[en] The guanosine triphosphatase (GTPase) activity of the mitochondrial dynamin-related protein Optic Atrophy 1 (OPA1) regulates cristae remodeling, cytochrome c release, and apoptosis. Elevated OPA1 levels in multiple cancers correlate with reduced therapy sensitivity and poor survival, calling for specific OPA1 GTPase inhibitors. A high-throughput screening of ~10,000 compounds identified MYLS22, a heterocyclic N-pyrazole derivative as a reversible, noncompetitive OPA1 GTPase inhibitor. MYLS22 engaged with OPA1 in vitro and in cells where it induced cristae remodeling and mitochondrial fragmentation contingent on intactness of its predicted OPA1 binding site. MYLS22 enhanced proapoptotic cytochrome c release and sensitized breast adenocarcinoma cells to anti-Bcl-2 therapy, without toxicity on noncancer cells. By MYLS22 structure-activity relationship studies, we obtained Opa1 inhibitor 0 (Opitor-0) that inhibited OPA1, promoted cytochrome c release, and restored anti-Bcl-2 therapy sensitivity more efficiently than MYLS22. These chemical probes validate OPA1 as a therapeutic target to increase cancer cell apoptosis at the mitochondrial level.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Pellattiero, Anna ; Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy ; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
Quirin, Charlotte; Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy ; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
Magrin, Federico ; Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy ; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy ; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
Sturlese, Mattia ; Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
Fracasso, Alberto ; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
Biris, Nikolaos ; Departments of Biochemistry and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
Herkenne, Stéphanie ; Université de Liège - ULiège > Département des sciences de la vie ; Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy ; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
Cendron, Laura ; Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
Gavathiotis, Evripidis ; Departments of Biochemistry and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
Moro, Stefano ; Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
Mattarei, Andrea ; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
Scorrano, Luca ; Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy ; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
Language :
English
Title :
Small molecule OPA1 inhibitors amplify cytochrome c release and reverse cancer cells resistance to Bcl-2 inhibitors.
Publication date :
04 July 2025
Journal title :
Science Advances
eISSN :
2375-2548
Publisher :
American Association for the Advancement of Science (AAAS), United States
A. Kasahara, L. Scorrano, Mitochondria: From cell death executioners to regulators of cell differentiation. Trends Cell Biol. 24, 761–770 (2014).
D. Hanahan, R. A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).
A. Kasahara, S. Cipolat, Y. Chen, G. W. Dorn, L. Scorrano, Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 342, 734–737 (2013).
L. C. Gomes, B. G. Di, L. Scorrano, During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589–598 (2011).
M. Sciacovelli, E. Goncalves, T. I. Johnson, V. R. Zecchini, A. S. da Costa, E. Gaude, A. V. Drubbel, S. J. Theobald, S. R. Abbo, M. G. Tran, V. Rajeeve, S. Cardaci, S. Foster, H. Yun, P. Cutillas, A. Warren, V. Gnanapragasam, E. Gottlieb, K. Franze, B. Huntly, E. R. Maher, P. H. Maxwell, J. Saez-Rodriguez, C. Frezza, Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).
S. Campello, R. A. Lacalle, M. Bettella, S. Manes, L. Scorrano, A. Viola, Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med. 203, 2879–2886 (2006).
L. Pernas, L. Scorrano, Mito-morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu. Rev. Physiol. 78, 505–531 (2016).
B. Zhivotovsky, S. Orrenius, O. T. Brustugun, S. O. Doskeland, Injected cytochrome c induces apoptosis. Nature 391, 449–450 (1998).
S. Cipolat, O. Martins. de Brito, B. Dal Zilio, L. Scorrano, OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U.S.A. 101, 15927–15932 (2004).
S. Cogliati, J. A. Enriquez, L. Scorrano, Mitochondrial cristae: Where beauty meets functionality. Trends Biochem. Sci. 41, 261–273 (2016).
C. Frezza, S. Cipolat, O. Martins. de Brito, M. Micaroni, G. V. Beznoussenko, T. Rudka, D. Bartoli, R. S. Polishuck, N. N. Danial, B. De Strooper, L. Scorrano, OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).
R. Yamaguchi, L. Lartigue, G. Perkins, R. T. Scott, A. Dixit, Y. Kushnareva, T. Kuwana, M. H. Ellisman, D. D. Newmeyer, Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol. Cell 31, 557–569 (2008).
T. Landes, L. J. Emorine, D. Courilleau, M. Rojo, P. Belenguer, L. Arnaune-Pelloquin, The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep. 11, 459–465 (2010).
L. Scorrano, M. Ashiya, K. Buttle, S. Weiler, S. A. Oakes, C. A. Mannella, S. J. Korsmeyer, A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55–67 (2002).
S. Cogliati, C. Frezza, M. E. Soriano, T. Varanita, R. Quintana-Cabrera, M. Corrado, S. Cipolat, V. Costa, A. Casarin, L. C. Gomes, E. Perales-Clemente, L. Salviati, P. Fernandez-Silva, J. A. Enriquez, L. Scorrano, Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171 (2013).
J. Qian, P. P. Massion, Role of chromosome 3q amplification in lung cancer. J. Thorac. Oncol. 3, 212–215 (2008).
G. R. Anderson, S. E. Wardell, M. Cakir, C. Yip, Y.-R. Ahn, M. Ali, A. P. Yllanes, C. A. Chao, D. P. McDonnell, K. C. Wood, Dysregulation of mitochondrial dynamics proteins are a targetable feature of human tumors. Nat. Commun. 9, 1677 (2018).
Y. Wee, Y. Liu, J. Lu, X. Li, M. Zhao, Identification of novel prognosis-related genes associated with cancer using integrative network analysis. Sci. Rep. 8, 3233 (2018).
H. Y. Fang, C. Y. Chen, S. H. Chiou, Y. T. Wang, T. Y. Lin, H. W. Chang, I. P. Chiang, K. J. Lan, K. C. Chow, Overexpression of optic atrophy 1 protein increases cisplatin resistance via inactivation of caspase-dependent apoptosis in lung adenocarcinoma cells. Hum. Pathol. 43, 105–114 (2012).
X. Zhao, C. Tian, W. M. Puszyk, O. O. Ogunwobi, M. Cao, T. Wang, R. Cabrera, D. R. Nelson, C. Liu, OPA1 downregulation is involved in sorafenib-induced apoptosis in hepatocellular carcinoma. Lab. Invest. 93, 8–19 (2013).
B. Kong, Q. Wang, E. Fung, K. Xue, B. K. Tsang, p53 is required for cisplatin-induced processing of the mitochondrial fusion protein L-Opa1 that is mediated by the mitochondrial metallopeptidase Oma1 in gynecologic cancers. J. Biol. Chem. 289, 27134–27145 (2014).
X. Chen, C. Glytsou, H. Zhou, S. Narang, D. E. Reyna, A. Lopez, T. Sakellaropoulos, Y. Gong, A. Kloetgen, Y. S. Yap, E. Wang, E. Gavathiotis, A. Tsirigos, R. Tibes, I. Aifantis, Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer Discov. 9, 890–909 (2019).
S. Herkenne, O. Ek, M. Zamberlan, A. Pellattiero, M. Chergova, I. Chivite, E. Novotná, G. Rigoni, T. B. Fonseca, D. Samardzic, A. Agnellini, C. Bean, G. Di Benedetto, N. Tiso, F. Argenton, A. Viola, M. E. Soriano, M. Giacomello, E. Ziviani, G. Sales, M. Claret, M. Graupera, L. Scorrano, Developmental and tumor angiogenesis requires the mitochondria-shaping protein Opa1. Cell Metab. 31, 987–1003.e1008 (2020).
M. Zamberlan, A. Boeckx, F. Muller, F. Vinelli, O. Ek, C. Vianello, E. Coart, K. Shibata, A. Christian, F. Grespi, M. Giacomello, I. Struman, L. Scorrano, S. Herkenne, Inhibition of the mitochondrial protein Opa1 curtails breast cancer growth. J. Exp. Clin. Cancer Res. 41, 95 (2022).
M. L. Baek, J. Lee, K. E. Pendleton, M. J. Berner, E. B. Goff, L. Tan, S. A. Martinez, I. Mahmud, T. Wang, M. D. Meyer, B. Lim, J. P. Barrish, W. Porter, P. L. Lorenzi, G. V. Echeverria, Mitochondrial structure and function adaptation in residual triple negative breast cancer cells surviving chemotherapy treatment. Oncogene 42, 1117–1131 (2023).
M. Noguchi, S. Kohno, A. Pellattiero, Y. Machida, K. Shibata, N. Shintani, T. Kohno, N. Gotoh, C. Takahashi, A. Hirao, L. Scorrano, A. Kasahara, Inhibition of the mitochondria-shaping protein Opa1 restores sensitivity to Gefitinib in a lung adenocarcinomaresistant cell line. Cell Death Dis. 14, 241 (2023).
C. Larrue, S. Mouche, S. Lin, F. Simonetta, N. K. Scheidegger, L. Poulain, R. Birsen, J. E. Sarry, K. Stegmaier, J. Tamburini, Mitochondrial fusion is a therapeutic vulnerability of acute myeloid leukemia. Leukemia 37, 765–775 (2023).
R. Quintana-Cabrera, C. Quirin, C. Glytsou, M. Corrado, A. Urbani, A. Pellattiero, E. Calvo, J. Vázquez, J. A. Enríquez, C. Gerle, M. E. Soriano, P. Bernardi, L. Scorrano, The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function. Nat. Commun. 9, 3399 (2018).
A. Cassidy-Stone, J. E. Chipuk, E. Ingerman, C. Song, C. Yoo, T. Kuwana, M. J. Kurth, J. T. Shaw, J. E. Hinshaw, D. R. Green, J. Nunnari, Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell 14, 193–204 (2008).
M. Leonard, B. Doo Song, R. Ramachandran, S. L. Schmid, “Robust colorimetric assays for dynamin’s basal and stimulated GTPase activities” in Methods in Enzymology (Academic Press, 2005), vol. 404, pp. 490–503.
X. D. Zhang, A pair of new statistical parameters for quality control in RNA interference high-throughput screening assays. Genomics 89, 552–561 (2007).
K. B. Teuscher, M. Zhang, H. Ji, A versatile method to determine the cellular bioavailability of small-molecule inhibitors. J. Med. Chem. 60, 157–169 (2017).
C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).
W. A. Irwin, N. Bergamin, P. Sabatelli, C. Reggiani, A. Megighian, L. Merlini, P. Braghetta, M. Columbaro, D. Volpin, G. M. Bressan, P. Bernardi, P. Bonaldo, Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat. Genet. 35, 367–371 (2003).
H. Chen, A. Chomyn, D. C. Chan, Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192 (2005).
Z. Song, H. Chen, M. Fiket, C. Alexander, D. C. Chan, OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol. 178, 749–755 (2007).
T. Ban, T. Ishihara, H. Kohno, S. Saita, A. Ichimura, K. Maenaka, T. Oka, K. Mihara, N. Ishihara, Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat. Cell Biol. 19, 856–863 (2017).
H. Lee, S. B. Smith, Y. Yoon, The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J. Biol. Chem. 292, 7115–7130 (2017).
D. M. Molina, R. Jafari, M. Ignatushchenko, T. Seki, E. A. Larsson, C. Dan, L. Sreekumar, Y. Cao, P. Nordlund, Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).
R. Jafari, H. Almqvist, H. Axelsson, M. Ignatushchenko, T. Lundbäck, P. Nordlund, D. M. Molina, The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122 (2014).
F. B. M. Reinhard, D. Eberhard, T. Werner, H. Franken, D. Childs, C. Doce, M. F. Savitski, W. Huber, M. Bantscheff, M. M. Savitski, G. Drewes, Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat. Methods 12, 1129–1131 (2015).
A. Olichon, L. Baricault, N. Gas, E. Guillou, A. Valette, P. Belenguer, G. Lenaers, Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743–7746 (2003).
Y. J. Lee, S. Y. Jeong, M. Karbowski, C. L. Smith, R. J. Youle, Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001–5011 (2004).
A. Olichon, T. Landes, L. Arnaune-Pelloquin, L. J. Emorine, V. Mils, A. Guichet, C. Delettre, C. Hamel, P. Amati-Bonneau, D. Bonneau, P. Reynier, G. Lenaers, P. Belenguer, Effects of OPA1 mutations on mitochondrial morphology and apoptosis: Relevance to ADOA pathogenesis. J. Cell Physiol. 211, 423–430 (2007).
L. Scorrano, S. A. Oakes, J. T. Opferman, E. H. Cheng, M. D. Sorcinelli, T. Pozzan, S. J. Korsmeyer, BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science 300, 135–139 (2003).
C. Liedtke, C. Mazouni, K. R. Hess, F. Andre, A. Tordai, J. A. Mejia, W. F. Symmans, A. M. Gonzalez-Angulo, B. Hennessy, M. Green, M. Cristofanilli, G. N. Hortobagyi, L. Pusztai, Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26, 1275–1281 (2008).
L. M. High, B. Szymanska, U. Wilczynska-Kalak, N. Barber, R. O’Brien, S. L. Khaw, I. B. Vikstrom, A. W. Roberts, R. B. Lock, The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol. Pharmacol. 77, 483–494 (2010).
J. Kuroda, S. Kimura, M. Andreeff, E. Ashihara, Y. Kamitsuji, A. Yokota, E. Kawata, M. Takeuchi, R. Tanaka, Y. Murotani, Y. Matsumoto, H. Tanaka, A. Strasser, M. Taniwaki, T. Maekawa, ABT-737 is a useful component of combinatory chemotherapies for chronic myeloid leukaemias with diverse drug-resistance mechanisms. Br. J. Haematol. 140, 181–190 (2008).
O. Kutuk, A. Letai, Alteration of the mitochondrial apoptotic pathway is key to acquired paclitaxel resistance and can be reversed by ABT-737. Cancer Res. 68, 7985–7994 (2008).
L. Griparic, N. N. van der Wel, I. J. Orozco, P. J. Peters, A. M. van der Bliek, Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J. Biol. Chem. 279, 18792–18798 (2004).
V. Del Dotto, P. Mishra, S. Vidoni, M. Fogazza, A. Maresca, L. Caporali, J. M. McCaffery, M. Cappelletti, E. Baruffini, G. Lenaers, D. Chan, M. Rugolo, V. Carelli, C. Zanna, OPA1 isoforms in the hierarchical organization of mitochondrial functions. Cell Rep. 19, 2557–2571 (2017).
E. A. Bordt, P. Clerc, B. A. Roelofs, A. J. Saladino, L. Tretter, V. Adam-Vizi, E. Cherok, A. Khalil, N. Yadava, S. X. Ge, T. C. Francis, N. W. Kennedy, L. K. Picton, T. Kumar, S. Uppuluri, A. M. Miller, K. Itoh, M. Karbowski, H. Sesaki, R. B. Hill, B. M. Polster, The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species: Developmental cell. Dev. Cell 40, 583–594.e6 (2017).
S. K. Hwang, A. Minai-Tehrani, K. N. Yu, S. H. Chang, J. E. Kim, K. H. Lee, J. Park, G. R. Beck, M. H. Cho, Carboxyl-terminal modulator protein induces apoptosis by regulating mitochondrial function in lung cancer cells. Int. J. Oncol. 40, 1515–1524 (2012).
A. Pellattiero, “Pharmacological modulation of mitochondrial dynamics: Identification of a specific OPA1 inhibitor to enhance apoptotic release of cytochrome c,” thesis, University of Padova, Padova (2019).
C. Yu, J. Zhao, L. Yan, Y. Qi, X. Guo, Z. Lou, J. Hu, Z. Rao, Structural insights into G domain dimerization and pathogenic mutation of OPA1. J. Cell Biol. 219, e201907098 (2020).
O. Korb, T. Stützle, T. E. Exner, paper presented at the Proceedings of the 5th international conference on Ant Colony Optimization and Swarm Intelligence, Brussels, Belgium, 2006.
Chemical Computing Group (CCG), MOE suite (CCG, 2025).
M. Mayer, B. Meyer, Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 38, 1784–1788 (1999).
C. Dalvit, P. Pevarello, M. Tatò, M. Veronesi, A. Vulpetti, M. Sundström, Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J. Biomol. NMR 18, 65–68 (2000).
M. Zaninello, K. Palikaras, D. Naon, K. Iwata, S. Herkenne, R. Quintana-Cabrera, M. Semenzato, F. Grespi, F. N. Ross-Cisneros, V. Carelli, A. A. Sadun, N. Tavernarakis, L. Scorrano, Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy. Nat. Commun. 11, 4029 (2020).
C. Vianello, F. Dal Bello, S. H. Shin, S. Schiavon, C. Bean, A. P. Magalhães Rebelo, T. Knedlík, E. N. Esfahani, V. Costiniti, R. S. Lacruz, G. Covello, F. Munari, T. Scolaro, A. Viola, E. Rampazzo, L. Persano, S. Zumerle, L. Scorrano, A. Gianelle, M. Giacomello, High-throughput microscopy analysis of mitochondrial membrane potential in 2D and 3D models. Cells 12, 1089 (2023).
C. Frezza, S. Cipolat, L. Scorrano, Organelle isolation: Functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2, 287–295 (2007).
L. Scorrano, S. J. Korsmeyer, Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys. Res. Commun. 304, 437–444 (2003).
C. Frezza, S. Cipolat, L. Scorrano, Measuring mitochondrial shape changes and their consequences on mitochondrial involvement during apoptosis. Methods Mol. Biol. 372, 405–420 (2007).
V. Petronilli, D. Penzo, L. Scorrano, P. Bernardi, F. Di Lisa, The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J. Biol. Chem. 276, 12030–12034 (2001).
A. Quan, P. J. Robinson, Rapid purification of native dynamin I and colorimetric GTPase assay. Methods Enzymol. 404, 556–569 (2005).