Eur. Phys. J. A (2024) 60:149
https://doi.org/10.1140/epja/s10050-024-01370-y

THE EUROPEAN ()]
PHYSICAL JOURNAL A e

updates

Regular Article - Theoretical Physics

Parameter optimisation using Bayesian inference for spallation

models

J. Hirtz">2@®, J.-C. David!, J. Cugnon’, I. Leya?, J. L. Rodriguez-Sanchez*, G. Schnabel’

I [RFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

2 Space Research and Planetary Sciences, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
3 AGO Department, University of Liege, allée du 6 aofit 19, batiment B5, 4000 Liege, Belgium

4 CITENI, Campus Industrial de Ferrol, Universidade da Coruiia, 15403 Ferrol, Spain

5 NAPC-Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria

Received: 5 December 2023 / Accepted: 27 June 2024 / Published online: 19 July 2024

© The Author(s) 2024
Communicated by Thomas Duguet

Abstract The accuracy and precision of high-energy spal-
lation models are key issues for the design and develop-
ment of new applications and experiments. We present a
method to estimate model parameters and associated uncer-
tainties by leveraging the Bayesian version of the Gener-
alised Least Squares method, which enables us to incorporate
prior knowledge on the parameter values. This approach is
designed to adjust parameters based on experimental data,
accounting for experimental uncertainty information, and
providing uncertainties for all adjusted parameters. This
approach is designed in order both to improve the accuracy of
models through the modification of free parameters of these
models, which results in a better reproduction of experimen-
tal data, and to estimate the uncertainties of these parameters
and, by extension, their impacts on the model output. We aim
at demonstrating the Generalised Least Square method can
be applied in the case of Monte Carlo models. We present a
proof-of-concept for Monte Carlo models in the specific case
of nuclear physics with the model combination INCL/ABLA.
We discuss the challenges in the application of this method
to high-energy spallation models, notably the large runtime
and the stochasticity of the models. Our results indicate this
framework can also be applied to analogous situations where
parameters of a computationally expensive Monte Carlo code
should be inferred/improved.

1 Introduction

As the Dutch physicist Walter Lewin wisely said: “Any mea-
surement that you make, without any knowledge of the uncer-
tainty, is meaningless”. It is true for experimental measure-
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ments as well as for theoretical models. As precise and reli-
able as they can be, experimental data and models are always
only an approximation of the reality and, therefore, the dif-
ference between data or models predictions on the one hand
and the reality on the other hand have to be estimated to make
them meaningful. However, while the estimation of uncer-
tainties for experimental measurements became the norm a
century ago, the evaluation of model uncertainties is much
more recent and was a long time limited to the consideration
of statistical uncertainties only.

Nuclear physics found a wide range of application (e.g.,
fusion technology, medical hadron therapy, cosmogenic
nuclide production, transmutation of nuclear waste, etc.).
The study of the nuclear data used, means and uncertain-
ties, is commonly called nuclear data evaluation and is a
critical aspect for these applications. However, measuring all
required nuclear data is impossible for all the various fields
of application. Models able to predict the relevant data are
of the highest importance in the field of nuclear physics as
they are needed to design instruments, for radioprotection,
or simply to analyse experimental data. The improvement
of computing power in the last decades allowed the devel-
opment of new tools for model uncertainty quantification,
especially for Monte Carlo (MC) models. Considering the
various fields of applications of nuclear models and their
relevance for societies, it is obvious that model calculations
must be as precise and reliable as possible. Consequently,
the bias, i.e., the difference between the estimator and the
true value of an observable, and the uncertainties of models
must be estimated precisely for a proper use of these nuclear
models.

In the past decades, various methods have been devel-
oped to estimate model parameters and associated uncer-
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tainties. Many of them are based on Bayesian statistics.
One can mention various approach in the nuclear data field
[1-9] and Bayesian inference for R-matrix fitting [10,11].
More recently, evaluation approaches explore and employ
Bayesian hierarchical modelling, e.g., [12,13]. Bayesian
methods have also been studied and employed in the wider
nuclear physics field, e.g., [14]. We may also mention the
early seminal work of Kennedy and O’Hagan [15] demon-
strating the Bayesian approach for uncertainty quantification
of expensive black-box computer models.

Bayesian statistics is a general framework for inference
where limited knowledge about quantities is expressed in
terms of probability distributions, see e.g., [16] for an intro-
duction. The object of central interest in Bayesian inference is
the posterior distribution, which represents an updated state
of knowledge taking into account observations (entering the
likelihood) and prior knowledge. This allows us to estimate
the likelihood of a result as well as its uncertainties.

In the twentieth century, nuclear data evaluation was
mostly focussed on neutron-induced reaction with energies
below 20 MeV. This led to the creation of nuclear data
libraries [17-19], which are tables of nuclear-physics observ-
ables needed for application simulations. At present, new
types of projects are envisaged with much higher operat-
ing energies and with more types of projectile particles. As
an example, the Multi-purpose hYbrid Research Reactor for
High-tech Applications (MYRRHA [20]) project will oper-
ate at energies up to 600 MeV. Therefore, a new (and large)
energy range must be carefully studied.

During the European Nuclear Data project “solving
CHAllenges in Nuclear DAta” (CHANDA) [21], and more
recently in the “Supplying Accurate Nuclear Data for energy
and non-energy Applications” (SANDA) [22] project, an
important effort has been devoted to the development,
improvement, and validation of high energy nuclear mod-
els, in particular the combination of the IntraNuclear Cas-
cade model of Liege (INCL) [23-25] and the Ablation model
(ABLA)[26,27] that are now widely used for high energy
applications.

INCL is a MC model devoted to the simulation of spalla-
tion reaction: the interaction of light particles (proton, neu-
tron, light cluster, etc.) with heavier target nucleus within the
energy range from few tens of MeV to a few GeV. Initially,
the target nucleus is described as a Fermi gas. The projectile
is then shot in direction of the target which might result in a
collision. The entering nucleons will result in an intranuclear
cascade of binary collisions between the hadrons present.
When a particle from this cascade reaches the surface of the
nucleus, it has the possibility to be emitted depending on its
energy. Its main ingredients, which can be modified in order
to improved the model prediction, are the binary cross sec-
tions, features describing the initial state of the target nucleus
(e.g., Fermi momentum), and particles properties (e.g., Pauli
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blocking parameters). To be complete, INCL is often asso-
ciated to the ABLA model, which is able to simulate the de-
excitation of the remnant or compound nucleus obtained at
the end of the cascade. ABLA treats the de-excitation through
different processes in competition. Namely, the evaporation
of light particle (e.g., ¥, p, «) using the Weisskopf-Ewing
theory, the Fission, and the multi-fragmentation, also called
Fermi break-up. The model requires various parameters like
the fission dissipation coefficient or emission barrier correc-
tions for light ions. The combination INCL/ABLA has been
evaluated as the best between all the configuration tested [28].

In the CHANDA project [21], for the first time, a study had
been conducted to investigate a possible methodology based
on the Bayesian framework for quantifying the uncertain-
ties linked to parameters in high energy models, which could
then possibly be taken into account in MC transport codes
[29]. In the present study, which was included in the SANDA
project [22], it is proposed to investigate if the methodology
we developed can be applied to a large number of parame-
ters used in the INCL model and if the methodology can be
applied within a reasonable computational time.

Noteworthy, the objectives of this study (see Sect. 2) are
specific to nuclear data evaluation using the combination
INCL/ABLA. However, the methodology developed to study
our specific case is a general framework that can be applied to
a large variety of models. In Sect. 3, the basics of the method
is discussed together with the requirements and the limits of
our approach. Section 4 presents the treatment of experimen-
tal data required before the use of the algorithm. Next, the
methodology is applied to INCL/ABLA with the use of real
experimental data in Sect. 5. Finally, we discuss the outlook
of this work in Sect. 6.

2 Objective

In the framework of the European project SANDA [22], we
developed a method able (1) to estimate the optimal parame-
ters for a model and (2) to estimate the uncertainties of these
parameters. In this study, our objectives are twofold. First,
we aim at demonstrating the feasibility of our approach for
real cases using the combination of MC models INCL (for
the simulation of the intranuclear cascade) and ABLA (for
the simulation of the de-excitation of nuclei). Second, we
study the possibilities, the difficulties, and the limits of our
procedure both for the evaluation of the optimal parameters
of a model and for the evaluation of the corresponding uncer-
tainties.

Model bias is, by definition, the expected difference
between model predictions and the true values of the cor-
responding observables (e.g., neutron multiplicity, angular
distribution, mass distribution, etc.). Equally, the bias of the
model parameters is the expected difference between the
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parameter values provided to the model and their true val-
ues. However, the “true” values of the parameters (when it
is meaningful) are not known and are not accessible. There-
fore, we have to rely on experimental data to characterise the
model bias and the parameter bias, since this is the closest to
reality once all uncertainties have been taken into account.

One conceptual issue for determining parameter bias is
that the definition of the bias is meaningless when the param-
eters are not “physical” parameters. As an example, par-
ticles masses are “physical” parameters, while parameters
used in INCL to determine when the model stops running
are model dependent parameters. Additionally, estimating
parameter bias will be done within the Bayesian framework,
which assumes that the combination INCL/ABLA is a perfect
model. In other words, the Bayesian procedure assumes that
the “correct” choice of parameter values will lead to predic-
tions that perfectly coincide with the true values. However,
as says the famous quote attributed to the British statistician
George E.P. Box: “All models are wrong, but some are use-
ful”. INCL/ABLA, as any model, cannot be perfect, even
with the “correct” parameters. This is why the procedure
will not search for the true value of the model parameters but
for the optimal parameters within the context of the model
considered and of the observables studied. Additionally, the
imperfection of our model may lead to unreasonable values
for certain parameters with respect to our a priori knowl-
edge. Such a case can be interpreted as a missing mecha-
nism, an incorrect hypothesis, or a constraint not properly
taken into account in the model and therefore might be used
to improve the physics of the model. In the context of nuclear
data, the inability to perfectly reproduce trustworthy exper-
imental data is commonly refereed to as model deficiency,
and different approaches have been explored to account for
it, e.g., [30-34].

On the other hand, the uncertainties of the model parame-
ters will also be evaluated. These uncertainties are useful as
they provide information about the error propagation in the
model. A strongly reduced uncertainty for a given parameter
with respect to its a priori uncertainty would indicate that a
small modification significantly modifies model predictions.
Reciprocally, unchanged uncertainties would indicate that
the model outcome is not sensitive to the exact choice of this
parameter. Additionally, parameter correlations obtained can
help understanding their relations within the model.

3 Methodology

As mentioned in Sect. 2, the objectives of the method we
developed is to estimate the optimal model parameters and
the uncertainties associated to these parameters, the latter
would provide information about the error propagation in
the model. This can be used to improve the prediction of the

model both directly through the use of improved parame-
ters and indirectly by helping model developers to find miss-
ing/badly implemented features. The related question of the
model defects and of the estimation of model uncertainties is
orthogonal to this study and has already been addressed in a
previous study carried out by Schnabel within the CHANDA
framework [35] and will therefore not be discussed any fur-
ther. However, these complementary questions must be both
addressed for a complete study.

Our approach is divided into two main parts.

In a first step, we want to know what are the optimal
parameters for the model, i.e., we want to estimate what are
the parameters that will result in the best model predictions
(i.e., the parameter set that will maximise the likelihood of
the model). The methodology we developed is based on the
Generalised Least Squares (GLS) method [36], which is an
important technique in nuclear data evaluation. The GLS is
often used to estimate the unknown parameters in a linear
regression model, which takes into account the correlations
between observed data. It is a method of regression similar
to the common x 2 method but the correlations are taken into
account, as well as the a priori values for the model param-
eters. The GLS method used here takes into account both,
the reproduction of the experimental data and the a priori
knowledge about the parameters, which are treated as extra
data and therefore limits the risk of unphysical predictions
for the parameters. We employ the GLS iteratively in order
to account for the non-linearity of the model. Below, we will
call this first step the GLS phase.

In the second step, we want to know what are the uncer-
tainties associated with each parameter. The model being
non-linear, the parameters posterior distribution is not a mul-
tivariate normal distribution and cannot be directly obtained
form the posterior covariance matrix obtained with the GLS
method. Therefore, we developed an approach that can be
regarded as an approximation to the Gibbs sampling [37], an
iterative algorithm which will evaluate the posterior distri-
bution and which is suitable for stochastic models. With this
approach, we alternate between an evaluation of the poste-
rior covariance matrix for a given parameter set using GLS
formulae and a sampling of a parameter set using the pos-
terior covariance matrix. The distribution of the parameters
sampled along the second step allows us to determine the pos-
terior distribution and, by extension, the uncertainties and the
correlations of these parameters.

It is important to mention that, if the model has difficulties
reproducing some of the experimental data with respect to
their error bars, the algorithm will focus on these data points
and neglect others. This is why the selection of experimental
data to be included in the analysis as well as a careful study of
their uncertainties must be carried out before trying to opti-
mise the model parameters. The experimental data included
in this approach have to be reasonably reproducible by the
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model (i.e., all the main features involved in the correspond-
ing process must be present in the model). Otherwise, these
toxic data may jeopardise finding reasonable estimates for
the parameter values.

Rigorous uncertainty quantification of computational
expensive and stochastic nuclear physics models is challeng-
ing. As mentioned in the introduction, numerous methods
have been developed, and not only in the nuclear physics
domain (e.g., [38,39]). For the sake of consistency with the
approach that will be used by the authors in other studies to
estimate model defect (Schnabel (2018) [35]), we present a
two-step uncertainty quantification procedure based on the
Generalised Least Squares method and a scheme that can be
regarded as an approximation to Gibbs Sampling and demon-
strate its feasibility for a high-energy spallation code. As far
as the authors know, the approximative Gibbs part is new in
nuclear modelling.

3.1 Optimisation algorithm

In the two phases of our algorithm, an iterative algorithm is
employed. The number of iterations for both methods is a
free parameters, which needs to be specified by the user. For
the GLS phases, it must be large enough that the approach
converges to the optimal parameter set. For the Gibbs sam-
pling, it must be large enough to estimate the variance of the
parameters using the distribution of the parameter set pro-
duced. On the other hand, the computational time increases
linearly with the number of iterations. Therefore, the mini-
mum number of iterations required might range from a few
tens to a hundred for the GLS and from a few hundreds to a
few thousands for the Gibbs sampling.

The main idea of the GLS is as follows. We start with a
model M (here INCL/ABLA), experimental data o, pr-anda
set of parameters p,.r, which represents the best estimate of
these parameters a priori (i.e., without knowledge of G, »)-
Here, the model is seen as a function taking a vector as input
(the parameters) and producing a vector as an output (the
observables) corresponding to the experimental data. This
means that the dimension of the model predictions, M (p),
must be the same as the dimension of 8exp. In our specific
case of INCL/ABLA, this is done by using an additional
layer above the standard version of the model. This extra
layer extracts the experimental setups (projectiles, targets,
energies, angles, etc.) from the experimental data, runs the
INCL/ABLA simulations with the same setups and with the
appropriate statistics and, using the parameter set p, extracts
the calculated observables corresponding to the experimental
data from the standard INCL/ABLA output produced and,
finally, orders the observables in a vector matching Gy),.

Next, we enter a loop to improve the initial set of param-
eters prer. After the i-th iteration of the loop, the improved
set of parameters is called p;. With the knowledge of how
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the model varies locally, which is given by the Jacobian (also
called the sensitivity matrix) of the model evaluated at p;,
and the difference between the model prediction M(p;) and
the experimental data o, xp» One can determine the best set
of parameters p; to minimise the difference between the
model and the experimental data, assuming the model is lin-
ear between p; and p; 1. Since the model is likely not strictly
linear, the new set of parameters will most likely not be the
optimal parameter set. However, as long as the model is not
completely erratic between p; and p;.1, the linearisation
of the model can be seen as an acceptable approximation.
Therefore, the new set of parameters p;11 will likely be an
improvement with respect to p;. Then, we can reevaluate
the local Jacobian and the real model prediction in p; 4| and
restart the loop until convergence of p.

Explicitly, the GLS is executed as follows. At the begin-
ning of each loop, we linearise the model using a Taylor series
approximation in p;:

Ti(p) = M(Bi) + Jp, x (B = o). M
with the Jacobian matrix J,, of the model evaluated at p;:
dM(p)
Iy = — 2)
- p=p,

We introduce the matrix 7;:

Han J
J,-=(@ o ) 3

with n the number of experimental data, m the number of
parameters, and I the identity matrix. Note that, in the case
of a MC models, J; is affected by the model stochasticity.

The definition of 7; allows us to define the matrix of
regression as:

= iDD- iDI-
i =T 2 T _ ~ ! o 4
1 \71 L7l (21 i 2111 >7 ( )

with f)DD[ of dimension n X n, f],,i of dimension m x m,
and ¥ the covariance matrix of the joint distribution of the
experimental data and the input parameters:

Sy O
(5 8)

with .y, and X, the a priori covariance matrix of the exper-
imental data and of the parameters, respectively. The ¥ matri-
ces might be non-diagonal in case of correlations between
either the experimental data or the parameters.

Next, we can determine an improved set of parameters
using the central formula of the GLS method:

~ ~ -1 -
B =brer + 210, (Z00,)  [Gep = TiBrep]. ©)

The derivation of this formula is given in Appendix A for
readers not familiar with the GLS method.
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This formula would provide directly the optimal parame-
ters ( ﬁ(,p) for the model in case the model is linear. However,
in general, p’ is only an approximation of p,,. The quality
of this approximation is directly correlated to the linearity
of the model between p; and p,,. Even if the model is not
linear, p’ is likely an improvement with respect to p;. Next,
we can restart the loop at Eq. 1 with:

piv1 =D (7

This will improve the quality of the GLS hypothesis of a
linear model between p; and p,, and therefore, the precision
of Eq. 6. If the model is not completely erratic, we expect the
difference | p,p — pi| to decrease quickly with the number of
iterations.

For a stochastic model, the hypothesis of linearity between
pi and p,, might be reasonable as long as the expected dif-
ference of the model predictions between p; and p,;, domi-
nates the stochasticity. However, as p; approaches p,,, Eq.6
becomes less and less valid. Therefore, we expect an initial
quick convergence as p; is far from p,p, then p; will start
oscillating around p,,,. In order to evaluate p,,, we average
the values of p; along the oscillating phase. This significantly
reduces the effect of stochasticity.

In the second phase of the algorithm, we adopt a scheme
that can be regarded as an approximation to Gibbs sampling
[33]. With the standard Gibbs sampling, we would sample
alternatively between the conditional posterior distributions
7(p|J) and 7(J|p) and the sampled p would approximate
the posterior distribution.

In our scenario, we can draw samples from 7 (J|p)
because we are able to obtain unbiased cross section pre-
dictions from our model. Therefore, the Jacobian estimate
will then be also unbiased. However, we are not able to sam-
ple directly from 7 (5|.J) because of the non-linear nature of
the model which is not expressible in analytic form. There-
fore, for each iteration, we rely on a local linearisation of the
model, which would result in a multivariate normal likeli-
hood and on the parameter prior in which one can sample.
Then, non-linearity of the model and the stochasticity in the
Jacobian estimate is accounted for through the iterations with
the re-evaluation of the Jacobian. This approach might be a
source of bias if the 7 (p|J) is too far from a multivariate
normal distribution. However, for mild non-linear behaviour,
the magnitude of posterior uncertainties and correlations can
be evaluated with a reasonable number of iterations.

Explicitly, our approximative Gibbs sampling scheme is
carried out by alternating between the evaluation of the pos-
terior covariance matrix % using the GLS formulae:

_ . . -1
i =X, — Xip (EDDi> 2py; (8)

and the sampling of p;, 1 in a multivariate normal distribution
centred on p’ from Eq.6 and with a covariance %;:

pis1 =N/, Zp). )

For each iteration of the Gibbs sampling, p’ is re-

approximated using Eq.6 (which means we process every
step of the GLS but Eq. 7 within each iteration of the Gibbs
sampling) and the covariance matrix $; is an updated ver-
sion of the initial covariance matrix of the parameters (see
Appendix A for details), which includes the variance of
the experimental data and the error propagation through the
model.

Figure 1 illustrates the different steps realised along the
two phases of the algorithm.

Note that, if we are not interested in the exact posterior
distribution of p, one can evaluate the posterior of the X
matrix directly in p,,. However, this requires a statistic high
enough to get rid of the model stochasticity. Additionally, it
does not account for the non-linearity of the model, which

Begin. A priori: P, >
|

v
evaluate evaluate
T; and 3; Pit+1 fl"()l}l
from p; T; and ¥;
(eq. 1-4) (eq. 6,7)
GLS
No
i>N7 t—1+1
Yes
evaluate
evaluate S and 7
T, and 3; T
from p; 7 }()1(1112
. (eq. 1-4) 1 ana s
Gibbs (eq. 6,8)
. ¥
sampling evaluate
Pit+1
__ from
¥, and p’
(eq.9)

End. A posteriori: J, distribution of [, ,.... 7, | ]

Fig. 1 Flowchart representing the different steps of the algorithm
allowing to pass from the parameter a priori po and the a priori covari-
ance matrix X to the posterior parameters py and the distribution
[PN+1s.r PN+m]. The latter can be turned into a posterior covariance
matrix as described in the text. N and M are the numbers of iteration
for the GLS and Gibbs sampling, respectively
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may become noticeable if the posterior uncertainties do not
constrain model parameters sufficiently for the linear approx-
imation to hold well. The approximative Gibbs sampling
takes into account both effects, the stochasticity and the non-
linearity of the model since p’ and ¥; are re-approximated in
each loop. This allows us to integrate the stochasticity of the
model into the uncertainties of the parameters. The uncer-
tainties (and the correlations between the parameters) can
be extracted from the covariance matrix obtained by fitting
the posterior distribution of p; with a multivariate normal
distribution. This allows us to evaluate the parameter uncer-
tainties in the Bayesian framework taking into account the a
priori uncertainties of these parameters as well as other rel-
evant uncertainties, which are the error propagation through
the model, the stochasticity of the model (which depends on
the statistic used), and the uncertainties of the experimental
data. On the other hand, if we do not want to incorporate
the information about the stochasticity of the model into the
uncertainties of the parameters, we can average the covari-
ance matrix f,- over the iterations. In this case we would
obtain parameters uncertainties with only the consideration
of a priori uncertainties of these parameters, a priori uncer-
tainties of the experimental data used, and the error propa-
gation through the model.

3.2 CPU optimisation

To reduce calculation time, some CPU optimisations have
been applied.

First, concerning the inversion of the matrix )y pp;, which
is very CPU time consuming when using a large amount of
experimental data, the Woodbury matrix identity is used:

—1 —1
> = J,nJr
(5) =(z+»z4)

-1 -1 1l -1
-3 J, (s+7] =,
exp  exp p exp

JI s (10)

‘When no correlation is considered, i.e., when the X matri-
ces are diagonal, the inversion is straightforward. When there
are correlations, they are often limited to a small group of data
and the inversion of the matrix can still be efficiently per-
formed. Consequently, the problem of a large non-diagonal
matrix inversion becomes a problem of large matrix multi-
plications, which is faster and can easily be parallelised.

Second, theoretically the Jacobian should be computed
for each loop. However, this would be highly CPU ineffi-
cient as the Jacobian does not change drastically between
two loops while the new calculation would require a signif-
icant CPU time. Therefore, at the end of each iteration, we
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check if the Jacobian is still valid and, if not, it is revalu-
ated. This is done with a comparison of M (p;) (which is
evaluated in each loop for the needs of the Taylor approxi-
mation) and T'j (p;), the Taylor approximation performed the
last time the Jacobian has been evaluated. If the predictions
based on the exact model and the linearisation at p; differ
by less than a predefined value, we consider the Jacobian as
still valid. In other words, we partially assume that the linear
approximation is valid over several iterations by keeping the
same Jacobian as long as this assumption is not invalidated
by the computed model predictions. In practice, we decided
to update the Jacobian only when the prediction of the Tay-
lor approximation differs by more than twice the best relative
prediction ever obtained with a Taylor approximation. E.g.,
if the best prediction was able to predict the model output
within 20% accuracy, we conserve the current Jacobian until
the Taylor approximation differs by more than 40% with the
model output.

Third, since we assemble values expressed in different
units in the ¥ matrix and, by extension, the f)i matrices,
it is not rare to have matrix elements that differ by many
orders of magnitude. This can introduce errors due to the
limited precision of computers while multiplying or invert-
ing the matrices. In such a case, it is useful to rescale the out-
put of the model and the experimental data. In other words,
we can choose to optimise the parameters for the model
M’ = A x M using the experimental datat’ = A x T with A
an arbitrary diagonal matrix. In such a case, the experimen-
tal error bars must be updated but not the parameters and
their uncertainties. Proceeding this way is perfectly equiva-
lent to optimising the parameters for the model M using the
experimental data t.

3.3 Limits of the approach

In our case, in which we use INCL/ABLA, there are three
main limits for the use of the method.

First, one of the main challenges with nuclear data evalua-
tion is the large number of observables to reproduce. One cru-
cial assumption concerns the uncertainties of the experimen-
tal data. Including automatically a large number of experi-
mental data sets into the Bayesian procedure always bears the
risk that some data sets have too low uncertainties assigned.
It is often the case with old experimental data for which sys-
tematic errors were often not evaluated or roughly setto 10%.
As an example, some of the experimental data included in our
study had relative uncertainties below 1%. In this case, the
Bayesian procedure attributes a very high importance to this
data while other data measured in experiments with a more
rigorous uncertainty evaluation will contribute less than they
should to the final results. Therefore, a careful study of the
experimental data that are included in the Bayesian proce-
dure must be carried out in order to use realistic (or, at least,
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consistent) uncertainties for every set of data. This is further
discussed in Sect. 4.

Similarly, a large number of data for some experiments
will lead to over fitting these data, because each data point
is considered individually and not as a set of data. This is
because most data sets almost never provide correlations. In
other words, the more data points an experiment has, the more
it will influence the final result of the study. For example,
the neutron production cross section has been much more
intensively studied than the proton production cross section.
Therefore, if the two data sets are included in the same study,
the neutron production cross sections will have much more
weight for the final results than the proton production cross
sections, simply because there are much more data of the
former than of the latter. A possibility to avoid this issue, but
which is out of our scope, would be to provide correlations
between the data based on the related publications and/or on
templates [40].

The second main issue is about the stochasticity of the
model used. The energy considered (above 20 MeV) is not
described properly with deterministic models as the num-
ber of possibilities increases exponentially with energy. MC
models become necessary for these energies but it comes
with the usual balance between precision and computation
time. However, no matter how good the statistics is, two sim-
ulations with the same initial state but different random seeds
will give different results. In order to avoid that the a posteri-
ori probability associated to a parameter set varies too much
from one run to another, the statistics must be carefully cho-
sen in order to obtain a good balance between CPU time
and precision. This might become complex for cases with a
large number of different experimental data requiring very
different statistics to be properly estimated by the model.

Finally, model deficiencies are not taken into account.
Parameters can be optimised within the context of the model
but the approach does not provide direct information about
model deficiencies. An alternative approach to address the
model deficiencies has been proposed by Helgesson et al. [9]
in which the parameter set used depends on the input. As
mentioned in Sect. 3, the question of model deficiencies has
been addressed in a previous work [35] in which we devel-
oped a method able to estimate the model bias. We decided
to separate the two methods in order to focus on the phys-
ical meaning of p,, for the model and on the strength and
limits of the approach presented here alone. See Sect. 5.1 for
an example of interpretation of p,, with it possible impli-
cation for future model developments. This has two conse-
quences: First, if the model deficiencies forbid to reproduce
the experimental data whatever the parameter set used, the
estimated optimal set will be unsatisfactory. As an exam-
ple, if we try to optimise the parameters of a toy model in

which the data to be reproduced are distributed as a quadratic
function and the toy model allows only linear functions, the
approach will optimise the parameter to minimise the bias
but, despite the parameter being optimal, the model will not
be able to reproduce the quadratic shape of experimental
data (see ref. [29], section 3.2). Second, as the approach
minimises the variance, which evolves with the square of
the difference between experimental data and model predic-
tions, a minor improvement in a region where the model is
highly deficient will be seen as a great improvement, while
a large increase of the difference between experimental data
and the model predictions in regions where the model repro-
duce the experimental data properly will only be seen as a
minor deterioration of the model. To summarise, if we try
to optimise the model using experimental data with parts of
them in deficient regions of the model due to missing/ badly
implemented features and another part in efficient regions of
the model, the algorithm will primarily improve the model
prediction in the worst regions regardless of the effects that
this produces on the model predictions in the good regions.
In order to be complete, the quantification of the reliability
of the model hypotheses should be done in a “global” study,
i.e., by accounting for all the available data for which a given
parameter plays a role.

4 Experimental data treatment

As discussed in Sect. 3.3, including a large amount of exper-
imental data coming from a large number of experiments,
teams, and from different decades, is very problematic as the
quality of the data sets often differs relative to each others.
Actually, the main problem with experimental data is not
with their accuracy but with their experimental error bars,
which are crucial in our analysis as they define the covari-
ance matrix X. Sometimes, these error bars are not represen-
tative of the real accuracy and precision of the experimental
data. Additionally, the error bars were sometimes not eval-
uated consistently for all experimental data sets. Some can
be pure statistical error bars, while others include systematic
errors, themselves implying a more or less thorough analysis
of the experimental setup by the experimenters. An attempt
to evaluate unknown source of uncertainties has been pro-
posed by Capote et al. [41] but this approach can only be
applied in cases where correction are judged to be relatively
small.

Sometimes, it is obvious that some of the given error bars
are badly evaluated when two (or more) experimental data
sets exclude each other by several o. This issue has partly
been addressed by Schnabel within the CHANDA framework
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giving the possibility to rescale automatically experimental
error bars when several data sets are available for the same
observables [12]. However, there is only one set of experi-
mental data available for most of the reactions we studied.
Therefore, we need a more general approach for cases in
which only one set of data is available for an observable.
Unfortunately, to our knowledge, there is no mathematical
approach allowing to provide systematic error bars for a set
of experimental data based only on the experimental data
themselves.

One possibility to overcome this problem is the appli-
cation of templates that contain reasonable ranges for the
uncertainty components involved, e.g., Ref. [40]. However,
without the availability of such templates, the only way to
provide reasonable uncertainty components is by thoroughly
re-analysing the details provided in the publications of the
experiments or interact with the experimenters, if possible.
In cases in which it is not reasonable to reprocess the sys-
tematic error bars of all data sets included in our analysis, we
propose here an alternative approach taking the error bars
provided with the experimental data and applying a prag-
matic algorithm to normalise those error bars. In Sect. 5.2,
we decided to use an algorithm ruling that experimental data
with error bars too small to be realistic should be treated as
experimental data with large uncertainties as there were badly
evaluated to illustrate this possibility. Additionally, the con-
fidence we have in those data decreases with the increasing
unlikelihood of the error bars assigned. Therefore, the algo-
rithm uses user-defined thresholds under which uncertainties
are rescaled up to predefined levels. On the other hand, we
decided to trust the realistic uncertainties provided by other
experiments regardless of the differences of the uncertainty
evaluation.

In practice, all relative uncertainties below 1% are con-
sidered as very unrealistic and are rescaled to 30%, as well
as the uncertainties not provided. Those between 1% and
5% are considered as unrealistic and are rescaled to 20%.
Relative uncertainties between 5% and 10% are considered
as realistic but likely underestimated and are rescaled to
10%. Finally, relative uncertainties above 10% are consid-
ered as properly estimated and are taken as they are. Note
that this approach forbids relative uncertainties of less than
10%, which might be unfair for some experimental groups
that made a lot of effort to reduce systematic errors. Such a
rule-based approach, although with different rules, has also
been proposed in Ref. [9].

Such a rescaling might be needed for a proper execution
of our algorithm but it has to be kept in mind that such a
rule-based treatment is subjective and might have effects on
the posterior. Although it is impossible to entirely remove
the subjectivity even with more sophisticated principles or
considerations, an a posteriori checking can be done to scale
those effect, to alleviate the lack of information.
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5 Parameter optimisation

When using modern models like INCL/ABLA, the parameter
optimisation can be very CPU intensive, especially if “rare”
observables are studied.

Here, we study two different topics. First, a very favourable
situation, which is not fully physically meaningful, in order to
demonstrate the feasibility and the capabilities of the method.
Second, we study a case that is representative for our long
term objectives, to highlight the limits and difficulties.

It is worth emphasising the two cases described below
do not take into account correlations despite they are crucial
to obtain meaningful results. See Sect. 3.3 for details. The
determination of the off-diagonal elements of the covariance
matrix is a complex task, which requires both experimental
and theoretical expertises. This exercise cannot be addressed
with a simple systematic approach as described in Sect. 4 for
the uncertainties. This aspect will be addressed in a future
study.

5.1 Favourable case - the subthreshold production of KT

For the first study, we chose the very favourable case of the
subthreshold proton-induced K+ production following the
experiment at LINP [42]. This case is very favourable for
two reasons. First, the subthreshold K production is a very
specific phenomenon, which involves just a few parameters.
Additionally, there is a limited amount of experimental data
(70 data points), all coming from the same experimental set
up. This highly simplifies both the mandatory analysis of
the experimental data (see Sect. 3.3) and the analysis of the
results. Since all data are from the same experiment, there was
no need to rescale the experimental error bars as described in
Sect. 4. Second, the experimental data are badly reproduced
by INCL [25], which indicates that there is large room for
improvement.

On the other hand, this analysis has two limitations. First,
the phenomenon studied is a very rare event with cross sec-
tions of the order of a few nanobarns. Additionally, each
experimental data point corresponds to a different target and
different projectile energy, which requires individual calcu-
lations. Therefore, it is very CPU intensive to run INCL for
this set-up. This forced us to limit the number of experimen-
tal data points used in our analysis to 24 representative points
listed in Appendix B. Second, the parameters involved here
have an impact on other observables, which are not consid-
ered in our analysis. Our approach neglects the possible dete-
rioration of such other observables that might happen when
changing the parameters studied here. Therefore, this first
study is not physically complete. It will be a proof of con-
cept showing that the approach we developed is functional
for complex models like INCL.
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Fig. 2 Figure of merit showing
the evolution of the x2/DoF
after each iteration. Iteration 1
corresponds to the initial version
of INCL

Fig. 3 LINP experimental data
(diamonds) [42] compared to
INCL before (triangles)/after
(circles) optimisation for (top)
lead and (bottom) Beryllium
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We decided to consider four parameters to be optimised.
Namely, the three scalars ay v, ar ny, and aa y, which are mul-
tiplying factors applied to the original strangeness production
cross sections for NN, 7 N, and AN — K + X reactions,
respectively (0x New = ®x0x, 01d), and a fourth parameter,
which is the Fermi momentum used in INCL. The a priori
value for these parameters are 1.0, 1.0, 1.0, and 270 MeV /c
and their a priori uncertainties 0.1, 0.1, 0.1, and 5 MeV /c,
respectively. No correlation was considered.

Figure 2 depicts the evolution of the x2/DoF after each
iteration of the algorithm (see Sect. 3.1). Here we only used
the first phase of our approach, the iterative GLS, due to
CPU time restrictions. This calculation took 7 days using
20 cores. Therefore, we will not be able to provide uncer-
tainties for the parameters. After only a few iterations, one
can already see a huge improvement of the x2/DoF going
from more than 5000 to roughly 50. The high initial value of
~ 5300 is explained both by the poor initial description of
the experimental data (factor 5 in average) and by the rather
small experimental error bars (as small as 3%). Regardless of
the absolute value of the 2/ DoF , the algorithm succeeds in
improving the description of the experimental data by INCL
as it is also illustrated in Fig. 3. In this figure, one can see that
we started from a model highly overestimating the experi-
mental data and we ended with a pretty fair description of
the data with a factor 7.6 and 9.9 in average between the data
and the model prediction before optimisation for lead and
beryllium, respectively, and, after optimisation, we observe
only a difference of 20% in average for lead and a factor 2.7
for beryllium.

Regarding the parameters, the algorithm multiplied the
cross sections forthe NN, 7 N,and AN — K + X reactions
by factors 1.5, 0.26, and 0.43 respectively and it reduced the
Fermi momentum to 232 MeV/c. Theses values should not
be interpreted on physical grounds, the data used being too
restrictive. However, the study seems to indicate that there
is too much energy involved in these type of reactions near
the threshold and/or that the cross sections used are over-
estimated for the lowest energies. Further studies would be
necessary to come to a conclusion.

Overall, this example clearly demonstrates the ability of
the algorithm to improve the output of a complex model like
INCL through the optimisation of its parameters.

5.2 Double differential neutron case

In a second step, we decided to apply our approach to an
important observable for the INCL/ABLA model applica-
tions: the double differential neutron cross section (DDNXS).
In this case, there are much more parameters relevant for
the results than in the previous example. One can mention
almost every single elementary double differential cross sec-
tion (e.g., NN — NN, N — Nnm, AN — NN,
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etc.), parameters describing the structure of the nucleus, the
parameters ruling clustering, the freezing-out temperature in
ABLA, etc. Almost everything matters for such a general
feature. Here, it is not realistic in terms of CPU power to
optimise every single parameter that might be important for
the DDNXS. It is therefore necessary to choose the parame-
ters to be optimised. In our case, we have chosen to optimise
a parameters scaling the NA — NN cross section based
onthe NN — N A cross section called the detailed balance
parameter (DB) (onew = DB X 0yetailed—balance), the idea
originating from J. Cugnon and M.-C. Lemaire [43], two
parameters for the stopping time of the simulation a and b
(tstop = a X AP fm/c, with A the mass number of the target
nucleus), and the Fermi momentum. Based on our knowl-
edge of the INCL model, we estimated that these parameters
have enough leeway on their value, have a high impact on
the DDNXS and, are therefore the most interesting to study.
Here, we excluded parameters in ABLA to simplify our anal-
ysis. These parameters will be studied in future studies.

Once again, because of CPU time restrictions, we limited
the amount of experimental data to be taken into account.
Here, we work with the EXFOR data base [44] and we
decided to work with proton-induced reactions with ener-
gies above 200 MeV and for target nuclei lighter than alu-
minium. We excluded experimental cross sections below
1 ub/sr/MeV, which would require a very high statistics.
This resulted in 7220 experimental data points coming from
7 publications ([45-51]). As mentioned in Sect. 3.3, a care-
ful study of the experimental data used and their possible
correlations must be performed in order to obtain/use the
best constraints. The most important point in this prelimi-
nary study of the experimental data is to make sure that the
experimental error bars are consistent. If the error bars are
globally over- or underestimated, this will slightly modify
the output of the optimisation, notably the error bars of the
parameters, and the absolute value of the x2. However, this
problem is of second order compared to the problem intro-
duced by few unrealistically small error bars aside of much
more realistic but larger error bars as explained in Sect. 4.

In the case studied here, there are experimental relative
error bars down to 0.45% (EXFOR ID: C0170002, 120° neu-
tron emission at 2.1 MeV in the reaction p(800 MeV) + Be?:
1.876 £ 0.008406 mb/MeV/sr). This kind of experimental
data are toxic for our algorithm because they completely bias
the value of the Xz. Therefore, these problematic error bars
need to be rescaled. Otherwise, they can also be removed.
We selected the first option. Our procedure to rescale exper-
imental error bars is given in Sect. 4. Our approach has not
been pushed further as we are first interested in the feasibility
of the method.

The execution of our algorithm on the CC-IN2P3 using
20 cores took roughly 60 h.
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Fig. 4 x%/DoF of INCL for
the DDNXS evaluated for each
iteration. The dashed line is a fit
of the x2/DoF with the shape 3
a + =", which is the shape [ *
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First, we evaluated the model quality using the common
reduced x? throughout the algorithm. Note, the x2/DoF
values plotted in Fig.4 are deteriorated by various reasons.
One can mention the quasi-elastic peak location shift between
the model and the experimental data, where the uncertainties
are small, the correlation missing in the covariance matrix
and the fact we only use the experimental covariance matrix
but not the model uncertainties:

X2 = Gexp — MPNTZ, Gorp — M(P)). (11)

With this formula, a better statistics reduces the statistical
uncertainties and therefore the x2. The value also depends
on the experimental uncertainties rescaling (see Sect. 4).
Using the standard values for the parameters, the x2/DoF
is equal to 7.805 £ 0.125 with a standard deviation of 0.55.
The x2/DoF, its standard deviation and, by extension, its

4 5 6
Detailled balance parameter

uncertainty (40.125) was evaluated with 20 runs'. Using the
optimal values as provided by our algorithm, the x2/DoF
is now 7.34 4 0.094 with a standard deviation of 0.41. This
represents an improvement of 6% of the x2/DoF. The two
x%/DoF just given have been estimated with the same statis-
tics as in the algorithm to be consistent. Second, the opti-
mal parameters have been evaluated to 4.406 £ 0.131 (ini-
tially 3 £ 0.1) for the detailed balance, 266.4 +=0.97MeV /c
for the Fermi momentum (initially 270 & 3 MeV/c), and
for the stopping time parameters to a 37.13 £ 0.59
and b = 0.226 £ 0.005 (initially a 29.8 £ 0.5 and
b = 0.16 £ 0.05)%. No a priori correlation was used even

10.125 ~ 0.55/4/20 — 1

2 The uncertainties are obtained with the standard deviation of the last

20 iterations of the GLS (= 0/+4/20 — 1)
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Fig. 6 Optimisation of the time
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if the two time parameters should obviously be correlated.
This is illustrated in Figs.5 and 6 by the red/orange dots.
The new values indicates that the cross section for the A-
recombination (AN — N N) has been increased by 50%,
the maximal kinetic energy of nucleons has been slightly
reduced, and the stopping time has been greatly increased
(tstop = a X Abfm/c, with A the mass number of the target
nucleus). The uncertainties are due to the stochasticity of the
model, which is not fully compensated by a high number of
iterations in the GLS phase of the algorithm. In green/blue,
we show the evolution of the parameters along the Gibbs sam-
pling. This provides us the range of parameter values in which
the output of the model stays consistent with the experimental
data. The a posteriori acceptability range for the parameters
are provided by the standard deviation of the multivariate
normal distribution obtained. Here, the 1 o acceptability is:
0.986 (detailed balance), 8.822 (Fermi momentum), 6.061
(stopping time parameter 1), 0.0658 (stopping time parame-
ter 2). Note that the fact the initial and final values obtained
are very close is a purely random effect.

These uncertainties can be seen as a domain of validity
given the experimental data and the model, which is consid-
ered as a valid representation of the truth.

6 Summary and outlook

In this study, we explored the utility of Bayesian inference,
i.e., of the iterative Generalised Least Squares method and of
an approximation of Gibbs sampling, to optimise the param-
eters and obtain associated uncertainties for the high-energy
spallation model INCL/ABLA. This approach is able to fit
the model predictions to the experimental data using the opti-
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misation of the free parameters of the model. The objective
of this algorithm is twofold: First, the algorithm determines
optimal parameters, which minimise the bias of the model
and, by extension, the X2- Second, this algorithm aims at
determining the uncertainties of these parameters.

We demonstrated this approach based of the Generalised
Least Squares method can be used for Monte Carlo models
within a reasonable computing time.

In our study, we first demonstrated the feasibility of the
approach for a selected case, in which we reduced the x 2 of
the model by a factor of 100. In a second stage, we studied the
neutron double differential cross section with INCL/ABLA
in proton-induced reactions on light target nuclei. We were
able to produce a reasonable improvement of the model pre-
dictions by using thousands of experimental data with a
reduction of the x2 by 6%. Despite the fact that the DDNXS
are extremely well studied and are already well reproduced
by INCL/ABLA, thanks to our algorithm we were still able
to slightly improve the model. Even more important, the
approach is able to estimate the uncertainties of the model
parameters.

We also discussed the limits of the approach with, first,
high CPU requirements with several days of calculation with
afew tens of cores in the case of INCL. The application of the
method will require high performance computing systems in
order to reduce the time required for its execution. Another
limit of the approach is the availability and the quality of the
experimental data. Finally, the disparity of the quality of the
experimental data is one of the most important issues, which
must be addressed before applying the algorithm. This last
point requires to exclude some questionable experimental
data with unrealistically small error bars or to rescale these
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error bars in order to moderate their importance with respect
to other data evaluated with a more rigorous approach.

Once the parameters have been optimised, the model bias
of the new version of INCL/ABLA can be estimated using
the approach developed by Schnabel [29].

Overall, these results are very encouraging showing that
Bayesian methods can be used as a tool to improve the
description of observables by stochastic nuclear models in
the high-energy (GeV) regime.
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Appendix A Derivation of the GLS method

The GLS method, e.g., [52] section 2.2, is the basis for infer-
ence in Bayesian networks of continuous variables with a
multivariate normal prior distribution and linear relationships
between variables. Due to central importance for the study of
the GLS method in general and of Eqs. 6 and 8 in particular,
we provide a derivation based on the Bayes’ theorem. For
a more complete description of the GLS method, the reader
may consult the reference [16].

Lets assume a set of parameters of interest p, a model/fun-
ction M that we assume to be perfect, and a set of unbiased
experimental data o,.,. Here, a perfect model and unbiased
data assumption stands for M (p;rue) = Girue = E(Gexp)-

The Bayes theorem gives the relation between the pos-
terior distribution of p called 7 (p|Gexp), the prior distri-
bution of p, called 7o(p), the prior distribution of Gy,

called 77 (Gexp), and the likelihood of ., knowing p, called

l(aexp |ﬁ)

l(aexp|ﬁ) X 770(13)
n(aexp) .

T (PlOexp) = (A1)

Here, 77 (Gexp) is a scalar, which guarantees the normalisa-
tion of 7 (P|Gexp). Both the likelihood  and the prior distribu-
tion 1 are supposed to be multivariate normal distributions.
Therefore, we can write:

. | P = =
mo(p) o< exp (—E(p — prep) 2,1 (P — pref)) . (A2

with p,.r the best a priori estimate of p and X, the covari-
ance matrix of p, and:

- - 1 . - 1o -
[(Gexp|P) ox exp (—E(aexp —~ MGNTE7 Gerp — M(p))) :

(A3)

with ¥, the covariance matrix of ¢ and M the assumed to be
perfect model. The model defects and possible biases in the
experimental data are responsible for the difference between
the optimal parameters and the true parameters.

Since the product of two (multivariate) normal distribu-
tions is also a (multivariate) normal distribution, we also
have:

- L D
7 (PlGexp) o €Xp (‘5(” — Pop) Ty (P — po,») . (A4)

with p,, and X,, the optimal parameter set for the model,
knowing the experimental data set G, and the correspond-
ing covariance matrix, respectively.

Since the GLS method requires linear relationships
between variables, we need to approximate the model M
with a Taylor series approximation:

M(ﬁ) = M(ﬁref) + Jp(ﬁ - ﬁref)» (A5)
with J, the Jacobian of the model.
Therefore, we can rewrite the likelihood as:
1(Gexpl|P)
1 . - - S _
X exp <_§(Oexp - M(pref) —Jp(p— pref))TEg !
| - - -
E(GEXP - M(pref) = Jp(p— pref))> ) (A6)
which can be simplified as:
l(6exp |ﬁ)
1 - _ -
X exp <_§(Href - Jpp)TEe 1(I"Iref - Jpp)) .
(A7)
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Table 1 List of experimental data used to adjust parameters involved in the subthreshold K ™ production versus the model predictions before and

after optimisation

Kinetic Experimental Experimental Model before Model after
energy (MeV) cross section (nb) error bar (nb) optimisation (nb) optimisation (nb)
Pb
910 77 11 546 89
927 151 9 1110 116
960 328 25 2221 327
988 550 18 5036 787
Sn
883 24 163 9.4
910 75 300 43
959 231 21 895 137
988 405 22 3036 557
Cu
840 8.1 0.9 9.6 2.3
898 46 52 8.9
927 81 229 30
959 141 15 481 76
988 298 15 771 160
C
842 1.1 0.3 5.0 0.64
870 1.8 0.3 9.3 2.8
900 49 0.4 9.1 32
905 6.0 0.5 16.9 24
947 16.2 1.9 244 20.3
990 39.0 2.0 136.1 18.8
Be
835 0.25 0.21 4.55 1.69
878 1.47 0.28 15.48 3.17
918 3.9 0.4 27.5 6.3
960 9.2 1.1 68.8 14.8
990 21 1.0 130 27
with the substitution of the constant term Hyef = Gexp — + (Hyer — Jpﬁ)TEe_l(H,ef —JpD). (A9)

M(ﬁref) + Jpﬁref-
With a combination of Egs. Al, A2, A4, and A7, and
knowing that n(&exp) is a scalar, we have:

o s
exXp 2(P Pop) Eop (p Pop)
T S SRR NSy
X exp z(p pref) Zp (p Pref)
1 N _ -

X exp <_§(Href — Ipp) S (Hyep — JpP)) (A8)

With this, it follows:
P RN (TS (n s Tz =

(P—DPop) Eop (P — Pop) +C = (P — DPref) Ep (P = Pref)

@ Springer

with C a constant of normalisation.

Since p is the only variable in Eq.A7, the coefficients
must match for the terms with ( ﬁ)T on the left hand side and
those with p on the right hand side. We then have the four

equations:

S =%, + 1,5y

Eo_plﬁop = E;lﬁref + J;Ee_lHref

> NTsy—1 _ 2 Tv—1 T «-1
(pUP) Eop _(pref) Ep +H,efZe JP

(A10)
(A11)
(A12)

(ﬁop)TE(:p] ﬁop +C = (ﬁref)TZ;Iﬁref + H,Y;ng_IHref

(A13)
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Using the Woodbury matrix identity in Eq. A10, we have:

Sop = Bp — Zpd [ (Ze+ 1y, J 7L, (A14)

Multiplying Eq. A11 from the left with Eq. A14, we get:

Pop = (29 = Zpd ] (Se + 1%, 00070, )
(%5 e + 1T 57 )
= Pref + ZpJ ) =7 Hyep
— S0 (S + TpZpd ) Ty Brey
— ) J ) B+ 1y ) S, I S  Hyep
= Pref — Zpd ) (Ze + JpEpd ) T pBrey
+x,07 (2;1 — (B + JpEpJpT)_IJpEpJpTEe_l) Hyef
= Pref — Zpd ) (Ze + Ty pd )" Ty Brey
+2p ) (Be + JpTp )7
((ze + 1,80 e - Jpszpngl) Hyof
= Pres — Zpd ) (Ze + JpSpd ) Ty Breg
+ 2p I (Be + JpEpd D) Hyep
= Pref + ZpJ} (Be + JpSp T )" (Hrep — JpPres)

(A15)
and, replacing H,.r, we finally obtain:
- _ =z T
DPop = Pref + ijp
X (Ze + JpZpI ) Gerp = M(Pres)) (A16)

It is important to emphasise that equation Eq. A16 is only
valid as long as the hypothesis of a linear model is valid. How-
ever, most realistic models can be approximated by a linear
model only locally. Therefore, M(p,.r) must be estimated
reversing Eq. AS:

Mlin([;ref) = M(ﬁ) + Jp(ﬁref - ﬁ)7

with J,, the Jacobian of the model in p.

In order to simplify Eq. A16, we usually introduce the
matrix of regression Y, defined using Eq.4. Explicitly, the
equation expands as:

(A17)

Si=gzgl = (Z”JPEPJPT JPEP)
1

DRV T,
_ (?DDi ;Dli )
Xip;,  Xipu

We finally obtain Eq. 6:

(A18)

ﬁop = ﬁref + i:ID,‘ (iDD,-) [8exp - Mlin(ﬁref)] ’
(A19)

and Eq. 8 follows from Eq. A14:

. . . ~1
Yop =211, — Xip; (EDDi) Xpi;- (A20)

As the difference | p,, — p| becomes smaller, the hypoth-
esis of a linear model between p and p,, becomes more
applicable, and therefore, the last two equations become more
exact. This justifies the use of an iterative algorithm evaluat-
ing a linearisation of the model (Eq. 1: ﬁ) and its Jacobian
(Eq.3: Jp,) in p;, the best evaluation of the optimal parame-
ters currently known and then, evaluating an improved p; 4
from i and J), using Eq.6.

Appendix B LINP experimental data

In this appendix, we display the experimental data from LINP
[42] we used for the optimisation of the model parameters in
Sect. 5.1. The data points has been chosen to be representative
of the entire set.

To avoid overloading the computer memory, the model
uncertainties are lost in the process. However, the statistics
used has been chosen in order to have roughly 10% model
uncertainties for every data points independently of the abso-
lute cross section.
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