Gas chromatography-trapped ion mobility mass spectrometry: A highly specific and ultra-sensitive platform for quantifying sub-ppt levels of dioxins and PCBs in food.
Muller, Hugo ; Université de Liège - ULiège > Molecular Systems (MolSys)
Scholl, Georges ; Université de Liège - ULiège > Molecular Systems (MolSys)
Eppe, Gauthier ; Université de Liège - ULiège > Molecular Systems (MolSys)
Language :
English
Title :
Gas chromatography-trapped ion mobility mass spectrometry: A highly specific and ultra-sensitive platform for quantifying sub-ppt levels of dioxins and PCBs in food.
Adams, K.J., Smith, N.F., Ramirez, C.E., Fernandez-Lima, F., Discovery and targeted monitoring of polychlorinated biphenyl metabolites in blood plasma using LC-TIMS-TOF MS. Int. J. Mass Spectrom. 427 (2018), 133–140, 10.1016/j.ijms.2017.11.009.
Armenta, S., Garrigues, S., De La Guardia, M., Brassier, J., Alcalà, M., Blanco, M., Perez‐Alfonso, C., Galipienso, N., Detection and characterization of emerging psychoactive substances by ion mobility spectrometry. Drug Test. Anal. 7:4 (2015), 280–289, 10.1002/dta.1678.
Barnett, D.A., Guevremont, R., Purves, R.W., Determination of Parts-per-Trillion levels of chlorate, bromate, and iodate by electrospray Ionization/high-field asymmetric waveform ion mobility spectrometry/mass spectrometry. Appl. Spectrosc. 53:11 (1999), 1367–1374, 10.1366/0003702991945984.
Belova, L., Celma, A., Van Haesendonck, G., Lemière, F., Sancho, J.V., Covaci, A., Van Nuijs, A.L.N., Bijlsma, L., Revealing the differences in collision cross section values of small organic molecules acquired by different instrumental designs and prediction models. Anal. Chim. Acta, 1229, 2022, 340361, 10.1016/j.aca.2022.340361.
Belova, L., Caballero‐Casero, N., Ballesteros, A., Poma, G., Van Nuijs, A.L.N., Covaci, A., Trapped and drift‐tube ion‐mobility spectrometry for the analysis of environmental contaminants: comparability of collision cross‐section values and resolving power. Rapid Commun. Mass Spectrom., 38(21), 2024, e9901, 10.1002/rcm.9901.
Celma, A., Sancho, J.V., Schymanski, E.L., Fabregat-Safont, D., Ibáñez, M., Goshawk, J., Barknowitz, G., Hernández, F., Bijlsma, L., Improving target and suspect screening high-resolution mass spectrometry workflows in environmental analysis by ion mobility separation. Environ. Sci. Technol. 54:23 (2020), 15120–15131, 10.1021/acs.est.0c05713.
Celma, A., Ahrens, L., Gago-Ferrero, P., Hernández, F., López, F., Lundqvist, J., Pitarch, E., Sancho, J.V., Wiberg, K., Bijlsma, L., The relevant role of ion mobility separation in LC-HRMS based screening strategies for contaminants of emerging concern in the aquatic environment. Chemosphere, 280, 2021, 130799, 10.1016/j.chemosphere.2021.130799.
Celma, A., Alygizakis, N., Belova, L., Bijlsma, L., Fabregat-Safont, D., Menger, F., Gil-Solsona, R., Ion mobility separation coupled to high-resolution mass spectrometry in environmental analysis – Current state and future potential. Trends Environ. Anal. Chem., 43, 2024, e00239, 10.1016/j.teac.2024.e00239.
Chai, Y., Grebe, S.K.G., Maus, A., Improving LC-MS/MS measurements of steroids with differential mobility spectrometry. J. Mass Spectrom. Adv. Clin. Lab 30 (2023), 30–37, 10.1016/j.jmsacl.2023.10.001.
COMMISSION REGULATION (EU). 2017/644 - of 5 April 2017 - laying down methods of sampling and analysis for the control of levels of dioxins, Dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing regulation (EU) no 589/2014. Off. J. Eur. Union L 92 (2017), 9–34.
COMMISSION REGULATION (EU). 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006, 119, 2023, J Eur Union L, 103–157.
Dodds, J.N., May, J.C., McLean, J.A., Correlating resolving power, resolution, and collision cross section: unifying cross-platform assessment of separation efficiency in ion mobility spectrometry. Anal. Chem. 89:22 (2017), 12176–12184, 10.1021/acs.analchem.7b02827.
Eiceman, G.A., Karpas, Z., Hill, H.H., Ion Mobility Spectrometry. third ed., 2014, Taylor & Francis, Boca Raton (Online-Ausg.).
Ells, B., Barnett, D.A., Purves, R.W., Guevremont, R., Trace level determination of perchlorate in water matrices and human urine using ESI-FAIMS-MS. J. Environ. Monit. 2:5 (2000), 393–397, 10.1039/b005601o.
Ewing, R., A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:3 (2001), 515–529, 10.1016/S0039-9140(00)00565-8.
Fan, R.-J., Zhang, F., Chen, X.-P., Qi, W.-S., Guan, Q., Sun, T.-Q., Guo, Y.-L., High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry. Anal. Chim. Acta 961 (2017), 82–90, 10.1016/j.aca.2017.01.036.
Fernandez-Lima, F.A., Kaplan, D.A., Park, M.A., Note: integration of trapped ion mobility spectrometry with mass spectrometry. Rev. Sci. Instrum., 82(12), 2011, 126106, 10.1063/1.3665933.
Focant, J.-F., Pirard, C., Eppe, G., De Pauw, E., Recent advances in mass spectrometric measurement of dioxins. J. Chromatogr. A 1067:1–2 (2005), 265–275, 10.1016/j.chroma.2004.10.095.
Focant, J.-F., Eppe, G., Scippo, M.-L., Massart, A.-C., Pirard, C., Maghuin-Rogister, G., Pauw, E.D., Comprehensive two-dimensional gas chromatography with isotope dilution time-of-flight mass spectrometry for the measurement of dioxins and polychlorinated biphenyls in foodstuffs. J. Chromatogr. A 1086:1–2 (2005), 45–60, 10.1016/j.chroma.2005.05.090.
Gabelica, V., Marklund, E., Fundamentals of ion mobility spectrometry. Curr. Opin. Chem. Biol. 42 (2018), 51–59, 10.1016/j.cbpa.2017.10.022.
Gabelica, V., CHAPTER 1. Ion mobility–mass spectrometry: an overview. Ashcroft, A.E., Sobott, F., (eds.) New Developments in Mass Spectrometry, 2021, Royal Society of Chemistry, Cambridge, 1–25, 10.1039/9781839162886-00001.
Gonzalez De Vega, R., Cameron, A., Clases, D., Dodgen, T.M., Doble, P.A., Bishop, D.P., Simultaneous targeted and non-targeted analysis of per- and polyfluoroalkyl substances in environmental samples by liquid chromatography-ion mobility-quadrupole time of flight-mass spectrometry and mass defect analysis. J. Chromatogr. A, 1653, 2021, 462423, 10.1016/j.chroma.2021.462423.
Goscinny, S., Joly, L., De Pauw, E., Hanot, V., Eppe, G., Travelling-wave ion mobility time-of-flight mass spectrometry as an alternative strategy for screening of multi-class pesticides in fruits and vegetables. J. Chromatogr. A 1405 (2015), 85–93, 10.1016/j.chroma.2015.05.057.
Handy, R., Barnett, D.A., Purves, R.W., Horlick, G., Guevremont, R., Determination of nanomolar levels of perchlorate in water by ESI-FAIMS-MS. J. Anal. At. Spectrom. 15:8 (2000), 907–911, 10.1039/b002306j.
Hinnenkamp, V., Klein, J., Meckelmann, S.W., Balsaa, P., Schmidt, T.C., Schmitz, O.J., Comparison of CCS values determined by traveling wave ion mobility mass spectrometry and drift tube ion mobility mass spectrometry. Anal. Chem. 90:20 (2018), 12042–12050, 10.1021/acs.analchem.8b02711.
Hinnenkamp, V., Balsaa, P., Schmidt, T.C., Quantitative screening and prioritization based on UPLC-IM-Q-TOF-MS as an alternative water sample monitoring strategy. Anal. Bioanal. Chem. 411:23 (2019), 6101–6110, 10.1007/s00216-019-01994-w.
Kanu, A.B., Hill, H.H., Ion mobility spectrometry detection for gas chromatography. J. Chromatogr. A 1177:1 (2008), 12–27, 10.1016/j.chroma.2007.10.110.
Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., Hill, H.H., Ion mobility–mass spectrometry. J. Mass Spectrom. 43:1 (2008), 1–22, 10.1002/jms.1383.
Lay, J.O., Liyanage, R., Gidden, J.A., The development of a high‐resolution mass spectrometry method for ultra‐trace analysis of chlorinated dioxins in environmental and biological samples including Viet Nam era veterans. Mass Spectrom. Rev. 40:3 (2021), 236–254, 10.1002/mas.21639.
Lerner, R., Baker, D., Schwitter, C., Neuhaus, S., Hauptmann, T., Post, J.M., Kramer, S., Bindila, L., Four-dimensional trapped ion mobility spectrometry lipidomics for high throughput clinical profiling of human blood samples. Nat. Commun., 14(1), 2023, 937, 10.1038/s41467-023-36520-1.
L'Homme, B., Scholl, G., Eppe, G., Focant, J.-F., Validation of a gas chromatography–triple Quadrupole mass spectrometry method for confirmatory analysis of dioxins and dioxin-like polychlorobiphenyls in feed following new EU regulation 709/2014. J. Chromatogr. A 1376 (2015), 149–158, 10.1016/j.chroma.2014.12.013.
Mäkinen, M.A., Anttalainen, O.A., Sillanpää, M.E.T., Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal. Chem. 82:23 (2010), 9594–9600, 10.1021/ac100931n.
Menger, F., Celma, A., Schymanski, E.L., Lai, F.Y., Bijlsma, L., Wiberg, K., Hernández, F., Sancho, J.V., Ahrens, L., Enhancing spectral quality in complex environmental matrices: supporting suspect and non-target screening in zebra mussels with ion mobility. Environ. Int., 170, 2022, 107585, 10.1016/j.envint.2022.107585.
Michelmann, K., Silveira, J.A., Ridgeway, M.E., Park, M.A., Fundamentals of trapped ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 26:1 (2015), 14–24, 10.1007/s13361-014-0999-4.
Moehnke, K., Kemp, J., Campbell, M.R., Singh, R.J., Tebo, A.E., Maus, A., Using differential mobility spectrometry to improve the specificity of targeted measurements of 2,3-Dinor 11β-Prostaglandin F2α. Clin. Biochem., 126, 2024, 110745, 10.1016/j.clinbiochem.2024.110745.
Muller, H.B., Scholl, G., Far, J., De Pauw, E., Eppe, G., Sliding windows in ion mobility (SWIM): a new approach to increase the resolving power in trapped ion mobility-mass spectrometry hyphenated with chromatography. Anal. Chem. 95:48 (2023), 17586–17594, 10.1021/acs.analchem.3c03039.
Oranzi, N.R., Lei, J., Kemperman, R.H.J., Chouinard, C.D., Holmquist, B., Garrett, T.J., Yost, R.A., Rapid quantitation of 25-Hydroxyvitamin D2 and D3 in human serum using liquid chromatography/drift tube ion mobility-mass spectrometry. Anal. Chem. 91:21 (2019), 13555–13561, 10.1021/acs.analchem.9b02683.
Palm, E.H., Engelhardt, J., Tshepelevitsh, S., Weiss, J., Kruve, A., Gas phase reactivity of isomeric hydroxylated polychlorinated biphenyls. J. Am. Soc. Mass Spectrom. 35:5 (2024), 1021–1029, 10.1021/jasms.4c00035.
Mass spectrometry in food and environmental chemistry. Picó, Y., Campo, J., (eds.) The Handbook of Environmental Chemistry, 119, 2023, Springer International Publishing, Cham, 10.1007/978-3-031-19093-3.
Ray, J.A., Kushnir, M.M., Yost, R.A., Rockwood, A.L., Wayne Meikle, A., Performance enhancement in the measurement of 5 endogenous steroids by LC–MS/MS combined with differential ion mobility spectrometry. Clin. Chim. Acta 438 (2015), 330–336, 10.1016/j.cca.2014.07.036.
Regueiro, J., Negreira, N., Berntssen, M.H.G., Ion-mobility-derived collision cross section as an additional identification point for multiresidue screening of pesticides in fish feed. Anal. Chem. 88:22 (2016), 11169–11177, 10.1021/acs.analchem.6b03381.
Shi, Y., Jin, H.-F., Shi, M.-Z., Cao, J., Ye, L.-H., Carbon black-assisted miniaturized solid-phase extraction of carbamate residues from ginger by supercritical fluid chromatography combined with ion mobility quadrupole time-of-flight mass spectrometry. Microchem. J., 194, 2023, 109335, 10.1016/j.microc.2023.109335.
Shi, Y., Jin, H.-F., Ma, X.-R., Cao, J., Highly sensitive determination of multiple pesticide residues in foods by supercritical fluid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Food Res. Int., 175, 2024, 113769, 10.1016/j.foodres.2023.113769.
Silveira, J.A., Michelmann, K., Ridgeway, M.E., Park, M.A., Fundamentals of trapped ion mobility spectrometry part II: fluid dynamics. J. Am. Soc. Mass Spectrom. 27:4 (2016), 585–595, 10.1007/s13361-015-1310-z.
Silveira, J.A., Ridgeway, M.E., Laukien, F.H., Mann, M., Park, M.A., Parallel accumulation for 100% duty cycle trapped ion mobility-mass spectrometry. Int. J. Mass Spectrom. 413 (2017), 168–175, 10.1016/j.ijms.2016.03.004.
Song, X.-C., Canellas, E., Dreolin, N., Goshawk, J., Lv, M., Qu, G., Nerin, C., Jiang, G., Application of ion mobility spectrometry and the derived collision cross section in the analysis of environmental organic micropollutants. Environ. Sci. Technol. 57:51 (2023), 21485–21502, 10.1021/acs.est.3c03686.
Ten Dam, G., Pussente, I.C., Scholl, G., Eppe, G., Schaechtele, A., Van Leeuwen, S., The performance of atmospheric pressure gas chromatography–tandem mass spectrometry compared to gas chromatography–high resolution mass spectrometry for the analysis of polychlorinated dioxins and polychlorinated biphenyls in food and feed samples. J. Chromatogr. A 1477 (2016), 76–90, 10.1016/j.chroma.2016.11.035.
Working Group for Measurement Uncertainty in PCDD/F and PCB Analysis. Guidance Document on Measurement Uncertainty for Laboratories Performing PCDD/F and PCB Analysis Using Isotope Dilution Mass Spectrometry. 2017.
Yan, M., Zhang, N., Li, X., Xu, J., Lei, H., Ma, Q., Integrating post-ionization separation via differential mobility spectrometry into direct analysis in real time mass spectrometry for toy safety screening. Anal. Chem. 96:1 (2024), 265–271, 10.1021/acs.analchem.3c03915.
Zheng, X., Wojcik, R., Zhang, X., Ibrahim, Y.M., Burnum-Johnson, K.E., Orton, D.J., Monroe, M.E., Moore, R.J., Smith, R.D., Baker, E.S., Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Annu. Rev. Anal. Chem. 10:1 (2017), 71–92, 10.1146/annurev-anchem-061516-045212.
Zheng, X., Dupuis, K.T., Aly, N.A., Zhou, Y., Smith, F.B., Tang, K., Smith, R.D., Baker, E.S., Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal. Chim. Acta 1037 (2018), 265–273, 10.1016/j.aca.2018.02.054.