Article (Scientific journals)
Parameter optimisation using Bayesian inference for spallation models
Hirtz, J.; David, J.-C.; Cugnon, Joseph et al.
2024In European Physical Journal. A, Hadrons and Nuclei, 60 (7)
Peer Reviewed verified by ORBi
 

Files


Full Text
286.pdf
Author postprint (1.82 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Accuracy and precision; Bayesian inference; Design and Development; Energy; Generalized least square; Key Issues; Least-squares- methods; Monte Carlo model; Parameter optimization; Uncertainty; Nuclear and High Energy Physics
Abstract :
[en] The accuracy and precision of high-energy spallation models are key issues for the design and development of new applications and experiments. We present a method to estimate model parameters and associated uncertainties by leveraging the Bayesian version of the Generalised Least Squares method, which enables us to incorporate prior knowledge on the parameter values. This approach is designed to adjust parameters based on experimental data, accounting for experimental uncertainty information, and providing uncertainties for all adjusted parameters. This approach is designed in order both to improve the accuracy of models through the modification of free parameters of these models, which results in a better reproduction of experimental data, and to estimate the uncertainties of these parameters and, by extension, their impacts on the model output. We aim at demonstrating the Generalised Least Square method can be applied in the case of Monte Carlo models. We present a proof-of-concept for Monte Carlo models in the specific case of nuclear physics with the model combination INCL/ABLA. We discuss the challenges in the application of this method to high-energy spallation models, notably the large runtime and the stochasticity of the models. Our results indicate this framework can also be applied to analogous situations where parameters of a computationally expensive Monte Carlo code should be inferred/improved.
Disciplines :
Physics
Author, co-author :
Hirtz, J. ;  IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France ; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
David, J.-C.;  IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Cugnon, Joseph ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Interactions fondamentales en physique et astrophysique (IFPA)
Leya, I.;  Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
Rodríguez-Sánchez, J.L.;  CITENI, Campus Industrial de Ferrol, Universidade da Coruña, Ferrol, Spain
Schnabel, G.;  NAPC-Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria
Language :
English
Title :
Parameter optimisation using Bayesian inference for spallation models
Publication date :
July 2024
Journal title :
European Physical Journal. A, Hadrons and Nuclei
ISSN :
1434-6001
eISSN :
1434-601X
Publisher :
Springer
Volume :
60
Issue :
7
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
nccr – on the move
Funding text :
This project has received funding from the Euratom research and training programme 2014\u20132018 under grant agreement No 847552 (SANDA). NCCR PlanetS (Swiss National Science Foundation Grant Nr. 51NF40-141881) provided financial support for this research.
Available on ORBi :
since 15 July 2025

Statistics


Number of views
42 (2 by ULiège)
Number of downloads
28 (0 by ULiège)

Scopus citations®
 
3
Scopus citations®
without self-citations
2
OpenCitations
 
0
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi