & Saha, S. Electron-phonon and phonon-phonon anharmonic interactions in 2h–MoX2 (x = S, Te): A comprehensive resonant Raman study. Phys. Rev. B104, 075418 (2021).
S. Berciaud et al. Electron and optical phonon temperatures in electrically biased graphene Phys. Rev. Lett. 104 227401 20867202 10.1103/PhysRevLett.104.227401
Ferrante, C. et al. Raman spectroscopy of graphene under ultrafast laser excitation. Nat. Commun.9, 308 (2018).
C.A. Howard M.P.M. Dean F. Withers Phonons in potassium-doped graphene: The effects of electron-phonon interactions, dimensionality, and adatom ordering Phys. Rev. B 84 241404 10.1103/PhysRevB.84.241404
E. Maksimov S. Shulga Nonadiabatic effects in optical phonon self-energy Solid State Commun. 97 553 1:CAS:528:DyaK28XislCltw%3D%3D 10.1016/0038-1098(95)00745-8
S. Engelsberg J.R. Schrieffer Coupled electron-phonon system Phys. Rev. 131 993 10.1103/PhysRev.131.993
F. Caruso et al. Nonadiabatic Kohn anomaly in heavily boron-doped diamond Phys. Rev. Lett. 119 017001 28731743 10.1103/PhysRevLett.119.017001
E. Cappelluti Electron-phonon effects on the Raman spectrum in Mgb2 Phys. Rev. B 73 140505 10.1103/PhysRevB.73.140505
Y.S. Ponosov S.V. Streltsov Raman evidence for nonadiabatic effects in optical phonon self-energies of transition metals Phys. Rev. B 94 214302 10.1103/PhysRevB.94.214302
Y.S. Ponosov G.A. Bolotin C. Thomsen M. Cardona Raman scattering in os: Nonadiabatic renormalization of the optical phonon self-energies Phys. Status Solidi (b) 208 257 1:CAS:528:DyaK1cXks1Cnsb4%3D 10.1002/(SICI)1521-3951(199807)208:1<257::AID-PSSB257>3.0.CO;2-F
D. Novko Nonadiabatic coupling effects in MgB2 reexamined Phys. Rev. B 98 041112 1:CAS:528:DC%2BC1MXltVKiur8%3D 10.1103/PhysRevB.98.041112
D. Novko Broken adiabaticity induced by Lifshitz transition in MoS2 and WS2 single layers Commun. Phys. 3 1 10.1038/s42005-020-0299-1
P. Garcia-Goiricelaya J. Lafuente-Bartolome I.G. Gurtubay A. Eiguren Emergence of large nonadiabatic effects induced by the electron-phonon interaction on the complex vibrational quasiparticle spectrum of doped monolayer MoS2 Phys. Rev. B 101 054304 1:CAS:528:DC%2BB3cXotlGjsbo%3D 10.1103/PhysRevB.101.054304
N. Girotto D. Novko Dynamical renormalization of electron-phonon coupling in conventional superconductors Phys. Rev. B 107 064310 1:CAS:528:DC%2BB3sXmt1CnsbY%3D 10.1103/PhysRevB.107.064310
D. Novko F. Caruso C. Draxl E. Cappelluti Ultrafast hot phonon dynamics in MgB2 driven by anisotropic electron-phonon coupling Phys. Rev. Lett. 124 077001 1:CAS:528:DC%2BB3cXmslyhsrk%3D 32142321 10.1103/PhysRevLett.124.077001
S. Pisana et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene Nat. Mater. 6 198 1:CAS:528:DC%2BD2sXit1Khtr0%3D 17293849 10.1038/nmat1846
M. Lazzeri F. Mauri Nonadiabatic Kohn anomaly in a doped graphene monolayer Phys. Rev. Lett. 97 266407 17280442 10.1103/PhysRevLett.97.266407
A.M. Saitta M. Lazzeri M. Calandra F. Mauri Giant nonadiabatic effects in layer metals: Raman spectra of intercalated graphite explained Phys. Rev. Lett. 100 226401 18643433 10.1103/PhysRevLett.100.226401
S. Piscanec M. Lazzeri J. Robertson A.C. Ferrari F. Mauri Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects Phys. Rev. B 75 035427 10.1103/PhysRevB.75.035427
S.-Q. Hu et al. Nonadiabatic electron-phonon coupling and its effects on superconductivity Phys. Rev. B 105 224311 1:CAS:528:DC%2BB38XhvVSrsb7J 10.1103/PhysRevB.105.224311
S.-Q. Hu D.-Q. Chen S.-J. Zhang X.-B. Liu S. Meng Probing precise interatomic potentials by nonadiabatic nonlinear phonons Mater. Today Phys. 27 100790 1:CAS:528:DC%2BB38XisVegurbP 10.1016/j.mtphys.2022.100790
N. Bonini M. Lazzeri N. Marzari F. Mauri Phonon anharmonicities in graphite and graphene Phys. Rev. Lett. 99 176802 17995357 10.1103/PhysRevLett.99.176802
S. Linas et al. Interplay between Raman shift and thermal expansion in graphene: Temperature-dependent measurements and analysis of substrate corrections Phys. Rev. B 91 075426 10.1103/PhysRevB.91.075426
I. Calizo A.A. Balandin W. Bao F. Miao C.N. Lau Temperature dependence of the Raman spectra of graphene and graphene multilayers Nano Lett. 7 2645 9 1:CAS:528:DC%2BD2sXpsVKntrg%3D 17718584 10.1021/nl071033g
P.R. Shaina L. George V. Yadav M. Jaiswal Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions J. Phys.: Condens. Matter 28 085301 1:STN:280:DC%2BC28nlsVCrtQ%3D%3D 26823443
D. Yoon Y.-W. Son H. Cheong Negative thermal expansion coefficient of graphene measured by Raman spectroscopy Nano Lett. 11 3227 31 1:CAS:528:DC%2BC3MXoslWgsrc%3D 21728349 10.1021/nl201488g
S. Tian et al. Temperature-dependent Raman investigation on suspended graphene: Contribution from thermal expansion coefficient mismatch between graphene and substrate Carbon 104 27 32 1:CAS:528:DC%2BC28Xlt1Oltbo%3D 10.1016/j.carbon.2016.03.046
Y.-R. Lee J. Huang J.-C. Lin J.-R. Lee Study of the substrate-induced strain of the as-grown graphene on cu(100) using temperature-dependent Raman spectroscopy: Estimating the mode-gruneisen parameter with temperature J. Phys. Chem. C. 121 27427 1:CAS:528:DC%2BC2sXhvVarsrrE 10.1021/acs.jpcc.7b08170
A.C. Ferrari et al. Raman spectrum of graphene and graphene layers Phys. Rev. Lett. 97 187401 1:STN:280:DC%2BD28jitlersg%3D%3D 17155573 10.1103/PhysRevLett.97.187401
F. Tuinstra J.L. Koenig Raman spectrum of graphite J. Chem. Phys. 53 1126 1130 1:CAS:528:DyaE3cXks1SqtLc%3D 10.1063/1.1674108
N. Everall J. Lumsdon D. Christopher The effect of laser-induced heating upon the vibrational Raman spectra of graphites and carbon fibres Carbon 29 133 137 1:CAS:528:DyaK3MXhtVOltrw%3D 10.1016/0008-6223(91)90064-P
P. Tan Y. Deng Q. Zhao W. Cheng The intrinsic temperature effect of the Raman spectra of graphite Appl. Phys. Lett. 74 1818 1820 1:CAS:528:DyaK1MXitVCksbg%3D 10.1063/1.123096
J. Sonntag K. Watanabe T. Taniguchi B. Beschoten C. Stampfer Charge carrier density dependent Raman spectra of graphene encapsulated in hexagonal boron nitride Phys. Rev. B 107 075420 1:CAS:528:DC%2BB3sXmt1Cmtb8%3D 10.1103/PhysRevB.107.075420
H.-N. Liu X. Cong M.-L. Lin P.-H. Tan The intrinsic temperature-dependent Raman spectra of graphite in the temperature range from 4 k to 1000 k Carbon 152 451 458 1:CAS:528:DC%2BC1MXht1ejsrnP 10.1016/j.carbon.2019.05.016
J. Hlinka et al. Lattice dynamics of Cac6 by Raman spectroscopy Phys. Rev. B 76 144512 10.1103/PhysRevB.76.144512
J.C. Chacón-Torres A.Y. Ganin M.J. Rosseinsky T. Pichler Raman response of stage-1 graphite intercalation compounds revisited Phys. Rev. B 86 075406 10.1103/PhysRevB.86.075406
C. Casiraghi Probing disorder and charged impurities in graphene by Raman spectroscopy Phys. Status Solidi (RRL) - Rapid Res. Lett. 3 175 – 177
J. Lin et al. Anharmonic phonon effects in Raman spectra of unsupported vertical graphene sheets Phys. Rev. B 83 125430 10.1103/PhysRevB.83.125430
Z. Han et al. Raman linewidth contributions from four-phonon and electron-phonon interactions in graphene Phys. Rev. Lett. 128 045901 1:CAS:528:DC%2BB38XjtlWit7g%3D 35148139 10.1103/PhysRevLett.128.045901
D.-H. Chae B. Krauss K. Klitzing J. Smet Hot phonons in an electrically biased graphene constriction Nano Lett. 10 466 71 1:CAS:528:DC%2BD1MXhs1alu7zP 20041665 10.1021/nl903167f
A. Tiberj et al. Reversible optical doping of graphene Sci. Rep. 3 1:STN:280:DC%2BC3sfms1Khtw%3D%3D 23912707 3733054 10.1038/srep02355 2355
J. Coulter et al. Uncovering electron-phonon scattering and phonon dynamics in type-I Weyl semimetals Phys. Rev. B 100 220301 1:CAS:528:DC%2BB3cXjt1ajs78%3D 10.1103/PhysRevB.100.220301
G. Montagnac R. Caracas E. Bobocioiu F. Vittoz B. Reynard Anharmonicity of graphite from UV Raman spectroscopy to 2700 k Carbon 54 68 75 1:CAS:528:DC%2BC38XhvVWisrrK 10.1016/j.carbon.2012.11.004
X. Chen et al. Intrinsic phonon anharmonicity in heavily doped graphene probed by Raman spectroscopy Carbon 185 282 288 1:CAS:528:DC%2BB3MXitV2lsrrK 10.1016/j.carbon.2021.09.017
P. Giura et al. Temperature evolution of infrared- and Raman-active phonons in graphite Phys. Rev. B 86 121404 10.1103/PhysRevB.86.121404
T. Ando Anomaly of optical phonon in monolayer graphene J. Phys. Soc. Jpn. 75 124701 10.1143/JPSJ.75.124701
X. Chen et al. Control of Raman scattering quantum interference pathways in graphene ACS Nano 17 5956 1:CAS:528:DC%2BB3sXksl2jsbY%3D 36897053 10062028 10.1021/acsnano.3c00180
Y.S. Ponosov I. Loa V.E. Mogilenskikh K. Syassen Raman scattering in osmium under pressure Phys. Rev. B 71 220301 10.1103/PhysRevB.71.220301
K.-P. Bohnen R. Heid B. Renker Phonon dispersion and electron-phonon coupling in mgb2 and alb2 Phys. Rev. Lett. 86 5771 5774 1:CAS:528:DC%2BD3MXktl2msr0%3D 11415354 10.1103/PhysRevLett.86.5771
J. Kortus I.I. Mazin K.D. Belashchenko V.P. Antropov L.L. Boyer Superconductivity of metallic boron in mgb2 Phys. Rev. Lett. 86 4656 4659 1:CAS:528:DC%2BD3MXjsVKksr8%3D 11384307 10.1103/PhysRevLett.86.4656
A.Y. Liu I.I. Mazin J. Kortus Beyond eliashberg superconductivity in MgB2: Anharmonicity, two-phonon scattering, and multiple gaps Phys. Rev. Lett. 87 087005 1:STN:280:DC%2BD3Mvlt1Ohtg%3D%3D 11497975 10.1103/PhysRevLett.87.087005
H.J. Choi D. Roundy H. Sun M.L. Cohen S.G. Louie The origin of the anomalous superconducting properties of MgB2 Nature 418 758 1:CAS:528:DC%2BD38XmtV2gu70%3D 12181561 10.1038/nature00898
A. Eiguren C. Ambrosch-Draxl Wannier interpolation scheme for phonon-induced potentials: Application to bulk MgB2, w, and the (1×1) h-covered w(110) surface Phys. Rev. B 78 045124 10.1103/PhysRevB.78.045124
M. Calandra G. Profeta F. Mauri Adiabatic and nonadiabatic phonon dispersion in a Wannier function approach Phys. Rev. B 82 165111 10.1103/PhysRevB.82.165111
E.R. Margine F. Giustino Anisotropic Migdal-Eliashberg theory using Wannier functions Phys. Rev. B 87 024505 10.1103/PhysRevB.87.024505
Yildirim, T. et al. Giant anharmonicity and nonlinear electron-phonon coupling in MgB2: A combined first-principles calculation and neutron scattering study. Phys. Rev. Lett. 87, 037001 https://doi.org/10.1103/PhysRevLett.87.037001. (2001).
Y.S. Ponosov S.V. Streltsov Raman-active E2g phonon in mgb2: Electron-phonon interaction and anharmonicity Phys. Rev. B 96 214503 10.1103/PhysRevB.96.214503
D. Novko M. Alducin M. Blanco-Rey J.I. Juaristi Effects of electronic relaxation processes on vibrational linewidths of adsorbates on surfaces: The case of co/cu(100) Phys. Rev. B 94 224306 10.1103/PhysRevB.94.224306
D. Novko M. Alducin J.I. Juaristi Electron-mediated phonon-phonon coupling drives the vibrational relaxation of co on cu(100) Phys. Rev. Lett. 120 156804 1:CAS:528:DC%2BC1MXltFSlsr4%3D 29756898 10.1103/PhysRevLett.120.156804
Marsiglio, F. & Carbotte, J. P. Electron-Phonon Superconductivity, 73 https://doi.org/10.1007/978-3-540-73253-2_3 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008).
I. Kupčić S. Barišić Optical properties of the q1d multiband models – the transverse equation of motion approach Fiz. A 14 47
I. Kupčić Intraband memory function and memory-function conductivity formula in doped graphene Phys. Rev. B 95 035403 10.1103/PhysRevB.95.035403
D. Novko Dopant-induced plasmon decay in graphene Nano Lett. 17 6991 1:CAS:528:DC%2BC2sXhsFyqsr3P 28972379 10.1021/acs.nanolett.7b03553
I. Kupčić General theory of intraband relaxation processes in heavily doped graphene Phys. Rev. B 91 205428 10.1103/PhysRevB.91.205428
P.B. Allen Electron self-energy and generalized Drude formula for infrared conductivity of metals Phys. Rev. B 92 054305 10.1103/PhysRevB.92.054305
S.G. Sharapov J.P. Carbotte Effects of energy dependence in the quasiparticle density of states on far-infrared absorption in the pseudogap state Phys. Rev. B 72 134506 10.1103/PhysRevB.72.134506
B. Chakraborty P.B. Allen Solids with thermal or static disorder. ii. optical properties Phys. Rev. B 18 5225 5235 1:CAS:528:DyaE1MXhtFahu7s%3D 10.1103/PhysRevB.18.5225
I. Kupčić Raman spectroscopy of collective modes in charge-density-wave systems: The mean-field microscopic theory J. Raman Spectrosc. 40 442 – 452
G. Antonius S.G. Louie Theory of exciton-phonon coupling Phys. Rev. B 105 085111 1:CAS:528:DC%2BB38XntlCitr0%3D 10.1103/PhysRevB.105.085111
T. Holstein Theory of transport phenomena in an electron-phonon gas Ann. Phys. 29 410 535 1:CAS:528:DyaF2cXkslens78%3D 10.1016/0003-4916(64)90008-9
G. Profeta M. Calandra F. Mauri Phonon-mediated superconductivity in graphene by lithium deposition Nat. Phys. 8 131 1:CAS:528:DC%2BC38XlsF2gsg%3D%3D 10.1038/nphys2181
B.M. Ludbrook et al. Evidence for superconductivity in Li-decorated monolayer graphene Proc. Natl Acad. Sci. 112 11795 1:CAS:528:DC%2BC2MXhsVGls7zM 26351697 4586883 10.1073/pnas.1510435112
S. Ichinokura K. Sugawara A. Takayama T. Takahashi S. Hasegawa Superconducting calcium-intercalated bilayer graphene ACS Nano 10 2761 1:CAS:528:DC%2BC28XhsVymsL8%3D 26815333 10.1021/acsnano.5b07848
T.E. Weller M. Ellerby S.S. Saxena R.P. Smith N.T. Skipper Superconductivity in the intercalated graphite compounds c6yb and c6ca Nat. Phys. 1 39 1:CAS:528:DC%2BD28XitFCiurg%3D 10.1038/nphys0010
M. Calandra F. Mauri Theoretical explanation of superconductivity in c6Ca Phys. Rev. Lett. 95 237002 16384331 10.1103/PhysRevLett.95.237002
C.M. Varma A.L. Simons Strong-coupling theory of charge-density-wave transitions Phys. Rev. Lett. 51 138 1:CAS:528:DyaL3sXksF2juro%3D 10.1103/PhysRevLett.51.138
H. Yoshiyama Y. Takaoka N. Suzuki K. Motizuki Effects on lattice fluctuations on the charge-density-wave transition in transition-metal dichalcogenides J. Phys. C: Solid State Phys. 19 5591 1:CAS:528:DyaL2sXls1Wisg%3D%3D 10.1088/0022-3719/19/28/011
F. Flicker J. van Wezel Charge order from orbital-dependent coupling evidenced by NbSe2 Nat. Commun. 6 7034 1:CAS:528:DC%2BC2MXhtFylt7vF 25948390 10.1038/ncomms8034
H. Yan et al. Time-resolved Raman spectroscopy of optical phonons in graphite: Phonon anharmonic coupling and anomalous stiffening Phys. Rev. B 80 121403 10.1103/PhysRevB.80.121403
K. Ishioka et al. Ultrafast electron-phonon decoupling in graphite Phys. Rev. B 77 121402 10.1103/PhysRevB.77.121402
S.-Q. Hu et al. Tracking photocarrier-enhanced electron-phonon coupling in nonequilibrium npj Quantum Mater. 7 1:CAS:528:DC%2BB38XitV2nsL8%3D 10.1038/s41535-021-00421-7 14
N. Girotto D. Novko Dynamical phonons following electron relaxation stages in photoexcited graphene J. Phys. Chem. Lett. 14 8709 1:CAS:528:DC%2BB3sXhvFKhtb3I 37735110 10.1021/acs.jpclett.3c01905
S. Baroni S. de Gironcoli A. Dal Corso P. Giannozzi Phonons and related crystal properties from density-functional perturbation theory Rev. Mod. Phys. 73 515 1:CAS:528:DC%2BD3MXlvFKrtLc%3D 10.1103/RevModPhys.73.515
Y. Ponosov C. Thomsen M. Cardona Electronic Raman scattering and phonon self-energy effects in osmium Phys. C: Supercond. 235-240 1153 1154 1:CAS:528:DyaK2MXjt1Wku7c%3D 10.1016/0921-4534(94)91801-5
F. Cerdeira M. Cardona Effect of carrier concentration on the raman frequencies of Si and Ge Phys. Rev. B 5 1440 10.1103/PhysRevB.5.1440
A.N. Knigavko J.P. Carbotte F. Marsiglio Observation of phonon structure in electron density of states of a normal metal Europhys. Lett. 71 776 1:CAS:528:DC%2BD2MXhtVCgtL7N 10.1209/epl/i2005-10156-5
Bianco, R. & Errea, I. Non-perturbative theory of the electron-phonon coupling and its first-principles implementation. arxiv 2303.02621 https://arxiv.org/abs/2303.02621. (2023).
F. Marsiglio R. Akis J.P. Carbotte Phonon self-energy effects due to superconductivity: A real-axis formulation Phys. Rev. B 45 9865 9871 1:STN:280:DC%2BC2sflslKntQ%3D%3D 10.1103/PhysRevB.45.9865
A.V. Puchkov D.N. Basov T. Timusk The pseudogap state in high- superconductors: an infrared study J. Phys.: Condens. Matter 8 10049 1:CAS:528:DyaK28XnsFOhur8%3D
J. Carbotte E. Schachinger D. Basov Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors Nature 401 354 6 1:CAS:528:DyaK1MXmsFaltrY%3D 16862106 10.1038/43843
P.B. Allen Electron-phonon effects in the infrared properties of metals Phys. Rev. B 3 305 10.1103/PhysRevB.3.305
F. Marsiglio T. Startseva J. Carbotte Inversion of k3c60 reflectance data Phys. Lett. A 245 172 176 1:CAS:528:DyaK1cXkvFGqtbY%3D 10.1016/S0375-9601(98)00373-9
S. Shulga O. Dolgov E. Maksimov Electronic states and optical spectra of HTSC with electron-phonon coupling Phys. C: Supercond. 178 266 274 1:CAS:528:DyaK3MXlsVGnsr8%3D 10.1016/0921-4534(91)90073-8
E. Warren Effect of a varying density of states on superconductivity Phys. Rev. B 21 3897 3901 10.1103/PhysRevB.21.3897
E. Warren Generalization of the theory of the electron-phonon interaction: Thermodynamic formulation of superconducting- and normal-state properties Phys. Rev. B 26 1186 1207 10.1103/PhysRevB.26.1186
B. Mitrović J.P. Carbotte Effects of energy dependence in the electronic density of states on some normal state properties Can. J. Phys. 61 758 10.1139/p83-097
B. Mitrović M.A. Fiorucci Effects of energy dependence in the electronic density of states on the far-infrared absorption in superconductors Phys. Rev. B 31 2694 2699 10.1103/PhysRevB.31.2694
J.M. Luttinger Fermi surface and some simple equilibrium properties of a system of interacting fermions Phys. Rev. 119 1153 1163 10.1103/PhysRev.119.1153
J.P. Carbotte E.J. Nicol S.G. Sharapov Effect of electron-phonon interaction on spectroscopies in graphene Phys. Rev. B 81 045419 10.1103/PhysRevB.81.045419
C.-H. Park F. Giustino M.L. Cohen S.G. Louie Velocity renormalization and carrier lifetime in graphene from the electron-phonon interaction Phys. Rev. Lett. 99 086804 17930972 10.1103/PhysRevLett.99.086804
P.B. Allen R. Silberglitt Some effects of phonon dynamics on electron lifetime, mass renormalization, and superconducting transition temperature Phys. Rev. B 9 4733 1:CAS:528:DyaE2cXksVakt7k%3D 10.1103/PhysRevB.9.4733
A.B. Migdal Interaction between electrons and lattice vibrations in a normal metal Sov. Phys. JETP 7 996
L. Pietronero S. Strässler C. Grimaldi Nonadiabatic superconductivity. i I. Vertex corrections for the electron-phonon interactions Phys. Rev. B 52 10516 10529 1:CAS:528:DyaK2MXovVehs74%3D 10.1103/PhysRevB.52.10516
E. Cappelluti L. Pietronero Nonadiabatic superconductivity: The role of van Hove singularities Phys. Rev. B 53 932 944 1:CAS:528:DyaK28Xls12gtA%3D%3D 10.1103/PhysRevB.53.932
K. Itai Theory of Raman scattering in coupled electron-phonon systems Phys. Rev. B 45 707 717 1:STN:280:DC%2BC2sflslyrsw%3D%3D 10.1103/PhysRevB.45.707
J. Bauer J.E. Han O. Gunnarsson Quantitative reliability study of the Migdal-Eliashberg theory for strong electron-phonon coupling in superconductors Phys. Rev. B 84 184531 10.1103/PhysRevB.84.184531
B. Roy J.D. Sau S. Das Sarma Migdal’s theorem and electron-phonon vertex corrections in Dirac materials Phys. Rev. B 89 165119 10.1103/PhysRevB.89.165119
P.E. Trevisanutto C. Giorgetti L. Reining M. Ladisa V. Olevano Ab initio GW many-body effects in graphene Phys. Rev. Lett. 101 226405 19113496 10.1103/PhysRevLett.101.226405
M. Lazzeri C. Attaccalite L. Wirtz F. Mauri Impact of the electron-electron correlation on phonon dispersion: Failure of lda and gga dft functionals in graphene and graphite Phys. Rev. B 78 081406 10.1103/PhysRevB.78.081406
C. Attaccalite L. Wirtz M. Lazzeri F. Mauri A. Rubio Doped graphene as tunable electron-phonon coupling material Nano Lett. 10 1172 1:CAS:528:DC%2BC3cXjtVygtbs%3D 20222744 10.1021/nl9034626
R. Car M. Parrinello Unified approach for molecular dynamics and density-functional theory Phys. Rev. Lett. 55 2471 2474 1:CAS:528:DyaL28XhtVOlug%3D%3D 10032153 10.1103/PhysRevLett.55.2471
D.M. Ceperley Path integrals in the theory of condensed helium Rev. Mod. Phys. 67 279 355 1:CAS:528:DyaK2MXntVejurY%3D 10.1103/RevModPhys.67.279
F. Knoop et al. TDEP: Temperature dependent effective potentials J. Open Source Softw. 9 6150 10.21105/joss.06150
Castellano, A, Batista, J. P. A. & Verstraete, M. J. Mode-coupling theory of lattice dynamics for classical and quantum crystals. J. Chem. Phys. 159 https://doi.org/10.1063/5.0174255 (2023).
Hellman, O, Abrikosov, I. A. & Simak, S. I. Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B 84 https://doi.org/10.1103/PhysRevB.84.180301. (2011).
Hellman, O, Steneteg, P, Abrikosov, I. A. & Simak, S. I. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 87 https://doi.org/10.1103/PhysRevB.87.104111 (2013).
Hellman, O. & Abrikosov, I. A. Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B 88 https://doi.org/10.1103/PhysRevB.88.144301 (2013).
L. Monacelli et al. The stochastic self-consistent harmonic approximation: calculating vibrational properties of materials with full quantum and anharmonic effects J. Phys.: Condens. Matter 33 363001 1:CAS:528:DC%2BB3MXhvF2hu77F
I. Errea M. Calandra F. Mauri Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides Phys. Rev. B 89 064302 10.1103/PhysRevB.89.064302
R. Bianco I. Errea L. Paulatto M. Calandra F. Mauri Second-order structural phase transitions, free energy curvature, and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: Theory and stochastic implementation Phys. Rev. B 96 014111 10.1103/PhysRevB.96.014111
Shulumba, N, Hellman, O. & Minnich, A. J. Intrinsic localized mode and low thermal conductivity of PBSE. Phys. Rev. B 95 https://doi.org/10.1103/PhysRevB.95.014302 (2017).
Z. Yu et al. Superconductive materials with MgB2-like structures from data-driven screening Phys. Rev. B 105 214517 1:CAS:528:DC%2BB38XhvVSrsLnF 10.1103/PhysRevB.105.214517
D. Wulferding et al. Effect of topology on quasiparticle interactions in the Weyl semimetal WP2 Phys. Rev. B 102 075116 1:CAS:528:DC%2BB3cXhvVCmtb7I 10.1103/PhysRevB.102.075116
G.B. Osterhoudt et al. Evidence for dominant phonon-electron scattering in Weyl semimetal WP2 Phys. Rev. X 11 011017 1:CAS:528:DC%2BB3MXovVCmsLs%3D
J. Yu et al. Anomalous nonequilibrium phonon scattering in the Weyl semimetal Wp2 Phys. Rev. Res. 5 023137 1:CAS:528:DC%2BB3sXhsFKhtLzF 10.1103/PhysRevResearch.5.023137
Cheng, D. et al. Revealing Fano resonance in Dirac materials zrte5 through Raman scattering. arXiv 2410.09920 https://arxiv.org/abs/2410.09920 (2024).
B. Liu et al. Distinguishing quasiparticle-phonon interactions by ultrahigh-resolution lifetime measurements Phys. Rev. Lett. 132 176202 1:CAS:528:DC%2BB2cXhtVansrbI 38728725 10.1103/PhysRevLett.132.176202
P. Giannozzi et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials J. Phys.: Condens. Matter 21 395502 21832390
P. Giannozzi et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO J. Phys. Condens. Matter 29 465901 1:STN:280:DC%2BC1M7jvFOjuw%3D%3D 29064822 10.1088/1361-648X/aa8f79
P. Giannozzi et al. Quantum ESPRESSO toward the exascale J. Chem. Phys. 152 154105 1:CAS:528:DC%2BB3cXnsV2ms7c%3D 32321275 10.1063/5.0005082
F. Giustino M.L. Cohen S.G. Louie Electron-phonon interaction using Wannier functions Phys. Rev. B 76 165108 10.1103/PhysRevB.76.165108
J. Noffsinger et al. EPW: A program for calculating the electron–phonon coupling using maximally localized Wannier functions Comput. Phys. Commun. 181 2140 1:CAS:528:DC%2BC3cXht12gt7bJ 10.1016/j.cpc.2010.08.027
S. Poncé E. Margine C. Verdi F. Giustino EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions Comput. Phys. Commun. 209 116 10.1016/j.cpc.2016.07.028
M.J. van Setten et al. The PSEUDODOJO: Training and grading a 85 element optimized norm-conserving pseudopotential table Comput. Phys. Commun. 226 39 10.1016/j.cpc.2018.01.012
N. Marzari A.A. Mostofi J.R. Yates I. Souza D. Vanderbilt Maximally localized Wannier functions: Theory and applications Rev. Mod. Phys. 84 1419 1:CAS:528:DC%2BC3sXit1SmtL4%3D 10.1103/RevModPhys.84.1419
A.P. Thompson et al. Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales Comput. Phys. Commun. 271 108171 1:CAS:528:DC%2BB3MXitlSrsb7O 10.1016/j.cpc.2021.108171
I.S. Novikov K. Gubaev E.V. Podryabinkin A.V. Shapeev The MLIP package: moment tensor potentials with MPI and active learning Mach. Learn.: Sci. Technol. 2 025002
X. Gonze et al. The abinitproject: Impact, environment and recent developments Comput. Phys. Commun. 248 107042 1:CAS:528:DC%2BC1MXit1Oqu73N 10.1016/j.cpc.2019.107042