Accuracy and precision; Bayesian inference; Design and Development; Energy; Generalized least square; Key Issues; Least-squares- methods; Monte Carlo model; Parameter optimization; Uncertainty; Nuclear and High Energy Physics
Abstract :
[en] The accuracy and precision of high-energy spallation models are key issues for the design and development of new applications and experiments. We present a method to estimate model parameters and associated uncertainties by leveraging the Bayesian version of the Generalised Least Squares method, which enables us to incorporate prior knowledge on the parameter values. This approach is designed to adjust parameters based on experimental data, accounting for experimental uncertainty information, and providing uncertainties for all adjusted parameters. This approach is designed in order both to improve the accuracy of models through the modification of free parameters of these models, which results in a better reproduction of experimental data, and to estimate the uncertainties of these parameters and, by extension, their impacts on the model output. We aim at demonstrating the Generalised Least Square method can be applied in the case of Monte Carlo models. We present a proof-of-concept for Monte Carlo models in the specific case of nuclear physics with the model combination INCL/ABLA. We discuss the challenges in the application of this method to high-energy spallation models, notably the large runtime and the stochasticity of the models. Our results indicate this framework can also be applied to analogous situations where parameters of a computationally expensive Monte Carlo code should be inferred/improved.
Disciplines :
Physics
Author, co-author :
Hirtz, J. ; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France ; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
David, J.-C.; IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Cugnon, Joseph ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Interactions fondamentales en physique et astrophysique (IFPA)
Leya, I.; Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
Rodríguez-Sánchez, J.L.; CITENI, Campus Industrial de Ferrol, Universidade da Coruña, Ferrol, Spain
Schnabel, G.; NAPC-Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria
Language :
English
Title :
Parameter optimisation using Bayesian inference for spallation models
This project has received funding from the Euratom research and training programme 2014\u20132018 under grant agreement No 847552 (SANDA). NCCR PlanetS (Swiss National Science Foundation Grant Nr. 51NF40-141881) provided financial support for this research.
A.J. Koning, D. Rochman, Towards sustainable nuclear energy: putting nuclear physics to work. Ann. Nucl. Energy, 35 (2008)
E. Alhassan, et al., Iterative Bayesian Monte Carlo for nuclear data evaluation. Nucl. Sci. Tech., 33 (2022)
A.J. Koning, Bayesian Monte Carlo method for nuclear data evaluation. Eur. Phys. J. A, 51 (2015)
C. De Saint Jean, et al., On the use of Bayesian Monte-Carlo in evaluation of nuclear data. EPJ Web Conf., 146 (2017)
D. L. Smith, Covariance matrices for nuclear cross sections derived from nuclear model calculations. Technical Report, 1 (2005)
E. Bauge, S. Hilaire, P. Dossantos-Uzarralde. Evaluation of the covariance matrix of neutronic cross sections with the Backward-Forward Monte Carlo method. EPJ Web Conf., 146 (2017)
R. Capote, et al., A new formulation of the unified Monte Carlo approach (UMC-B) and cross-section evaluation for the dosimetry reaction 55Mn(n,γ) 56Mn. J. ASTM Int., 9 (2012)
R. Capote, D.L. Smith. Unified Monte Carlo and mixed probability functions. J. Korean Phys. Soc., 59 (2011)
P. Helgesson, et al., Combining total Monte Carlo and unified Monte Carlo: Bayesian nuclear data uncertainty quantification from auto-generated experimental covariances. Prog. Nucl. Energy, 96 (2017)
Rafael S. de Souza, S. Reece Boston, Alain Coc, Christian Iliadis, Thermonuclear fusion rates for tritium + deuterium using bayesian methods. Phys. Rev. C, 99:014619 (2019)
D. Odell Daniel C.R. Brune Carl R D.R. Phillips Daniel R How bayesian methods can improve r-matrix analyses of data: the example of the dt reaction Phys. Rev. C 2022 105 2022PhRvC.105a4625O 10.1103/PhysRevC.105.014625
G. Schnabel, Fitting and analysis technique for inconsistent nuclear data (2018)
M. R. Mumpower, et al., The los alamos evaluation of 239pu neutron-induced reactions in the fast energy range (2023)
D.R. Phillips et al. Get on the band wagon: a bayesian framework for quantifying model uncertainties in nuclear dynamics J. Phys. G: Nucl. Part. Phys. 2021 48 7 2021JPhG..48g2001P 10.1088/1361-6471/abf1df
M.C. Kennedy Marc C A. O’Hagan Anthony Bayesian calibration of computer models Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2001 63 3 425 464 1858398 10.1111/1467-9868.00294
Hiroshi Kurata, Takeaki Kariya, Generalized Least Squares. Wiley (2004)
O. Iwamoto Osamu et al. Japanese evaluated nuclear data library version 5: Jendl-5 J. Nucl. Sci. Technol. 2023 60 1 1 60 10.1080/00223131.2022.2141903
D.A. Brown, et al., Endf/b-viii.0: The 8th major release of the nuclear reaction data library with cielo-project cross sections, new standards and thermal scattering data. Nuclear Data Sheets 148, 1–142 (2018). Special Issue on Nuclear Reaction Data
A. J. M. Plompen, et al., The joint evaluated fission and fusion nuclear data library, jeff-3.3. Eur. Phys. J. A, 56 (2020)
MYRRHA project. Website https://www.myrrha.be/
European commission: CHANDA. Website https://cordis.europa.eu/project/id/605203
European commission: SANDA. Website https://doi.org/10.3030/847552
A. Boudard et al. New potentialities of the liège intranuclear cascade model for reactions induced by nucleons and light charged particles Phys. Rev. C 2013 87 2013PhRvC.87a4606B 10.1103/PhysRevC.87.014606
D. Mancusi et al. Extension of the liège intranuclear-cascade model to reactions induced by light nuclei Phys. Rev. C 2014 90 2014PhRvC.90e4602M 10.1103/PhysRevC.90.054602
J. Hirtz et al. Strangeness production in the new version of the Liège Intra-Nuclear Cascade model Phys. Rev. C 2020 101 2020PhRvC.101a4608H 10.1103/PhysRevC.101.014608
J.L. Rodríguez-Sánchez et al. Hypernuclei formation in spallation reactions by coupling the Liège intranuclear cascade model to the deexcitation code ABLA Phys. Rev. C 2022 105 2022PhRvC.105a4623R 10.1103/PhysRevC.105.014623
J.L. Rodríguez-Sánchez et al. Constraint of the Nuclear Dissipation Coefficient in Fission of Hypernuclei Phys. Rev. Lett. 2023 130 2023PhRvL.130m2501R 10.1103/PhysRevLett.130.132501
S. Leray, et al., Benchmark of Spallation Models. J. Korean Phys. Soc., 59 (2011)
G. Schnabel, et al., Report on the development of methodology for the uncertainty quantification of (not only) high-energy models. Report D11.6 within the CHANDA European project FP7-Fission-2013-605203 (2018)
H. Leeb, D. Neudecker, Th. Srdinko, Consistent procedure for nuclear data evaluation based on modeling. Nuclear Data Sheets, 109(12), 2762–2767. Special Issue on Workshop on Neutron Cross Section Covariances June 24–28, 2008 (Port Jefferson, New York, USA, 2008)
D. Neudecker R. Capote H. Leeb Impact of model defect and experimental uncertainties on evaluated output NIM A 2013 723 163 172 2013NIMPA.723.163N 10.1016/j.nima.2013.05.005
G. Schnabel, H. Leeb, Differential cross sections and the impact of model defects in nuclear data evaluation. EPJ Web Conf 111, 09001 (2016)
Goran, et al., G. Arbanas, Bayesian optimization of generalized data. EPJ Nuclear Sci. Technol. 4, 30 (2018)
P. Helgesson H. Sjöstrand Treating model defects by fitting smoothly varying model parameters: Energy dependence in nuclear data evaluation Ann. Nucl. Energy 2018 120 35 47 10.1016/j.anucene.2018.05.026
G. Schnabel Estimating model bias over the complete nuclide chart with sparse Gaussian processes at the example of INCL/ABLA and double-differential neutron spectra EPJ Nuclear Sci. Technol. 2018 4 33 2018EPJNS..4..33S 10.1051/epjn/2018013
R. Hanson, C. Lawson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, NJ, 1974)
A.E. Gelfand A.F.M. Smith Sampling-based approaches to calculating marginal densities J. Am. Stat. Assoc. 1990 85 410 398 409 1141740 10.1080/01621459.1990.10476213
C. Zimmer S. Sahle Comparison of approaches for parameter estimation on stochastic models Comput. Biol. Chem. 2016 61 C 75 85 10.1016/j.compbiolchem.2015.10.003
M.L. Joyner T. Robacker Development of the mcr method for estimation of parameters in continuous time markov chain models Int. J. Pure Appl. Math. 2017 112 381 416 10.12732/ijpam.v112i2.15
D. Neudecker et al. Templates of expected measurement uncertainties EPJ Nuclear Sci. Technol. 2023 9 35 2023EPJNS..9..35N 10.1051/epjn/2023014
R. Capote et al. Unrecognized Sources of Uncertainties (USU) in Experimental Nuclear Data Nucl. Data Sheets 2020 163 191 227 2020NDS..163.191C 10.1016/j.nds.2019.12.004
V. Koptev et al. Subthreshold K+-meson production in proton-nucleus interactions Zh. Eksp. Teor. Fiz. 1988 94 1 14 1988ZhETF.94..1K
J. Cugnon M.-C. Lemaire Medium effects in pion production Nucl. Phys. A 1988 489 4 781 802 1988NuPhA.489.781C 10.1016/0375-9474(88)90121-2
V.V. Zerkin B. Pritychenko The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system NIM A 2018 888 31 2018NIMPA.888..31Z 10.1016/j.nima.2018.01.045
W. B. Amian, et al., Differential Neutron Production Cross Sections for 256-MeV Protons. Nucl. Sci. Eng., 110 (1992)
W. B. Amian, et al., Differential Neutron Production Cross Sections for 597-MeV Protons. Nucl. Sci. Eng. 115 (1993)
W. B. Amian, et al., Differential Neutron Production Cross Sections for 800-MeV Protons. Nucl. Sci. Eng. 112 (1992)
T. Nakamoto, Spallation Neutron Measurement by the Time-of-Flight Method with a Short Flight Path. J. Nucl. Sci. Technol., 32 (1995)
K. Ishibashi, et al., Measurement of Neutron-Production Double-Differential Cross Sections for Nuclear Spallation Reaction Induced by 0.8, 1.5 and 3.0 GeV Protons. J. Nucl. Sci. Technol. 34 (1997)
V. Kiselev, V.B. Fliagin, Energy Distribution of Neutrons Emitted from Beryllium Bombarded by 680 Mev Protons. JETP, 5 (1957)
S. Leray, et al., Spallation neutron production by 0.8, 1.2, and 1.6 GeV protons on various targets. Phys. Rev. C, 65 (2002)
F.H. Fröhner NEA, Evaluation and Analysis of Nuclear Resonance Data 2000 Paris OECD Publishing