[en] Evolutionary radiations are fundamental to the generation of biodiversity, occurring when organisms rapidly diversify to exploit various ecological niches. Symbiosis can serve as a powerful catalyst for such diversification, as illustrated by the iconic association of anemonefish and sea anemones. However, a critical gap in our understanding of adaptive radiations lies in determining how ecological opportunities drive adaptive morphological, behavioral, and physiological traits and how these traits, in turn, influence diversification. Using anemonefish (Amphiprion spp.) as a model, we investigated the phenotypic diversification accompanying their evolutionary history following symbiosis with giant sea anemones. While host specificity has traditionally been viewed as the primary driver of anemonefish adaptive radiation, we present an alternative perspective, showing that distinct ecological strategies-independent of host species-may also significantly contribute to their diversification. By examining half of the described anemonefish species, we combined field observations, swimming tunnel experiments, computational simulations, and morphological analyses to empirically reveal the presence of eco-morphotypes that exist independently of host specificity. Our findings provide novel insights into the evolutionary history and processes shaping anemonefish diversity. We show that, beyond sea anemone hosts, multiple drivers significantly contributed to their diversification. Integrative phenotyping, combining in situ and laboratory observations, reveals the forces driving adaptive radiations. It uncovers an unexpected, fine-tuned diversification in anemonefish, exemplifying how natural selection precisely shapes biodiversity during radiative bursts and highlighting the complexity of ecological interactions and evolutionary mechanisms.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Life sciences: Multidisciplinary, general & others Zoology Environmental sciences & ecology Aquatic sciences & oceanology
Author, co-author :
Mercader, Manon ; Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan. Electronic address: manon.mercader@oist.jp
Ziadi-Künzli, Fabienne; Nonlinear and Non-equilibrium Physics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
Olivieri, Stefano; Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan, Department of Civil, Chemical, and Environmental Engineering, University of Genova, 16126 Genova, Italy, Istituto Nazionale di Fisica Nucleare, Sezione di Genova, 16146 Genova, Italy
Komoto, Shinya; Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
Rosti, Marco Edoardo; Nonlinear and Non-equilibrium Physics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
Frederich, Bruno ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Laudet, Vincent; Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaoxi, Yilan 262, Taiwan, CNRS IRL 2028 "Eco-Evo-Devo of Coral Reef Fish Life Cycle" (EARLY), Onna-son, Okinawa 904-0495, Japan. Electronic address: vincent.laudet@oist.jp
Language :
English
Title :
Integrative phenotyping reveals new insights into the anemonefish adaptive radiation.
The authors would like to thank Hiroki Takamiyagi, Keishu Asada, and Jeffrey Jolly for their help in the field; Tim Ravasi for providing the swimming tunnel; Billy Moore for his help with the respirometry experiment; Lilian Carlu for his great work maintaining the fish; and Nobuo Ueda (OIST Marine Sciences Station) for his help setting up equipment. They are also very grateful to the following for providing fish specimens: Shu-Hua Lee, Manuel Aranda and Holger Anlauf, Fabio Cortesi and Abigail Shaughnessy, David Lecchini and Fr\u00E9d\u00E9ric Bertucci, Hui-Min Chung and Cooper Catalini, Richard Crowe, and Kei Miyamoto. They would like to warmly thank Ken Maeda for his advice on fish fixation and his help with museum specimens and Laurie Mitchell for his comments on the manuscript. Finally, they thank the Okinawa Institute of Science and Technology for funding.
Laland, K., Uller, T., Feldman, M., Sterelny, K., Müller, G.B., Moczek, A., Jablonka, E., Odling-Smee, J., Wray, G.A., Hoekstra, H.E., et al. Does evolutionary theory need a rethink?. Nature 514 (2014), 161–164, 10.1038/514161a.
Simões, M., Breitkreuz, L., Alvarado, M., Baca, S., Cooper, J.C., Heins, L., Herzog, K., Lieberman, B.S., The evolving theory of evolutionary radiations. Trends Ecol. Evol. 31 (2016), 27–34, 10.1016/j.tree.2015.10.007.
Matsubayashi, K.W., Yamaguchi, R., The speciation view: Disentangling multiple causes of adaptive and non-adaptive radiation in terms of speciation. Popul. Ecol. 64 (2022), 95–107, 10.1002/1438-390X.12103.
Simpson, G.G., The Major Features of Evolution. 1953, Columbia University Press, 10.7312/simp93764.
Givnish, T.J., Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytol. 207 (2015), 297–303, 10.1111/nph.13482.
Schluter, D., The Ecology of Adaptive Radiation. 2000, Oxford University Press, 10.1093/oso/9780198505235.001.0001.
Gavrilets, S., Losos, J.B., Adaptive radiation: contrasting theory with data. Science 323 (2009), 732–737, 10.1126/science.1157966.
Ronco, F., Matschiner, M., Böhne, A., Boila, A., Büscher, H.H., El Taher, A., Indermaur, A., Malinsky, M., Ricci, V., Kahmen, A., et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 589 (2021), 76–81, 10.1038/s41586-020-2930-4.
Seehausen, O., African cichlid fish: a model system in adaptive radiation research. Proc. Biol. Sci. 273 (2006), 1987–1998, 10.1098/rspb.2006.3539.
Seehausen, O., Process and pattern in cichlid radiations – inferences for understanding unusually high rates of evolutionary diversification. New Phytol. 207 (2015), 304–312, 10.1111/nph.13450.
Grant, P.R., Speciation and the adaptive radiation of Darwin's finches: The complex diversity of Darwin's finches may provide a key to the mystery of how intraspecific variation is transformed into interspecific variation. Am. Sci. 69 (1981), 653–663.
Lerner, H.R.L., Meyer, M., James, H.F., Hofreiter, M., Fleischer, R.C., Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr. Biol. 21 (2011), 1838–1844, 10.1016/j.cub.2011.09.039.
Navalón, G., Marugán-Lobón, J., Bright, J.A., Cooney, C.R., Rayfield, E.J., The consequences of craniofacial integration for the adaptive radiations of Darwin's finches and Hawaiian honeycreepers. Nat. Ecol. Evol. 4 (2020), 270–278, 10.1038/s41559-019-1092-y.
Butler, M.A., Sawyer, S.A., Losos, J.B., Sexual dimorphism and adaptive radiation in Anolis lizards. Nature 447 (2007), 202–205, 10.1038/nature05774.
Puebla, O., Ecological speciation in marine v. freshwater fishes. J. Fish Biol. 75 (2009), 960–996, 10.1111/j.1095-8649.2009.02358.x.
Ingram, T., Speciation along a depth gradient in a marine adaptive radiation. Proc. Biol. Sci. 278 (2011), 613–618, 10.1098/rspb.2010.1127.
Momigliano, P., Jokinen, H., Fraimout, A., Florin, A.-B., Norkko, A., Merilä, J., Extraordinarily rapid speciation in a marine fish. Proc. Natl. Acad. Sci. USA 114 (2017), 6074–6079, 10.1073/pnas.1615109114.
Litsios, G., Sims, C.A., Wüest, R.O., Pearman, P.B., Zimmermann, N.E., Salamin, N., Mutualism with sea anemones triggered the adaptive radiation of clownfishes. BMC Evol. Biol., 12, 2012, 212, 10.1186/1471-2148-12-212.
Quenouille, B., Bermingham, E., Planes, S., Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol. Phylogenet. Evol. 31 (2004), 66–88, 10.1016/S1055-7903(03)00278-1.
Tang, K.L., Stiassny, M.L.J., Mayden, R.L., DeSalle, R., Systematics of Damselfishes. Ichthyol. Herpetol. 109 (2021), 258–318, 10.1643/i2020105.
Titus, B.M., Benedict, C., Laroche, R., Gusmão, L.C., Van Deusen, V., Chiodo, T., Meyer, C.P., Berumen, M.L., Bartholomew, A., Yanagi, K., et al. Phylogenetic relationships among the clownfish-hosting sea anemones. Mol. Phylogenet. Evol., 139, 2019, 106526, 10.1016/j.ympev.2019.106526.
Nguyen, H.-T.T., Dang, B.T., Glenner, H., Geffen, A.J., Cophylogenetic analysis of the relationship between anemonefish Amphiprion (Perciformes: Pomacentridae) and their symbiotic host anemones (Anthozoa: Actiniaria). Mar. Biol. Res. 16 (2020), 117–133, 10.1080/17451000.2020.1711952.
De Jode, A., Quattrini, A.M., Chiodo, T., Daly, M., McFadden, C.S., Berumen, M.L., Meyer, C.P., Mills, S., Beldade, R., Bartholomew, A., et al. Phylogenomics reveals coincident divergence between giant host sea anemones and the clownfish adaptive radiation. Preprint at bioRxiv, 2024, 10.1101/2024.01.24.576469.
Kashimoto, R., Rickards, E., Khalturin, K., Laudet, V., Giant sea anemones. Curr. Biol. 34 (2024), R481–R483, 10.1016/j.cub.2024.03.060.
Fautin, D.G., Anemonefish recruitment: the role of orders and chances. Symbiosis, 1992, 143–160.
Fautin, D.G., Allen, G.R., Anemone Fishes and Their Host Sea Anemones: A Guide for Aquarists and Divers. 1997, Western Australian Museum.
Litsios, G., Kostikova, A., Salamin, N., Host specialist clownfishes are environmental niche generalists. Proc. Biol. Sci., 281, 2014, 20133220, 10.1098/rspb.2013.3220.
Elliott, J.K., Elliott, J.M., Mariscal, R.N., Host selection, location, and association behaviors of anemonefishes in field settlement experiments. Mar. Biol. 122 (1995), 377–389, 10.1007/BF00350870.
Elliott, J.K., Mariscal, R.N., Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment. Mar. Biol. 138 (2001), 23–36, 10.1007/s002270000441.
Hayashi, K., Tachihara, K., Reimer, J.D., Patterns of coexistence of six anemonefish species around subtropical Okinawa-jima Island, Japan. Coral Reefs 37 (2018), 1027–1038, 10.1007/s00338-018-01740-1.
Allen, G.R., The Anemonefish: Their Classification and Biology. Second Edition, 1974, T.F.H. Publications Inc.
Plaut, I., Critical swimming speed: its ecological relevance. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131 (2001), 41–50, 10.1016/s1095-6433(01)00462-7.
Webb, P.W., Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Board Can. 190 (1975), 1–159.
Kapoor, B.G., Domenici, P., Fish Locomotion: An Eco-ethological Perspective. 2010, CRC Press.
Reidy, S.P., Kerr, S.R., Nelson, J.A., Aerobic and anaerobic swimming performance of individual atlantic cod. J. Exp. Biol. 203 (2000), 347–357, 10.1242/jeb.203.2.347.
Wolter, C., Arlinghaus, R., Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Rev. Fish Biol. Fish. 13 (2003), 63–89, 10.1023/A:1026350223459.
Priede, I.G., Metabolic scope in fishes. Tytler, P., Calow, P., (eds.) Fish Energetics, 1985, Springer Netherlands, 33–64, 10.1007/978-94-011-7918-8_2.
Elliott, J.K., Lougheed, S.C., Bateman, B., McPhee, L.K., Boag, P.T., Molecular phylogenetic evidence for the evolution of specialization in anemonefishes. Proc. Biol. Sci. 266 (1999), 677–685, 10.1098/rspb.1999.0689.
Salis, P., Roux, N., Soulat, O., Lecchini, D., Laudet, V., Frédérich, B., Ontogenetic and phylogenetic simplification during white stripe evolution in clownfishes. BMC Biol., 16, 2018, 90, 10.1186/s12915-018-0559-7.
Hammer, C., Fatigue and exercise tests with fish. Comp. Biochem. Physiol. A 112 (1995), 1–20, 10.1016/0300-9629(95)00060-K.
Buston, P., Size and growth modification in clownfish. Nature 424 (2003), 145–146, 10.1038/424145a.
Moyer, J.T., Nakazono, A., Protandrous hermaphroditism in six species of the anemonefis genus Amphiprion in Japan. Japane J. Ichthyol. 25 (1978), 101–106.
Fricke, H., Fricke, S., Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266 (1977), 830–832, 10.1038/266830a0.
Ohlberger, J., Staaks, G., Hölker, F., Swimming efficiency and the influence of morphology on swimming costs in fishes. J. Comp. Physiol. B 176 (2006), 17–25, 10.1007/s00360-005-0024-0.
Videler, J.J., Fish Swimming. 1993, Springer Science & Business Media, 10.1007/978-94-011-1580-3.
Wardle, C.S., Videler, J.J., Altringham, J.D., Tuning in to fish swimming waves: body form, swimming mode and muscle function. J. Exp. Biol. 198 (1995), 1629–1636, 10.1242/jeb.198.8.1629.
Ziadi-Künzli, F., Maeda, K., Puchenkov, P., Bandi, M.M., Anatomical insights into fish terrestrial locomotion: A study of barred mudskipper (Periophthalmus argentilineatus) fins based on ΜCT 3D reconstructions. J. Anat. 245 (2024), 593–624, 10.1111/joa.14071.
McCord, C.L., Nash, C.M., Cooper, W.J., Westneat, M.W., Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology. PLoS One, 16, 2021, e0258889, 10.1371/journal.pone.0258889.
Hattori, A., High mobility of the protandrous anemonefish Amphiprion frenatus: nonrandom pair formation in limited shelter space. Ichthyol. Res. 52 (2005), 57–63, 10.1007/s10228-004-0253-3.
Moyer, J.T., Influence of temperate waters on the behavior of the tropical anemonefish Amphiprion clarkii at Miyake-jima, Japan. Bull. Mar. Sci., 1980, 261–272.
Zwahlen, J., Mercader, M., Laudet, V., Homing anemonefish: Amphiprion clarkii swim back to their original host after relocations. Mar. Biodivers., 54, 2024, 80, 10.1007/s12526-024-01472-2.
Hattori, A., Inter-group movement and mate acquisition tactics of the protandrous anemonefish, Amphiprion clarkii, on a coral reef, Okinawa. Japane J. Ichthyol. 41 (1994), 159–165, 10.11369/jji1950.41.159.
Rubio-Gracia, F., García-Berthou, E., Guasch, H., Zamora, L., Vila-Gispert, A., Size-related effects and the influence of metabolic traits and morphology on swimming performance in fish. Curr. Zool. 66 (2020), 493–503, 10.1093/cz/zoaa013.
Svozil, D.P., Baumgartner, L.J., Fulton, C.J., Kopf, R.K., Watts, R.J., Morphological predictors of swimming speed performance in river and reservoir populations of AUSTRALIAN smelt Retropinna semoni. J. Fish Biol. 97 (2020), 1632–1643, 10.1111/jfb.14494.
Burton, T., Killen, S.S., Armstrong, J.D., Metcalfe, N.B., What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proc. Biol. Sci. 278 (2011), 3465–3473, 10.1098/rspb.2011.1778.
Buston, P.M., García, M.B., An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish Biol. 70 (2007), 1710–1719, 10.1111/j.1095-8649.2007.01445.x.
Lazarus, N.R., Lord, J.M., Harridge, S.D.R., The relationships and interactions between age, exercise and physiological function. J. Physiol. 597 (2019), 1299–1309, 10.1113/JP277071.
Tanaka, H., Seals, D.R., Endurance exercise performance in Masters athletes: age-associated changes and underlying physiological mechanisms. J. Physiol. 586 (2008), 55–63, 10.1113/jphysiol.2007.141879.
Nanami, A., Juvenile swimming performance of three fish species on an exposed sandy beach in Japan. J. Exp. Mar. Biol. Ecol. 348 (2007), 1–10, 10.1016/j.jembe.2007.02.016.
Pettersson, L.B., Brönmark, C., Energetic consequences of an inducible morphological defence in crucian carp. Oecologia 121 (1999), 12–18, 10.1007/s004420050901.
Schakmann, M., Korsmeyer, K.E., Fish swimming mode and body morphology affect the energetics of swimming in a wave-surge water flow. J. Exp. Biol., 226, 2023, jeb244739, 10.1242/jeb.244739.
Roux, N., Salis, P., Lee, S.-H., Besseau, L., Laudet, V., Anemonefish, a model for Eco-Evo-Devo. EvoDevo, 11, 2020, 20, 10.1186/s13227-020-00166-7.
Klann, M., Mercader, M., Salis, P., Reynaud, M., Roux, N., Laudet, V., Besseau, L., Anemonefishes. Handbook of Marine Model Organisms in Experimental Biology, 2021, CRC Press, 443–464, 10.1201/9781003217503-24.
Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P., Parmentier, E., Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyol. Res. 56 (2009), 10–17, 10.1007/s10228-008-0053-2.
Frédérich, B., Olivier, D., Litsios, G., Alfaro, M.E., Parmentier, E., Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes. Proc. Biol. Sci., 281, 2014, 20141047, 10.1098/rspb.2014.1047.
Metcalfe, N.B., Van Leeuwen, T.E., Killen, S.S., Does individual variation in metabolic phenotype predict fish behaviour and performance?. J. Fish Biol. 88 (2016), 298–321, 10.1111/jfb.12699.
Killen, S.S., Nadler, L.E., Grazioso, K., Cox, A., McCormick, M.I., The effect of metabolic phenotype on sociability and social group size preference in a coral reef fish. Ecol. Evol. 11 (2021), 8585–8594, 10.1002/ece3.7672.
Schmiege, P.F.P., D'Aloia, C.C., Buston, P.M., Anemonefish personalities influence the strength of mutualistic interactions with host sea anemones. Mar. Biol., 164, 2017, 24, 10.1007/s00227-016-3053-1.
Cleveland, A., Verde, E.A., Lee, R.W., Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158 (2011), 589–602, 10.1007/s00227-010-1583-5.
Hayashi, K., Tachihara, K., Reimer, J.D., Laudet, V., Colour patterns influence symbiosis and competition in the anemonefish–host anemone symbiosis system. Proc. Biol. Sci., 289, 2022, 20221576, 10.1098/rspb.2022.1576.
Camp, E.F., Hobbs, J.-P.A., De Brauwer, M., Dumbrell, A.J., Smith, D.J., Cohabitation promotes high diversity of clownfishes in the Coral Triangle. Proc. Biol. Sci., 283, 2016, 20160277, 10.1098/rspb.2016.0277.
Hattori, A., Small and large anemonefishes can coexist using the same patchy resources on a coral reef, before habitat destruction. J. Anim. Ecol. 71 (2002), 824–831, 10.1046/j.1365-2656.2002.00649.x.
Edwards, R.A., Smith, S.D.A., Subtidal assemblages associated with a geotextile reef in south-east Queensland, Australia. Mar. Freshw. Res., 56, 2005, 133, 10.1071/MF04202.
Hubbell, S.P., Neutral theory and evolution of ecological equivalence. Ecology 87 (2006), 1387–1398, 10.1890/0012-9658(2006)87[1387:NTATEO]2.0.CO;2.
Palmer, T.M., Stanton, M.L., Young, T.P., Competition and coexistence: exploring mechanisms that restrict and maintain diversity within mutualist guilds. Am. Nat. 162 (2003), S63–S79, 10.1086/378682.
Gainsford, A., van Herwerden, L., Jones, G.P., Hierarchical behaviour, habitat use and species size differences shape evolutionary outcomes of hybridization in a coral reef fish. J. Evol. Biol. 28 (2015), 205–222, 10.1111/jeb.12557.
Litsios, G., Salamin, N., Hybridisation and diversification in the adaptive radiation of clownfishes. BMC Evol. Biol., 14, 2014, 245, 10.1186/s12862-014-0245-5.
Gainsford, A., Jones, G.P., Hobbs, J.A., Heindler, F.M., van Herwerden, L., Species integrity, introgression, and genetic variation across a coral reef fish hybrid zone. Ecol. Evol. 10 (2020), 11998–12014, 10.1002/ece3.6769.
Gaboriau, T., Marcionetti, A., Garcia-Jimenez, A., Schmid, S., Fitzgerald, L.M., Micheli, B., Titus, B., Salamin, N., Host use drives convergent evolution in clownfish. Proc. Natl. Acad. Sci. USA, 122, 2025, e2419716122, 10.1073/pnas.2419716122.
Todd Streelman, J.T., Danley, P.D., The stages of vertebrate evolutionary radiation. Trends Ecol. Evol. 18 (2003), 126–131, 10.1016/S0169-5347(02)00036-8.
Danley, P.D., Kocher, T.D., Speciation in rapidly diverging systems: lessons from Lake Malawi. Mol. Ecol. 10 (2001), 1075–1086, 10.1046/j.1365-294x.2001.01283.x.
Muschick, M., Indermaur, A., Salzburger, W., Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22 (2012), 2362–2368, 10.1016/j.cub.2012.10.048.
Foote, M., The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28 (1997), 129–152, 10.1146/annurev.ecolsys.28.1.129.
Frédérich, B., Sorenson, L., Santini, F., Slater, G.J., Alfaro, M.E., Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). Am. Nat. 181 (2013), 94–113, 10.1086/668599.
Marcionetti, A., Rossier, V., Roux, N., Salis, P., Laudet, V., Salamin, N., Insights into the genomics of clownfish adaptive radiation: genetic basis of the mutualism with sea anemones. Genome Biol. Evol. 11 (2019), 869–882, 10.1093/gbe/evz042.
Donelson, J.M., Romans, P., Yamanaka, S., Kinoshita, M., Roux, N., Anemonefish husbandry. Evolution, Development and Ecology of Anemonefishes, 2022, CRC Press, 237–252, 10.1201/9781003125365-27.
Nanninga, G.B., Côté, I.M., Beldade, R., Mills, S.C., Behavioural acclimation to cameras and observers in coral reef fishes. Ethology 123 (2017), 705–711, 10.1111/eth.12642.
Tudorache, C., Viaene, P., Blust, R., Vereecken, H., De Boeck, G., A comparison of swimming capacity and energy use in seven European freshwater fish species. Ecol. Freshw. Fish 17 (2008), 284–291, 10.1111/j.1600-0633.2007.00280.x.
Christopher, J.F., The role of swimming in reef fish ecology. Domenici, P., Kapoor, B.G., (eds.) Fish Locomotion, 2010, CRC Press, 374–406, 10.1201/b10190-12.
Garland, T., Arnold, S.J., Effects of a full stomach on locomotory performance of juvenile garter snakes (Thamnophis elegans). Copeia, 1983, 1983, 1092, 10.2307/1445117.
Huang, W.-X., Shin, S.J., Sung, H.J., Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comp. Phys. 226 (2007), 2206–2228, 10.1016/j.jcp.2007.07.002.
Rosti, M.E., Cavaiola, M., Olivieri, S., Seminara, A., Mazzino, A., Turbulence role in the fate of virus-containing droplets in violent expiratory events. Phys. Rev. Research, 3, 2021, 013091, 10.1103/PhysRevResearch.3.013091.
Rosti, M.E., Olivieri, S., Cavaiola, M., Seminara, A., Mazzino, A., Fluid dynamics of COVID-19 airborne infection suggests urgent data for a scientific design of social distancing. Sci. Rep., 10, 2020, 22426, 10.1038/s41598-020-80078-7.
Cavaiola, M., Olivieri, S., Guerrero, J., Mazzino, A., Rosti, M.E., Role of barriers in the airborne spread of virus-containing droplets: A study based on high-resolution direct numerical simulations. Phys. Fluids, 34, 2022, 015104, 10.1063/5.0072840.
Sagong, W., Jeon, W.-P., Choi, H., Hydrodynamic characteristics of the sailfish (Istiophorus platypterus) and swordfish (Xiphias gladius) in gliding postures at their cruise speeds. PLoS One, 8, 2013, e81323, 10.1371/journal.pone.0081323.
Ayachit, U., The ParaView Guide: A Parallel Visualization Application. 2015, Kitware, Inc.
Gans, C., Fiber architecture and muscle function. Exer. Sport Sci. Rev. 10 (1982), 160–207, 10.1249/00003677-198201000-00006.
Powell, P.L., Roy, R.R., Kanim, P., Bello, M.A., Edgerton, V.R., Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 57 (1984), 1715–1721, 10.1152/jappl.1984.57.6.1715.
Dick, T.J.M., Clemente, C.J., Where have all the giants gone? How animals deal with the problem of size. PLoS Biol., 15, 2017, e2000473, 10.1371/journal.pbio.2000473.
Allen, V., Elsey, R.M., Jones, N., Wright, J., Hutchinson, J.R., Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis. J. Anat. 216 (2010), 423–445, 10.1111/j.1469-7580.2009.01202.x.
Allen, V., Molnar, J., Parker, W., Pollard, A., Nolan, G., Hutchinson, J.R., Comparative architectural properties of limb muscles in C rocodylidae and A lligatoridae and their relevance to divergent use of asymmetrical gaits in extant C rocodylia. J. Anat. 225 (2014), 569–582, 10.1111/joa.12245.
Martin, M.L., Travouillon, K.J., Fleming, P.A., Warburton, N.M., Review of the methods used for calculating physiological cross-sectional area (PCSA) for ecological questions. J. Morphol. 281 (2020), 778–789, 10.1002/jmor.21139.
R Core Team. R: A Language and Environment for Statistical Computing. 2022, R Foundation for Statistical Computing.
Martino, C., Morton, J.T., Marotz, C.A., Thompson, L.R., Tripathi, A., Knight, R., Zengler, K., A novel sparse compositional technique reveals microbial perturbations. mSystems 4 (2019), e00016–e00019, 10.1128/mSystems.00016-19.
Okasen, J., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P., O'Hara, R., Simpson, G., Solymos, P., et al. (2022). vegan: Community Ecology Package. R package version 2.6-2. http://CRAN.Rproject.org/package=vegan.
Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016, Springer.
Dinno, A. (2017). dunn.test: Dunn's Test of Multiple Comparisons Using Rank Sums. R package version 1.3.5. https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf.
Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L., Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49 (2013), 764–766, 10.1016/j.jesp.2013.03.013.
Revell, L.J., phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3 (2012), 217–223, 10.1111/j.2041-210X.2011.00169.x.
Revell, L.J., Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4 (2013), 754–759, 10.1111/2041-210X.12066.
Felsenstein, J., Phylogenies and the comparative method. Am. Nat. 125 (1985), 1–15, 10.1086/284325.
Clavel, J., Escarguel, G., Merceron, G., mv morph: An r package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6 (2015), 1311–1319, 10.1111/2041-210X.12420.