[en] The connection between the maximum entropy (MaxEnt) formalism and restricted Boltzmann machines (RBMs) is natural as both give rise to a Boltzmann-like distribution with constraints enforced by Lagrange multipliers, which correspond to RBM parameters. We integrate RBMs into quantum state tomography by using them as probabilistic models to approximate quantum states while satisfying MaxEnt constraints. Additionally, we employ polynomially efficient quantum sampling techniques to enhance RBM training, enabling scalable and high-fidelity quantum state reconstruction. This approach provides a computationally efficient framework for applying RBMs to MaxEnt-based quantum tomography. Furthermore, our method applies to the general and previously unaddressed case of reconstructing arbitrary mixed quantum states from incomplete and potentially noncommuting sets of expectations of observables while still ensuring maximal entropy.
Disciplines :
Chemistry
Author, co-author :
Singh, Vinit; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
Gupta, Rishabh; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
Sajjan, Manas; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Levine, Raphael D; The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Kais, Sabre ; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
Language :
English
Title :
Maximal Entropy Formalism and the Restricted Boltzmann Machine.
S.K. would like to acknowledge that this material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers program under Award Number DE-SC0025620.
Levine, R. D. Molecular Reaction Dynamics; Cambridge University Press, 2009; p 570.
Alhassid, Y.; Levine, R. D. Connection between the maximal entropy and the scattering theoretic analyses of collision processes. Phys. Rev. A 1978, 18, 89, 10.1103/PhysRevA.18.89
Komarova, K.; Remacle, F.; Levine, R. D. Surprisal of a quantum state: Dynamics, compact representation, and coherence effects. J. Chem. Phys. 2020, 153, 214105, 10.1063/5.0030272
Komarova, K.; Remacle, F.; Levine, R. D. Compacting the density matrix in quantum dynamics: Singular value decomposition of the surprisal and the dominant constraints for anharmonic systems. J. Chem. Phys. 2021, 155, 204110, 10.1063/5.0072351
Blavier, M.; Gelfand, N.; Levine, R.; Remacle, F. Entanglement of electrons and nuclei: A most compact representation of the molecular wave function. Chem. Phys. Lett. 2022, 804, 139885 10.1016/j.cplett.2022.139885
Jaynes, E. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, 2003.
Jaynes, E. T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620, 10.1103/PhysRev.106.620
Levine, R. D.; Tribus, M. Maximum Entropy Formalism; MIT Press: Cambridge, Massachusetts, USA, 1979.
Agmon, N.; Alhassid, Y.; Levine, R. D. An Algorithm for Finding the Distribution of Maximal Entropy. J. Comput. Phys. 1979, 30, 250, 10.1016/0021-9991(79)90102-5
Gupta, R.; Xia, R.; Levine, R. D.; Kais, S. Maximal entropy approach for quantum state tomography. PRX Quantum 2021, 2, 010318 10.1103/PRXQuantum.2.010318
Gupta, R.; Levine, R. D.; Kais, S. Convergence of a reconstructed density matrix to a pure state using the maximal entropy approach. J. Phys. Chem. A 2021, 125, 7588, 10.1021/acs.jpca.1c05884
Gupta, R.; Sajjan, M.; Levine, R. D.; Kais, S. Variational approach to quantum state tomography based on maximal entropy formalism. Phys. Chem. Chem. Phys. 2022, 24, 28870, 10.1039/D2CP04493E
Makhija, V.; Gupta, R.; Neville, S.; Schuurman, M.; Francisco, J.; Kais, S. Time resolved quantum tomography in molecular spectroscopy by the maximal entropy approach. J. Phys. Chem. Lett. 2024, 15, 9525, 10.1021/acs.jpclett.4c02368
Hamilton, J. R.; Remacle, F.; Levine, R. D. Compacting the time evolution of the forced morse oscillator using dynamical symmetries derived by an algebraic wei-norman approach. J. Chem. Theory Comput. 2025, 21, 4347- 4356, 10.1021/acs.jctc.5c00148
Sharir, O.; Shashua, A.; Carleo, G. Neural tensor contractions and the expressive power of deep neural quantum states. Phys. Rev. B 2022, 106, 205136 10.1103/PhysRevB.106.205136
Sajjan, M.; Singh, V.; Kais, S. Polynomially efficient quantum enabled variational monte carlo for training neural-network quantum states for physico-chemical applications. arXiv 2024, 10.48550/arXiv.2412.12398
Katz, A. Principles of statistical mechanics: the information theory approach; W. H. Freeman, 1967.
Levine, R. Statistical dynamics. In Theory of Chemical Reaction Dynamics; D. Reidel Publishing Company, 1985; Vol. 4, p 1.
Wang, Z.; Davis, E. J. Calculating rényi entropies with neural autoregressive quantum states. Phys. Rev. A 2020, 102, 062413 10.1103/PhysRevA.102.062413
Levine, R. D. Chemical reaction dynamics-the study of molecular reactivity and disequilibrium. Bull. Chem. Soc. Jpn. 1988, 61, 29, 10.1246/bcsj.61.29
Hamilton, J. R.; Levine, R. D.; Remacle, F. Constructing dynamical symmetries for quantum computing: Applications to coherent dynamics in coupled quantum dots. Nanomaterials 2024, 14, 2056, 10.3390/nano14242056
Tishby, N.; Levine, R. Time evolution via a self-consistent maximal-entropy propagation: the reversible case. Phys. Rev. A 1984, 30, 1477, 10.1103/PhysRevA.30.1477
Hastings, M. B.; González, I.; Kallin, A. B.; Melko, R. G. Measuring renyi entanglement entropy in quantum monte carlo simulations. Physical review letters 2010, 104, 157201 10.1103/PhysRevLett.104.157201
Gross, D.; Liu, Y.-K.; Flammia, S. T.; Becker, S.; Eisert, J. Quantum state tomography via compressed sensing. Physical review letters 2010, 105, 150401 10.1103/PhysRevLett.105.150401
Torlai, G.; Mazzola, G.; Carrasquilla, J.; Troyer, M.; Melko, R.; Carleo, G. Neural-network quantum state tomography. Nat. Phys. 2018, 14, 447, 10.1038/s41567-018-0048-5
Quek, Y.; Fort, S.; Ng, H. K. Adaptive quantum state tomography with neural networks. npj Quantum Inf. 2021, 7, 105, 10.1038/s41534-021-00436-9
Carrasquilla, J.; Torlai, G.; Melko, R. G.; Aolita, L. Reconstructing quantum states with generative models. Nature Machine Intelligence 2019, 1, 155, 10.1038/s42256-019-0028-1
Liu, Y.; Wang, D.; Xue, S.; Huang, A.; Fu, X.; Qiang, X.; Xu, P.; Huang, H.-L.; Deng, M.; Guo, C. Variational quantum circuits for quantum state tomography. Phys. Rev. A 2020, 101, 052316 10.1103/PhysRevA.101.052316
Torlai, G.; Wood, C. J.; Acharya, A.; Carleo, G.; Carrasquilla, J.; Aolita, L. Quantum process tomography with unsupervised learning and tensor networks. Nat. Commun. 2023, 14, 2858, 10.1038/s41467-023-38332-9
Xin, T.; Nie, X.; Kong, X.; Wen, J.; Lu, D.; Li, J. Quantum pure state tomography via variational hybrid quantum-classical method. Physical Review Applied 2020, 13, 024013 10.1103/PhysRevApplied.13.024013
Xin, T.; Lu, S.; Cao, N.; Anikeeva, G.; Lu, D.; Li, J.; Long, G.; Zeng, B. Local-measurement-based quantum state tomography via neural networks. npj Quantum Inf. 2019, 5, 109, 10.1038/s41534-019-0222-3
Torlai, G.; Timar, B.; Van Nieuwenburg, E. P.; Levine, H.; Omran, A.; Keesling, A.; Bernien, H.; Greiner, M.; Vuletić, V.; Lukin, M. D. Integrating neural networks with a quantum simulator for state reconstruction. Physical review letters 2019, 123, 230504 10.1103/PhysRevLett.123.230504
Schmale, T.; Reh, M.; Gärttner, M. Efficient quantum state tomography with convolutional neural networks. npj Quantum Inf. 2022, 8, 115, 10.1038/s41534-022-00621-4
Ma, H.; Sun, Z.; Dong, D.; Chen, C.; Rabitz, H. Tomography of quantum states from structured measurements via quantum-aware transformer. IEEE Trans. Cybern 2025, 55, 2571- 2582, 10.1109/TCYB.2025.3556466
An, Z.; Wu, J.; Yang, M.; Zhou, D. L.; Zeng, B. Unified quantum state tomography and hamiltonian learning: A language-translation-like approach for quantum systems. Phys. Rev. Appl. 2024, 21, 014037 10.1103/PhysRevApplied.21.014037
Flammia, S. T.; Gross, D.; Liu, Y.-K.; Eisert, J. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 2012, 14, 095022 10.1088/1367-2630/14/9/095022
Kalev, A.; Kosut, R. L.; Deutsch, I. H. Quantum tomography protocols with positivity are compressed sensing protocols. npj Quantum Inf. 2015, 1, 15018, 10.1038/npjqi.2015.18
Kyrillidis, A.; Kalev, A.; Park, D.; Bhojanapalli, S.; Caramanis, C.; Sanghavi, S. Provable compressed sensing quantum state tomography via non-convex methods. npj Quantum Inf. 2018, 4, 36, 10.1038/s41534-018-0080-4