[en] Female fertility and reproductive health depend on a series of developmental steps from embryogenesis through puberty, in addition to the proper functioning of the reproductive system in adulthood. Two important steps are the establishment of the ovarian reserve and development of the hypothalamic-pituitary-ovarian axis. During reproductive years, maintaining an adequate ovarian reserve of follicles as well as balanced neuroendocrine control of reproductive organs is crucial for fertility. Dysregulation of either of these events, during development or in adulthood, can lead to reproductive disorders. Over the past five decades, human fertility rates have declined, whereas the incidence of female reproductive disorders has risen, trends partially linked to environmental factors such as exposure to endocrine-disrupting chemicals (EDCs). Here we outline epidemiological and mechanistic evidence for how EDCs affect the ovarian reserve during early development, its maintenance during adulthood and the establishment of the hypothalamic-pituitary control of puberty and ovulation. Our Review not only reveals strong support for the role of EDC exposure in the development of female reproductive disorders such as abnormal puberty, impaired fertility, premature menopause or polycystic ovarian syndrome, but also highlights knowledge gaps, including the difficulty to prove causality between exposure and human disease manifestation.
Disciplines :
Endocrinology, metabolism & nutrition Pediatrics
Author, co-author :
Parent, Anne-Simone ; Université de Liège - ULiège > Département des sciences cliniques > Pédiatrie
Damdimopoulou, Pauliina; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Sweden. ; Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
Johansson, Hanna K L; National Food Institute, Technical University of Denmark, Lyngby, Denmark.
Bouftas, Nora ; Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Draskau, Monica K; National Food Institute, Technical University of Denmark, Lyngby, Denmark.
Franssen, Delphine ; Université de Liège - ULiège > Département des sciences cliniques > Pédiatrie
Fudvoye, Julie ; Université de Liège - ULiège > Département des sciences de la santé publique
van Duursen, Majorie; Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Svingen, Terje ; National Food Institute, Technical University of Denmark, Lyngby, Denmark.
Language :
English
Title :
Endocrine-disrupting chemicals and female reproductive health: a growing concern.
C. Eckert-Lind et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls JAMA Pediatr. 174 32040143 7042934 10.1001/jamapediatrics.2019.5881 e195881
S.Y. Euling et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings Pediatrics 121 S172 S191 18245511 10.1542/peds.2007-1813D
A.-S. Parent et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration Endocr. Rev. 24 668 693 14570750 10.1210/er.2002-0019
A.-S. Parent D. Franssen J. Fudvoye A. Gérard J.-P. Bourguignon Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: revision of human observations and mechanistic insight from rodents Front. Neuroendocrinol. 38 12 36 1:CAS:528:DC%2BC2MXhtFGqsrs%3D 25592640 10.1016/j.yfrne.2014.12.004
E.V. Bräuner et al. Trends in the incidence of central precocious puberty and normal variant puberty among children in Denmark, 1998 to 2017 JAMA Netw. Open 3 33044548 7550972 10.1001/jamanetworkopen.2020.15665 e2015665
H. Huttunen et al. Central precocious puberty in boys: secular trend and clinical features Eur. J. Endocrinol. 190 211 219 38523472 10.1093/ejendo/lvae021
F. Chiaffarino et al. Prevalence of polycystic ovary syndrome in European countries and USA: a systematic review and meta-analysis Eur. J. Obstet. Gynecol. Reprod. Biol. 279 159 170 36343588 10.1016/j.ejogrb.2022.10.020
M. Li et al. The global prevalence of premature ovarian insufficiency: a systematic review and meta-analysis Climacteric 26 95 102 1:STN:280:DC%2BB28rmvVGrtg%3D%3D 36519275 10.1080/13697137.2022.2153033
O. Gliozheni et al. ART in Europe, 2016: results generated from European registries by ESHRE Hum. Reprod. Open. 2020 hoaa032 10.1093/hropen/hoaa032
N.V. Bhattacharjee et al. Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: a comprehensive demographic analysis for the global burden of disease study 2021 Lancet 403 2057 2099 10.1016/S0140-6736(24)00550-6
R.J. Aitken The changing tide of human fertility Hum. Reprod. 37 629 638 35079808 8977063 10.1093/humrep/deac011
K.L. Land F.G. Miller A.C. Fugate P.R. Hannon The effects of endocrine‐disrupting chemicals on ovarian‐ and ovulation‐related fertility outcomes Mol. Reprod. Dev. 89 608 631 1:CAS:528:DC%2BB38XivFGgurzI 36580349 10100123 10.1002/mrd.23652
A. Conforti et al. Unravelling the link between phthalate exposure and endometriosis in humans: a systematic review and meta-analysis of the literature J. Assist. Reprod. Genet. 38 2543 2557 34227050 8581146 10.1007/s10815-021-02265-3
J.H. Kim S.H. Kim Exposure to phthalate esters and the risk of endometriosis Dev. Reprod. 24 71 78 32734124 7375982 10.12717/DR.2020.24.2.71
C. Freire et al. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts Int. J. Hyg. Environ. Health 261 1:CAS:528:DC%2BB2cXhsFShtL7E 38968838 10.1016/j.ijheh.2024.114418 114418
M. Averina et al. Early menarche and other endocrine disrupting effects of per- and polyfluoroalkyl substances (PFAS) in adolescents from Northern Norway. The Fit Futures study Environ. Res. 242 1:CAS:528:DC%2BB3sXisVOru7vP 37984785 10.1016/j.envres.2023.117703 117703
S.M. Pinney et al. Exposure to perfluoroalkyl substances and associations with pubertal onset and serum reproductive hormones in a longitudinal study of young girls in greater Cincinnati and the San Francisco bay area Environ. Health Perspect. 131 97009 1:CAS:528:DC%2BB2cXlvVGktL8%3D 37751325 10.1289/EHP11811
A. Bellavia et al. Association between chemical mixtures and female fertility in women undergoing assisted reproduction in Sweden and Estonia Environ. Res. 216 1:CAS:528:DC%2BB38Xis1eiu7fO 36181890 9729501 10.1016/j.envres.2022.114447 114447
World Health Organization. Global assessment on the state of the science of endocrine disruptors. WHO https://www.who.int/publications/i/item/WHO-PSC-EDC-02.2 (2002).
A.C. Gore et al. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals Endocr. Rev. 36 E1 E150 1:STN:280:DC%2BC28zpsFGiuw%3D%3D 26544531 4702494 10.1210/er.2015-1010
Endocrine disruptor list. The Danish Environmental Protection Agency https://edlists.org/ (2024).
L.L. Lecante et al. Acetaminophen (APAP, paracetamol) interferes with the first trimester human fetal ovary development in an ex vivo model J. Clin. Endocrinol. Metab. 107 1647 1661 35147701 9113793 10.1210/clinem/dgac080
C.-J. Lin L.-A. Li Estrogenicity of major organic chemicals in cigarette sidestream smoke particulate matter Atmosphere 14 647 1:CAS:528:DC%2BB3sXpsV2rtrc%3D 10.3390/atmos14040647
H.K.L. Johansson T. Svingen P.A. Fowler A.M. Vinggaard J. Boberg Environmental influences on ovarian dysgenesis — developmental windows sensitive to chemical exposures Nat. Rev. Endocrinol. 13 400 414 28450750 10.1038/nrendo.2017.36
M.B.M. van Duursen et al. Safeguarding female reproductive health against endocrine disrupting chemicals — the FREIA project Int. J. Mol. Sci. 21 3215 32370092 7246859 10.3390/ijms21093215
M.-T. Vinnars M. Bixo P. Damdimopoulou Pregnancy-related maternal physiological adaptations and fetal chemical exposure Mol. Cell Endocrinol. 578 112064 1:CAS:528:DC%2BB3sXhvFSrsb3O 37683908 10.1016/j.mce.2023.112064
Y. Wu et al. Maternal exposure to endocrine disrupting chemicals (EDCs) and preterm birth: a systematic review, meta-analysis, and meta-regression analysis Environ. Pollut. 292 118264 1:CAS:528:DC%2BB3MXitF2ksrjN 34606968 10.1016/j.envpol.2021.118264
T. Kek K. Geršak I. Virant-Klun Exposure to endocrine disrupting chemicals (bisphenols, parabens, and triclosan) and their associations with preterm birth in humans Reprod. Toxicol. 125 108580 1:CAS:528:DC%2BB2cXmvFSgurY%3D 38522559 10.1016/j.reprotox.2024.108580
E.M. Poole M.R. Boland A national study of the associations between hormonal modulators in hydraulic fracturing fluid chemicals and birth outcomes in the United States of America: a county-level analysis Environ. Health Perspect. 132 107001 39412281 11481936 10.1289/EHP12628
B. Haydardedeoglu H.B. Zeyneloglu The impact of endometriosis on fertility Womens Health 11 619 623 1:CAS:528:DC%2BC2MXhslekur%2FJ
A. Chandrakanth S. Firdous R. Vasantharekha W. Santosh B. Seetharaman Exploring the effects of endocrine-disrupting chemicals and miRNA expression in the pathogenesis of endometriosis by unveiling the pathways: a systematic review Reprod. Sci. 31 932 941 1:CAS:528:DC%2BB3sXisFGhs7vN 38036864 10.1007/s43032-023-01412-8
L.G. Kahn C. Philippat S.F. Nakayama R. Slama L. Trasande Endocrine-disrupting chemicals: implications for human health Lancet Diabetes Endocrinol. 8 703 718 1:CAS:528:DC%2BB3cXhsVKksbfF 32707118 7437820 10.1016/S2213-8587(20)30129-7
P. Sharma H.-H. Tseng J.-Y.L. Lee E.-M. Tsai J.-L. Suen A prominent environmental endocrine disruptor, 4-nonylphenol, promotes endometriosis development via plasmacytoid dendritic cells Mol. Hum. Reprod. 26 601 614 1:CAS:528:DC%2BB3MXhvVShsbzK 32497202 10.1093/molehr/gaaa039
W.H.B. Wallace T.W. Kelsey Human ovarian reserve from conception to the menopause PLoS ONE 5 20111701 2811725 10.1371/journal.pone.0008772 e8772
A. Gougeon Dynamics of follicular growth in the human: a model from preliminary results Hum. Reprod. 1 81 87 1:STN:280:DyaL2s7ms1Kgtg%3D%3D 3558758 10.1093/oxfordjournals.humrep.a136365
Gougeon, A. in Biology and Pathology of the Oocyte (eds Trounson, A., Gosden, R. & Eichenlaub-Ritter, U.) 50–61 (Cambridge Univ. Press, 2013).
P. Monteleone G. Mascagni A. Giannini A.R. Genazzani T. Simoncini Symptoms of menopause — global prevalence, physiology and implications Nat. Rev. Endocrinol. 14 199 215 29393299 10.1038/nrendo.2017.180
S.C. Alberts et al. Reproductive aging patterns in primates reveal that humans are distinct Proc. Natl Acad. Sci. USA 110 13440 13445 1:CAS:528:DC%2BC3sXhtlCrtb3L 23898189 3746941 10.1073/pnas.1311857110
K.S. Ruth et al. Genetic insights into biological mechanisms governing human ovarian ageing Nature 596 393 397 1:CAS:528:DC%2BB3MXhslWmsrvE 34349265 7611832 10.1038/s41586-021-03779-7
T. Laisk et al. Demographic and evolutionary trends in ovarian function and aging Hum. Reprod. Update 25 34 50
D. Zhu et al. Relationships between intensity, duration, cumulative dose, and timing of smoking with age at menopause: a pooled analysis of individual data from 17 observational studies PLoS Med. 15 30481189 6258514 10.1371/journal.pmed.1002704 e1002704
D.A. Schoenaker C.A. Jackson J.V. Rowlands G.D. Mishra Socioeconomic position, lifestyle factors and age at natural menopause: a systematic review and meta-analyses of studies across six continents Int. J. Epidemiol. 43 1542 1562 24771324 4190515 10.1093/ije/dyu094
J.S.E. Laven Y.V. Louwers Can we predict menopause and premature ovarian insufficiency? Fertil. Steril. 121 737 741 38382699 10.1016/j.fertnstert.2024.02.029
D.M. Green et al. Ovarian failure and reproductive outcomes after childhood cancer treatment: results from the childhood cancer survivor study J. Clin. Oncol. 27 2374 2381 19364956 2677923 10.1200/JCO.2008.21.1839
C. Jiang et al. Birth weight and premature ovarian insufficiency: a systematic review and meta-analysis J. Ovarian Res. 17 38570862 10988833 10.1186/s13048-024-01357-9 74
C.R. Langton et al. Association of in utero exposures with risk of early natural menopause Am. J. Epidemiol. 191 775 786 35015807 9430454 10.1093/aje/kwab301
K.S. Ruth et al. Events in early life are associated with female reproductive ageing: a UK biobank study Sci. Rep. 6 1:CAS:528:DC%2BC28XmsFymsbs%3D 27094806 4837365 10.1038/srep24710 24710
E.E. Hatch et al. Age at natural menopause in women exposed to diethylstilbestrol in utero Am. J. Epidemiol. 164 682 688 16887893 10.1093/aje/kwj257
A.Z. Steiner A.A. D’Aloisio L.A. DeRoo D.P. Sandler D.D. Baird Association of intrauterine and early-life exposures with age at menopause in the sister study Am. J. Epidemiol. 172 140 148 20534821 2915484 10.1093/aje/kwq092
R.N. Hoover et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol N. Engl. J. Med. 365 1304 1314 1:CAS:528:DC%2BC3MXht12murfN 21991952 10.1056/NEJMoa1013961
R. Kaufman Continued follow-up of pregnancy outcomes in diethylstilbestrol-exposed offspring Obstet. Gynecol. 96 483 489 1:CAS:528:DC%2BD3cXms1SrsrY%3D 11004345
D. Peycheva et al. Risk factors for natural menopause before the age of 45: evidence from two British population-based birth cohort studies BMC Womens Health 22 438 36348338 9644638 10.1186/s12905-022-02021-4
A. Hyland et al. Associations between lifetime tobacco exposure with infertility and age at natural menopause: the Women’s Health Initiative Observational Study Tob. Control. 25 706 714 26666428 10.1136/tobaccocontrol-2015-052510
P. Vabre et al. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data Environ. Health 16 28388912 5384040 10.1186/s12940-017-0242-4 37
N.M. Grindler et al. Persistent organic pollutants and early menopause in US women PLoS ONE 10 25629726 4309567 10.1371/journal.pone.0116057 e0116057
R.D. Björvang et al. Persistent organic pollutants and the size of ovarian reserve in reproductive-aged women Environ. Int. 155 33945905 10.1016/j.envint.2021.106589 106589
N. Irie W.W.C. Tang M. Azim Surani Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis Reprod. Med. Biol. 13 203 215 25298745 4182624 10.1007/s12522-014-0184-2
G.M. Hartshorne S. Lyrakou H. Hamoda E. Oloto F. Ghafari Oogenesis and cell death in human prenatal ovaries: what are the criteria for oocyte selection? Mol. Hum. Reprod. 15 805 819 1:CAS:528:DC%2BD1MXhsVajsLzN 19584195 2776471 10.1093/molehr/gap055
T. Aoki T. Takada Bisphenol A modulates germ cell differentiation and retinoic acid signaling in mouse ES cells Reprod. Toxicol. 34 463 470 1:CAS:528:DC%2BC38XhtVOls7jM 22732146 10.1016/j.reprotox.2012.06.001
M. Yu et al. Effects of tamoxifen on the sex determination gene and the activation of sex reversal in the developing gonad of mice Toxicology 321 89 95 1:CAS:528:DC%2BC2cXovFCiu7w%3D 24769059 10.1016/j.tox.2014.04.006
K.L. Britt et al. The ovarian phenotype of the aromatase knockout (ArKO) mouse J. Steroid Biochem. Mol. Biol. 79 181 185 1:CAS:528:DC%2BD38XhtFyltbs%3D 11850223 10.1016/S0960-0760(01)00158-3
M.K. Stewart D.M. Mattiske A.J. Pask Exogenous oestrogen impacts cell fate decision in the developing gonads: a potential cause of declining human reproductive health Int. J. Mol. Sci. 21 8377 1:CAS:528:DC%2BB3cXisFKksrzJ 33171657 7664701 10.3390/ijms21218377
M.E. Pepling C. Spradling A. female mouse germ cells form synchronously dividing cysts Development 125 3323 3328 1:CAS:528:DyaK1cXmtlyhsL0%3D 9693136 10.1242/dev.125.17.3323
S.I. Nagaoka T.J. Hassold P.A. Hunt Human aneuploidy: mechanisms and new insights into an age-old problem Nat. Rev. Genet. 13 493 504 1:CAS:528:DC%2BC38Xos12ht78%3D 22705668 3551553 10.1038/nrg3245
M. Susiarjo T.J. Hassold E. Freeman P.A. Hunt Bisphenol A exposure in utero disrupts early oogenesis in the mouse PLoS Genet. 3 17222059 1781485 10.1371/journal.pgen.0030005 e5
A.E. Peters et al. Impact of bisphenol A and its alternatives on oocyte health: a scoping review Hum. Reprod. Update 30 653 691 1:CAS:528:DC%2BB2MXhsVOisLc%3D 39277428 11532624 10.1093/humupd/dmae025
P.A. Hunt et al. Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey Proc. Natl Acad. Sci. USA 109 17525 17530 1:CAS:528:DC%2BC38XhvVSltLjM 23012422 3491481 10.1073/pnas.1207854109
B. Loup et al. BPA disrupts meiosis I in oogonia by acting on pathways including cell cycle regulation, meiosis initiation and spindle assembly Reprod. Toxicol. 111 166 177 1:CAS:528:DC%2BB38XhsFKgu7bN 35667523 10.1016/j.reprotox.2022.06.001
M.A. Brieño-Enríquez et al. Human meiotic progression and recombination are affected by bisphenol A exposure during in vitro human oocyte development Hum. Reprod. 26 2807 2818 21795248 10.1093/humrep/der249
J. Peretz et al. Bisphenol A and reproductive health: update of experimental and human evidence, 2007–2013 Environ. Health Perspect. 122 775 786 24896072 4123031 10.1289/ehp.1307728
F. Acconcia V. Pallottini M. Marino Molecular mechanisms of action of BPA Dose Response 13 155932581561058 10.1177/1559325815610582
M. Watanabe S. Ohno S. Nakajin Effects of bisphenol A on the expression of cytochrome P450 aromatase (CYP19) in human fetal osteoblastic and granulosa cell-like cell lines Toxicol. Lett. 210 95 99 1:CAS:528:DC%2BC38XktFGhtbk%3D 22327052 10.1016/j.toxlet.2012.01.020
H. Shoorei et al. Different types of bisphenols alter ovarian steroidogenesis: special attention to BPA Heliyon 9 1:CAS:528:DC%2BB3sXht1amt7%2FL 37303564 10250808 10.1016/j.heliyon.2023.e16848 e16848
X.-F. Zhang et al. Transgenerational inheritance of ovarian development deficiency induced by maternal diethylhexyl phthalate exposure Reprod. Fertil. Dev. 27 1213 1:CAS:528:DC%2BC2MXhs1Glu7vO 24919469 10.1071/RD14113
Z. Tu et al. Dibutyl phthalate exposure disrupts the progression of meiotic prophase I by interfering with homologous recombination in fetal mouse oocytes Environ. Pollut. 252 388 398 1:CAS:528:DC%2BC1MXhtFeqs7nI 31158667 10.1016/j.envpol.2019.05.107
Y. Yun et al. Oocyte development and quality in young and old mice following exposure to atrazine Environ. Health Perspect. 130 117007 1:CAS:528:DC%2BB3sXnsFeitrY%3D 36367780 9651182 10.1289/EHP11343
A. Can O. Semiz O. Cinar Bisphenol-A induces cell cycle delay and alters centrosome and spindle microtubular organization in oocytes during meiosis Mol. Hum. Reprod. 11 389 396 1:CAS:528:DC%2BD2MXmvFegsLk%3D 15879462 10.1093/molehr/gah179
R. Machtinger et al. Bisphenol-A and human oocyte maturation in vitro Hum. Reprod. 28 2735 2745 1:CAS:528:DC%2BC3sXhsFegt7jF 23904465 3777571 10.1093/humrep/det312
L. Yang C. Baumann R. De La Fuente M.M. Viveiros Mechanisms underlying disruption of oocyte spindle stability by bisphenol compounds Reproduction 159 383 396 1:CAS:528:DC%2BB3cXntVShuro%3D 31990668 7032969 10.1530/REP-19-0494
W. Tarumi M.T. Itoh N. Suzuki Effects of 5α-dihydrotestosterone and 17β-estradiol on the mouse ovarian follicle development and oocyte maturation PLoS ONE 9 24911314 4050053 10.1371/journal.pone.0099423 e99423
K.A. Solak et al. Naringenin (NAR) and 8-prenylnaringenin (8-PN) reduce the developmental competence of porcine oocytes in vitro Reprod. Toxicol. 49 1 11 1:CAS:528:DC%2BC2cXht1Ojs7vI 24905140 10.1016/j.reprotox.2014.05.013
M.R. Overland et al. Development of the human ovary: fetal through pubertal ovarian morphology, folliculogenesis and expression of cellular differentiation markers Differentiation 129 37 59 1:CAS:528:DC%2BB38XivVWhsbbI 36347737 10.1016/j.diff.2022.10.005
P.A. Fowler et al. Development of steroid signaling pathways during primordial follicle formation in the human fetal ovary J. Clin. Endocrinol. Metab. 96 1754 1762 1:CAS:528:DC%2BC3MXnt1ChsLk%3D 21430025 10.1210/jc.2010-2618
F.W. George J.D. Wilson Conversion of androgen to estrogen by the human fetal ovary J. Clin. Endocrinol. Metab. 47 550 555 1:CAS:528:DyaE1cXlvFCmsbk%3D 263310 10.1210/jcem-47-3-550
T.L. Greco A.H. Payne Ontogeny of expression of the genes for steroidogenic enzymes P450 side-chain cleavage, 3 beta-hydroxysteroid dehydrogenase, P450 17 alpha-hydroxylase/C17-20 lyase, and P450 aromatase in fetal mouse gonads Endocrinology 135 262 268 1:CAS:528:DyaK2cXlsFSgt7s%3D 8013361 10.1210/endo.135.1.8013361
G. Jolivet et al. Fetal estrogens are not involved in sex determination but critical for early ovarian differentiation in rabbits Endocrinology 163 bqab210 34614143 10.1210/endocr/bqab210
P. Vazakidou et al. The profile of steroid hormones in human fetal and adult ovaries Reprod. Biol. Endocrinol. 22 1:CAS:528:DC%2BB2cXht1Wisb%2FE 38778396 11110185 10.1186/s12958-024-01233-7 60
Y. Morel et al. Evolution of steroids during pregnancy: maternal, placental and fetal synthesis Ann. Endocrinol. 77 82 89 10.1016/j.ando.2016.04.023
C. Spiller J. Bowles Sex determination in mammalian germ cells Asian J. Androl. 17 427 25791730 4430941 10.4103/1008-682X.150037
Nilsson, C. Retinoids in mammalian reproduction, with an initial scoping effort to identify regulatory methods. Nordic Co-operationhttps://www.norden.org/en/publication/retinoids-mammalian-reproduction-initial-scoping-effort-identify-regulatory-methods.Nordic.Co-operation (2020).
A. Dean et al. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences Sci. Rep. 6 1:CAS:528:DC%2BC28XhsVSnsrk%3D 26813099 4728385 10.1038/srep19789 19789
R. Meli A. Monnolo C. Annunziata C. Pirozzi M.C. Ferrante Oxidative stress and BPA toxicity: an antioxidant approach for male and female reproductive dysfunction Antioxidants 9 405 1:CAS:528:DC%2BB3cXhtFSms7vP 32397641 7278868 10.3390/antiox9050405
S. Abdallah et al. Foetal exposure to the bisphenols BADGE and BPAF impairs meiosis through DNA oxidation in mouse ovaries Environ. Pollut. 317 1:CAS:528:DC%2BB38XjtVCjurjN 36464114 10.1016/j.envpol.2022.120791 120791
M.A. Handel J.C. Schimenti Genetics of mammalian meiosis: regulation, dynamics and impact on fertility Nat. Rev. Genet. 11 124 136 1:CAS:528:DC%2BC3cXnt1Crug%3D%3D 20051984 10.1038/nrg2723
M.C. Richardson M. Guo B.C.J.M. Fauser N.S. Macklon Environmental and developmental origins of ovarian reserve Hum. Reprod. Update 20 353 369 1:CAS:528:DC%2BC2cXmsFeks7g%3D 24287894 10.1093/humupd/dmt057
A.E. Baltus et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication Nat. Genet. 38 1430 1434 1:CAS:528:DC%2BD28Xht1CntrfP 17115059 10.1038/ng1919
Y. Choi D.J. Ballow Y. Xin A. Rajkovic Lim homeobox gene, Lhx8, is essential for mouse oocyte differentiation and survival Biol. Reprod. 79 442 449 1:CAS:528:DC%2BD1cXhtVegtrvM 18509161 2710541 10.1095/biolreprod.108.069393
J.E. Holt et al. The APC/C activator FZR1 is essential for meiotic prophase I in mice Development 141 1354 1365 1:CAS:528:DC%2BC2cXntVehs70%3D 24553289 10.1242/dev.104828
J.C.Y. Wong et al. Targeted disruption of exons 1 to 6 of the fanconi anemia group a gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia Hum. Mol. Genet. 12 2063 2076 1:CAS:528:DC%2BD3sXmvVCgsL0%3D 12913077 10.1093/hmg/ddg219
M.R. Hussein Apoptosis in the ovary: molecular mechanisms Hum. Reprod. Update 11 162 178 15705959 10.1093/humupd/dmi001
J. Zhou X. Peng S. Mei Autophagy in ovarian follicular development and atresia Int. J. Biol. Sci. 15 726 737 1:CAS:528:DC%2BC1MXhsVyktrzL 30906205 6429023 10.7150/ijbs.30369
J. Hu et al. Ovarian aging‐associated downregulation of GPX4 expression regulates ovarian follicular development by affecting granulosa cell functions and oocyte quality FASEB J. 39 1:CAS:528:DC%2BB2MXmsVKjsrc%3D 40100097 10.1096/fj.202401580RR e70469
A. Jurisicova et al. Maternal exposure to polycyclic aromatic hydrocarbons diminishes murine ovarian reserve via induction of harakiri J. Clin. Investig. 117 3971 3978 1:CAS:528:DC%2BD2sXhsValsLzI 18037991 2082141
T. Matikainen et al. Aromatic hydrocarbon receptor-driven bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals Nat. Genet. 28 355 360 1:CAS:528:DC%2BD3MXlslejsbw%3D 11455387 10.1038/ng575
T.M. Matikainen et al. Ligand activation of the aromatic hydrocarbon receptor transcription factor drives bax-dependent apoptosis in developing fetal ovarian germ cells Endocrinology 143 615 620 1:CAS:528:DC%2BD38XosFWqtQ%3D%3D 11796517 10.1210/endo.143.2.8624
E.M. Panagiotou V. Ojasalo P. Damdimopoulou Phthalates, ovarian function and fertility in adulthood Best Pract. Res. Clin. Endocrinol. Metab. 35 101552 1:CAS:528:DC%2BB3MXisFags73F 34238683 10.1016/j.beem.2021.101552
T. Li et al. Persistent organic pollutants dysregulate energy homeostasis in human ovaries in vitro Environ. Int. 187 1:CAS:528:DC%2BB2cXpvFamtrc%3D 38701644 10.1016/j.envint.2024.108710 108710
E.M. Panagiotou et al. Exposure to the phthalate metabolite MEHP impacts survival and growth of human ovarian follicles in vitro Toxicology 505 1:CAS:528:DC%2BB2cXhtVCgu77L 38685446 10.1016/j.tox.2024.153815 153815
B.J. Davis R.R. Maronpot J.J. Heindel Di-(2-ethylhexyl) Phthalate suppresses estradiol and ovulation in cycling rats Toxicol. Appl. Pharmacol. 128 216 223 1:CAS:528:DyaK2cXmsVynu7k%3D 7940536 10.1006/taap.1994.1200
N. Li L. Zhou J. Zhu T. Liu L. Ye Role of the 17β-hydroxysteroid dehydrogenase signalling pathway in di-(2-ethylhexyl) phthalate-induced ovarian dysfunction: an in vivo study Sci. Total. Environ. 712 134406 1:CAS:528:DC%2BB3cXot1Squg%3D%3D 31927438 10.1016/j.scitotenv.2019.134406
S.G. Lee et al. Bisphenol A exposure during adulthood causes augmentation of follicular atresia and luteal regression by decreasing 17β-estradiol synthesis via downregulation of aromatase in rat ovary Environ. Health Perspect. 121 663 669 23512349 3672913 10.1289/ehp.1205823
I. Hallberg et al. Suspect and non-target screening of ovarian follicular fluid and serum — identification of anthropogenic chemicals and investigation of their association to fertility Environ. Sci. Process. Impacts 23 1578 1588 1:CAS:528:DC%2BB3MXitFSmtbvF 34581388 10.1039/D1EM00211B
R.D. Björvang P. Damdimopoulou Persistent environmental endocrine-disrupting chemicals in ovarian follicular fluid and in vitro fertilization treatment outcome in women Ups. J. Med. Sci. 125 85 94 32093529 7721012 10.1080/03009734.2020.1727073
I. Varik et al. Reduced ovarian cholesterol and steroid biosynthesis along with increased inflammation are associated with high DEHP metabolite levels in human ovarian follicular fluids Environ. Int. 191 1:CAS:528:DC%2BB2cXhvVajsbjN 39173238 10.1016/j.envint.2024.108960 108960
R.D. Björvang et al. Follicular fluid and blood levels of persistent organic pollutants and reproductive outcomes among women undergoing assisted reproductive technologies Environ. Res. 208 34973191 10.1016/j.envres.2021.112626 112626
A. Karwacka D. Zamkowska M. Radwan J. Jurewicz Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence Hum. Fertil. 22 2 25 1:CAS:528:DC%2BC2sXht1GitLnF 10.1080/14647273.2017.1358828
S. Ijaz A. Ullah G. Shaheen S. Jahan Exposure of BPA and its alternatives like BPB, BPF, and BPS impair subsequent reproductive potentials in adult female sprague dawley rats Toxicol. Mech. Methods 30 60 72 1:CAS:528:DC%2BC1MXhslOns7bP 31424294 10.1080/15376516.2019.1652873
C. Viguié et al. Evidence-based adverse outcome pathway approach for the identification of BPA as en endocrine disruptor in relation to its effect on the estrous cycle Mol. Cell Endocrinol. 475 10 28 29577943 10.1016/j.mce.2018.02.007
P.R. Hannon J.A. Flaws The effects of phthalates on the ovary Front. Endocrinol. 6 8 10.3389/fendo.2015.00008
C. Chiang J.A. Flaws Subchronic exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate during adulthood has immediate and long-term reproductive consequences in female mice Toxicol. Sci. 168 620 631 1:CAS:528:DC%2BC1MXitVehsr7P 30649530 6432868 10.1093/toxsci/kfz013
E. Fletcher et al. Effects of phthalate mixtures on ovarian folliculogenesis and steroidogenesis Toxics 10 251 1:CAS:528:DC%2BB38XhsV2qsb7I 35622664 9143992 10.3390/toxics10050251
I. Tarvainen et al. Identification of phthalate mixture exposure targets in the human and mouse ovary in vitro Reprod. Toxicol. 119 1:CAS:528:DC%2BB3sXpvFaqs70%3D 37160244 10.1016/j.reprotox.2023.108393 108393
E.M. Panagiotou et al. AOP key event relationship report: linking decreased androgen receptor activation with decreased granulosa cell proliferation of gonadotropin-independent follicles Reprod. Toxicol. 112 136 147 1:CAS:528:DC%2BB38XhvFKksLnJ 35868514 10.1016/j.reprotox.2022.07.004
C.G. Gervásio M.P. Bernuci M.F. Silva-de-Sá A.C.J.D. Rosa-e-Silva ACJ deS The role of androgen hormones in early follicular development ISRN Obstet. Gynecol. 2014 1 11 10.1155/2014/818010
R. Neuvonen M. Huovinen D.C. Dorman H. Laitinen H. Sahlman Phthalates and polycystic ovary syndrome — systematic literature review Reprod. Toxicol. 121 108473 1:CAS:528:DC%2BB3sXitVSqt7vK 37741514 10.1016/j.reprotox.2023.108473
K. Wehkalampi et al. Genetic and environmental influences on pubertal timing assessed by height growth Am. J. Hum. Biol. 20 417 423 18293372 3769165 10.1002/ajhb.20748
K. Sorensen et al. Birth size and age at menarche: a twin perspective Hum. Reprod. 28 2865 2871 23925395 10.1093/humrep/det283
A.J. Arcari et al. Prevalence of polycystic ovarian syndrome in girls with a history of idiopathic central precocious puberty Horm. Res. Paediatr. 97 134 139 1:CAS:528:DC%2BB2cXot1SmtL0%3D 37552972 10.1159/000531264
F. Guaraldi G. Beccuti D. Gori L. Ghizzoni Management of endocrine disease: long-term outcomes of the treatment of central precocious puberty Eur. J. Endocrinol. 174 R79 R87 1:CAS:528:DC%2BC28XovVCru7k%3D 26466612 10.1530/EJE-15-0590
R. Gajbhiye J.N. Fung G.W. Montgomery Complex genetics of female fertility npj Genom. Med. 3 29 30345074 6185946 10.1038/s41525-018-0068-1
I.M. McGrath S. Mortlock G.W. Montgomery Genetic regulation of physiological reproductive lifespan and female fertility Int. J. Mol. Sci. 22 2556 1:CAS:528:DC%2BB3MXotFykur4%3D 33806348 7961500 10.3390/ijms22052556
C.E. Elks et al. Age at menarche and type 2 diabetes risk Diabetes Care 36 3526 3534 24159179 3816901 10.2337/dc13-0446
P. Prentice R.M. Viner Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis Int. J. Obes. 37 1036 1043 1:STN:280:DC%2BC3s7ks1Gjtw%3D%3D 10.1038/ijo.2012.177
M.E. Herman-Giddens et al. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the pediatric research in office settings network Pediatrics 99 505 512 1:STN:280:DyaK2s3kslWlsw%3D%3D 9093289 10.1542/peds.99.4.505
W. Shu X. Zong H. Li Secular trends in age at pubertal onset assessed by breast development among Chinese girls: a systematic review Front. Endocrinol. 13 1042122 10.3389/fendo.2022.1042122
S. Jaruratanasirikul H. Sriplung Secular trends of growth and pubertal maturation of school children in southern Thailand Ann. Hum. Biol. 42 447 454 25230717 10.3109/03014460.2014.955057
V. Ferrari S. Stefanucci D. Ciofi S. Stagi Analysis of the timing of puberty in a recent cohort of Italian girls: evidence for earlier onset compared to previous studies J. Pediatr. Adolesc. Gynecol. 35 23 29 34166823 10.1016/j.jpag.2021.06.007
S.M. Cabrera G.M. Bright J.W. Frane S.L. Blethen P.A. Lee Age of thelarche and menarche in contemporary US females: a cross-sectional analysis J. Pediatr. Endocrinol. Metab. 27 47 51 1:CAS:528:DC%2BC2cXmsVKiu7g%3D 23959659 4137967 10.1515/jpem-2013-0286
C. Wohlfahrt-Veje et al. Pubertal onset in boys and girls is influenced by pubertal timing of both parents J. Clin. Endocrinol. Metab. 101 2667 2674 1:CAS:528:DC%2BC28Xhs1OksbjE 27014950 10.1210/jc.2016-1073
N. Lohiya R. Jahagirdar R. Deshpande A. Goyal Sexual maturity assessment in Indian children — a study from western India J. Pediatr. Endocrinol. Metab. 34 567 572 33851797 10.1515/jpem-2020-0668
S. Jaruratanasirikul A. Chanpong N. Tassanakijpanich H. Sriplung Declining age of puberty of school girls in southern Thailand World J. Pediatrics 10 256 261 10.1007/s12519-014-0472-2
T. Reinehr C.L. Roth Is there a causal relationship between obesity and puberty? Lancet Child. Adolesc. Health 3 44 54 30446301 10.1016/S2352-4642(18)30306-7
K. Sørensen et al. Recent secular trends in pubertal timing: implications for evaluation and diagnosis of precocious puberty Horm. Res. Paediatr. 77 137 145 22508036 10.1159/000336325
A. Mouritsen et al. Hypothesis: exposure to endocrine‐disrupting chemicals may interfere with timing of puberty Int. J. Androl. 33 346 359 1:CAS:528:DC%2BC3cXkvFCqu7Y%3D 20487042 10.1111/j.1365-2605.2010.01051.x
D. Lopez-Rodriguez D. Franssen S. Heger A.-S. Parent Endocrine-disrupting chemicals and their effects on puberty Best Pract. Res. Clin. Endocrinol. Metab. 35 101579 1:CAS:528:DC%2BB38XjsVelsr0%3D 34563408 10.1016/j.beem.2021.101579
W. Liu et al. A secular trend in age at menarche in Yunnan Province, China: a multiethnic population study of 1,275,000 women BMC Public Health 21 34666747 8524999 10.1186/s12889-021-11951-x 1890
M. Garenne Age at menarche in Nigerian demographic surveys J. Biosoc. Sci. 53 745 757 32912346 10.1017/S0021932020000504
M.L. Marván R.L. Castillo‐López D.D. del‐Callejo‐Canal M.E. Canal‐Martínez A. Núñez‐de la Mora Secular trends in age at menarche in 20th century Mexico: differences by ethnicity, area of residency, and socioeconomic status Am. J. Hum. Biol. 32 32052905 10.1002/ajhb.23404 e23404
Y.-C. Lin H.-R. Yen C.-H. Wang Y.-C. Liao R.-T. Lin Trends in age at menarche from 1943 through 1989 in Taiwan: a retrospective population-based analysis Pediatr. Neonatol. 65 64 70 37573183 10.1016/j.pedneo.2023.07.001
M. Ulubay U. Fidan M. Ozturk The decreasing age of menarche in Turkey: global warming, socioeconomic development, and environmental factors Eur. Rev. Med. Pharmacol. Sci. 27 6780 6784 1:STN:280:DC%2BB2srntVynsw%3D%3D 37522688
M. Iwase et al. A century of change: unraveling the impact of socioeconomic/historical milestones on age at menarche and other female reproductive factors in Japan J. Epidemiol. 34 10.2188/jea.JE20230155 JE20230155
X. Wu et al. Secular trends of age at menarche and the effect of famine exposure on age at menarche in rural Chinese women Ann. Hum. Biol. 49 35 40 1:CAS:528:DC%2BB38Xhs12rsbjM 35139699 10.1080/03014460.2022.2041092
M. Asrullah M. L’Hoir E.J.M. Feskens A. Melse-Boonstra Trend in age at menarche and its association with body weight, body mass index and non-communicable disease prevalence in Indonesia: evidence from the Indonesian Family Life Survey (IFLS) BMC Public Health 22 35361192 8969286 10.1186/s12889-022-12995-3 628
A.C. Queiroga R.S. Silva A.C. Santos I. Maia H. Barros Secular trend in age at menarche in women in Portugal born between 1920 and 1992: results from three population‐based studies Am. J. Hum. Biol. 32 31981251 10.1002/ajhb.23392 e23392
N.-P. Tey S.-L. Lai S.-T. Ng Age at menarche and sexual debut among young Filipino women J. Biosoc. Sci. 51 77 94 29352813 10.1017/S0021932017000682
E. Hrabovszky Z. Liposits Afferent neuronal control of type-I gonadotropin releasing hormone neurons in the human Front. Endocrinol. 4 130 10.3389/fendo.2013.00130
R.E. Campbell L.M. Coolen G.E. Hoffman E. Hrabovszky Highlights of neuroanatomical discoveries of the mammalian gonadotropin‐releasing hormone system J. Neuroendocrinol. 34 1:CAS:528:DC%2BB38XhtF2gs7bI 35502534 9232911 10.1111/jne.13115 e13115
E. Terasawa Mechanism of pulsatile GnRH release in primates: unresolved questions Mol. Cell Endocrinol. 498 1:CAS:528:DC%2BC1MXhslyqtLvN 31518609 6944307 10.1016/j.mce.2019.110578 110578
R.L. Goodman A.E. Herbison M.N. Lehman V.M. Navarro Neuroendocrine control of gonadotropin‐releasing hormone: pulsatile and surge modes of secretion J. Neuroendocrinol. 34 1:CAS:528:DC%2BB38Xislent7w%3D 35107859 9948945 10.1111/jne.13094 e13094
J. Argente et al. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications Lancet Diabetes Endocrinol. 11 203 216 1:CAS:528:DC%2BB3sXntV2htA%3D%3D 36620967 10198266 10.1016/S2213-8587(22)00339-4
G.M. Anderson et al. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra’s seminal work Nat. Rev. Endocrinol. 20 111 123 1:CAS:528:DC%2BB3sXisFGhtL7O 38049643 10.1038/s41574-023-00919-z
L. Pinilla E. Aguilar C. Dieguez R.P. Millar M. Tena-Sempere Kisspeptins and reproduction: physiological roles and regulatory mechanisms Physiol. Rev. 92 1235 1316 1:CAS:528:DC%2BC38Xht1KmtbnO 22811428 10.1152/physrev.00037.2010
D.V. Ratra C.F. Elias Chemical identity of hypothalamic neurons engaged by leptin in reproductive control J. Chem. Neuroanat. 61–62 233 238 24915437 10.1016/j.jchemneu.2014.05.005
J.R. Starrett S.M. Moenter Hypothalamic kisspeptin neurons as potential mediators of estradiol negative and positive feedback Peptides 163 170963 1:CAS:528:DC%2BB3sXivFKis70%3D 36740189 10516609 10.1016/j.peptides.2023.170963
D.J. Watkins et al. In utero and peripubertal exposure to phthalates and BPA in relation to female sexual maturation Env. Res. 134 233 241 1:CAS:528:DC%2BC2cXhsVakt7vN 10.1016/j.envres.2014.08.010
D.J. Watkins et al. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls Environ. Res. 159 143 151 1:CAS:528:DC%2BC2sXhtlSiurfP 28800472 5623649 10.1016/j.envres.2017.07.051
K. Berger et al. Association of prenatal urinary concentrations of phthalates and bisphenol A and pubertal timing in boys and girls Environ. Health Perspect. 126 97004 1:CAS:528:DC%2BC1MXhsl2nsL%2FE 30203993 10.1289/EHP3424
D. Franssen et al. Pubertal timing after neonatal diethylstilbestrol exposure in female rats: neuroendocrine vs peripheral effects and additive role of prenatal food restriction Reprod. Toxicol. 44 63 72 1:CAS:528:DC%2BC2cXisFSktw%3D%3D 24316331 10.1016/j.reprotox.2013.10.006
D. Franssen et al. Delayed neuroendocrine sexual maturation in female rats after a very low dose of bisphenol A through altered GABAergic neurotransmission and opposing effects of a high dose Endocrinology 157 1740 1750 1:CAS:528:DC%2BC28XhsFehsLbE 26950200 10.1210/en.2015-1937
Burdea, L. & Sharma, L. in StatPearls (ed. Mendez, M.) (StatPearls Publishing, 2023).
M. Goto In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development J. Clin. Investig. 116 953 960 1:CAS:528:DC%2BD28XjsVWntbw%3D 16585961 1421344 10.1172/JCI25091
E. Pignatti T. du Toit C.E. Flück Development and function of the fetal adrenal Rev. Endocr. Metab. Disord. 24 5 21 36255414 10.1007/s11154-022-09756-3
C.S. Uldbjerg et al. Prenatal and postnatal exposures to endocrine disrupting chemicals and timing of pubertal onset in girls and boys: a systematic review and meta-analysis Hum. Reprod. Update 28 687 716 1:CAS:528:DC%2BB3sXpvFelt7k%3D 35466359 9434240 10.1093/humupd/dmac013
L. Soriano-Guillén et al. Central precocious puberty in children living in Spain: incidence, prevalence, and influence of adoption and immigration J. Clin. Endocrinol. Metab. 95 4305 4313 20554707 10.1210/jc.2010-1025
J. Le Moal et al. Marked geographic patterns in the incidence of idiopathic central precocious puberty: a nationwide study in France Eur. J. Endocrinol. 178 33 41 28890442 10.1530/EJE-17-0379
Y.J. Kim et al. Incidence and prevalence of central precocious puberty in Korea: an epidemiologic study based on a national database J. Pediatr. 208 221 228 30857777 10.1016/j.jpeds.2018.12.022
K. Almstrup H. Frederiksen A.-M. Andersson A. Juul Levels of endocrine-disrupting chemicals are associated with changes in the peri-pubertal epigenome Endocr. Connect. 9 845 857 1:CAS:528:DC%2BB3cXitlWqsL3N 32755991 7487188 10.1530/EC-20-0286
K. Almstrup et al. Pubertal development in healthy children is mirrored by DNA methylation patterns in peripheral blood Sci. Rep. 6 1:CAS:528:DC%2BC28XhtFSisbrK 27349168 4923870 10.1038/srep28657 28657
A.M. Binder et al. Childhood and adolescent phenol and phthalate exposure and the age of menarche in Latina girls Environ. Health 17 29615064 5883544 10.1186/s12940-018-0376-z 32
P.-H. Su et al. Prenatal exposure to phthalate ester and pubertal development in a birth cohort in central Taiwan: a 12-year follow-up study Environ. Res. 136 324 330 1:CAS:528:DC%2BC2cXhvVOnu7%2FK 25460653 10.1016/j.envres.2014.10.026
C. Xie et al. Elevated phthalates’ exposure in children with constitutional delay of growth and puberty Mol. Cell Endocrinol. 407 67 73 1:CAS:528:DC%2BC2MXks1aqs7g%3D 25770461 10.1016/j.mce.2015.03.006
D. Franssen et al. Perinatal exposure to the fungicide ketoconazole alters hypothalamic control of puberty in female rats Front. Endocrinol. 14 10.3389/fendo.2023.1140886 1140886
D. López-Rodríguez et al. Persistent vs transient alteration of folliculogenesis and estrous cycle after neonatal vs adult exposure to bisphenol A Endocrinology 160 2558 2572 31503316
C. Tang et al. Chronic exposure to low dose of bisphenol A causes follicular atresia by inhibiting kisspeptin neurons in anteroventral periventricular nucleus in female mice Neurotoxicology 79 164 176 1:CAS:528:DC%2BB3cXhtFGmu7bE 32407858 10.1016/j.neuro.2020.04.011
F. Ruiz-Pino et al. Environmentally relevant perinatal exposures to bisphenol a disrupt postnatal Kiss1/NKB neuronal maturation and puberty onset in female mice Environ. Health Perspect. 127 107011 31652106 6867420 10.1289/EHP5570
M. Martini et al. Perinatal exposure to methoxychlor affects reproductive function and sexual behavior in mice Front. Endocrinol. 11 639 10.3389/fendo.2020.00639
G. Guarnieri et al. Effects of benzo[a]pyrene on the reproductive axis: impairment of kisspeptin signaling in human gonadotropin-releasing hormone primary neurons Environ. Pollut. 317 1:CAS:528:DC%2BB38XjtVCjsL3E 36460192 10.1016/j.envpol.2022.120766 120766
M. Marty Evaluation of the EDSTAC female pubertal assay in CD rats using 17beta-estradiol, steroid biosynthesis inhibitors, and a thyroid inhibitor Toxicol. Sci. 52 269 277 1:CAS:528:DC%2BD3cXhtF2itg%3D%3D 10630580 10.1093/toxsci/52.2.269
M. Ma et al. Exposure of prepubertal female rats to inhaled di(2-ethylhexyl)phthalate affects the onset of puberty and postpubertal reproductive functions Toxicol. Sci. 93 164 171 1:CAS:528:DC%2BD28Xotl2ksL4%3D 16763069 10.1093/toxsci/kfl036
D. Patiño-García L. Cruz-Fernandes J. Buñay J. Palomino R.D. Moreno Reproductive alterations in chronically exposed female mice to environmentally relevant doses of a mixture of phthalates and alkylphenols Endocrinology 159 1050 1061 29300862 10.1210/en.2017-00614
D. López-Rodríguez et al. Multi- and transgenerational outcomes of an exposure to a mixture of endocrine-disrupting chemicals (EDCs) on puberty and maternal behavior in the female rat Environ. Health Perspect. 129 87003 34383603 10.1289/EHP8795
R.E. Rogers S. Chai A.J. Pask D.M. Mattiske Prenatal exposure to diethylstilbestrol has long-lasting, transgenerational impacts on fertility and reproductive development Toxicol. Sci. 195 53 60 1:CAS:528:DC%2BB2cXjvFygsA%3D%3D 37471692 10464516 10.1093/toxsci/kfad066
M. Shi A.E. Whorton N. Sekulovski J.A. MacLean K. Hayashi Prenatal exposure to bisphenol A, E, and S induces transgenerational effects on female reproductive functions in mice Toxicol. Sci. 170 320 329 1:CAS:528:DC%2BB3cXksFSntbg%3D 31132128 10.1093/toxsci/kfz124
S. Rattan E. Brehm L. Gao J.A. Flaws Di(2-ethylhexyl) phthalate exposure during prenatal development causes adverse transgenerational effects on female fertility in mice Toxicol. Sci. 163 420 429 1:CAS:528:DC%2BC1cXitlGlur7N 29471507 5974785 10.1093/toxsci/kfy042
R. Azziz et al. Polycystic ovary syndrome Nat. Rev. Dis. Prim. 2 27510637 10.1038/nrdp.2016.57 16057
E. Diamanti-Kandarakis Polycystic ovarian syndrome: pathophysiology, molecular aspects and clinical implications Expert Rev. Mol. Med. 10 18230193 10.1017/S1462399408000598 e3
J.P. Christ M.I. Cedars Current guidelines for diagnosing PCOS Diagnostics 13 1113 1:CAS:528:DC%2BB3sXnsVSltrw%3D 36980421 10047373 10.3390/diagnostics13061113
S. Kiconco H.J. Teede R. Azziz R.J. Norman A.E. Joham The need to reassess the diagnosis of polycystic ovary syndrome (PCOS): a review of diagnostic recommendations from the international evidence-based guideline for the assessment and management of PCOS Semin. Reprod. Med. 39 071 077 10.1055/s-0041-1735259
T. Miazgowski I. Martopullo J. Widecka B. Miazgowski A. Brodowska National and regional trends in the prevalence of polycystic ovary syndrome since 1990 within Europe: the modeled estimates from the Global Burden of Disease Study 2016 Arch. Med. Sci. 17 343 351 33747269 10.5114/aoms.2019.87112
J. Liu et al. Measuring the global disease burden of polycystic ovary syndrome in 194 countries: Global Burden of Disease Study 2017 Hum. Reprod. 36 1108 1119 33501984 7970729 10.1093/humrep/deaa371
R. Yang et al. Changes in the prevalence of polycystic ovary syndrome in China over the past decade Lancet Reg. Health West. Pac. 25 35669932 9162959 100494
S. Risal et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome Nat. Med. 25 1894 1904 1:CAS:528:DC%2BC1MXit1yjsrrN 31792459 10.1038/s41591-019-0666-1
T. Takeuchi O. Tsutsumi Y. Ikezuki Y. Takai Y. Taketani Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction Endocr. J. 51 165 169 1:CAS:528:DC%2BD2cXmtFymtro%3D 15118266 10.1507/endocrj.51.165
E. Kandaraki et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS J. Clin. Endocrinol. Metab. 96 E480 E484 1:CAS:528:DC%2BC3MXjvFahtLY%3D 21193545 10.1210/jc.2010-1658
R.B. Hossein et al. The association between bisphenol A and polycystic ovarian syndrome: a case–control study Acta Med. Iran 55 759 764
L. Akın et al. The endocrine disruptor bisphenol A may play a role in the aetiopathogenesis of polycystic ovary syndrome in adolescent girls Acta Paediatr. 104 e171 e177 25469562 10.1111/apa.12885
Z. Guo et al. Association of serum organochlorine pesticides concentrations with reproductive hormone levels and polycystic ovary syndrome in a Chinese population Chemosphere 171 595 600 1:CAS:528:DC%2BC2sXis1ygur4%3D 28043072 10.1016/j.chemosphere.2016.12.127
Q. Yang et al. Association of serum levels of typical organic pollutants with polycystic ovary syndrome (PCOS): a case–control study Hum. Reprod. 30 1964 1973 1:CAS:528:DC%2BC2sXhsFSru7rJ 26040477 10.1093/humrep/dev123
S. Hammarstrand et al. Perfluoroalkyl substances (PFAS) in drinking water and risk for polycystic ovarian syndrome, uterine leiomyoma, and endometriosis: a Swedish cohort study Environ. Int. 157 1:CAS:528:DC%2BB3MXhslyrsLbE 34391986 10.1016/j.envint.2021.106819 106819
Y. Zhang et al. Per- and polyfluoroalkyl substances exposure is associated with polycystic ovary syndrome risk among women attending a fertility clinic Sci. Total. Environ. 950 1:CAS:528:DC%2BB2cXhslGju7jJ 39117221 10.1016/j.scitotenv.2024.175313 175313
W. Zhan et al. Environmental exposure to emerging alternatives of per- and polyfluoroalkyl substances and polycystic ovarian syndrome in women diagnosed with infertility: a mixture analysis Environ. Health Perspect. 131 57001 1:CAS:528:DC%2BB3sXis1Gjt7rF 37134253 10.1289/EHP11814
R. Hart et al. The influence of antenatal exposure to phthalates on subsequent female reproductive development in adolescence: a pilot study Reproduction 147 379 390 1:CAS:528:DC%2BC2cXms1equr4%3D 24025997 10.1530/REP-13-0331
L.M.E. Moolhuijsen J.A. Visser Anti-Müllerian hormone and ovarian reserve: update on assessing ovarian function J. Clin. Endocrinol. Metab. 105 3361 3373 32770239 7486884 10.1210/clinem/dgaa513
E. Stener-Victorin et al. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome Endocr. Rev. 41 bnaa010 32310267 7279705 10.1210/endrev/bnaa010
N.E.H. Mimouni P. Giacobini Polycystic ovary syndrome mouse model by prenatal exposure to high anti-Müllerian hormone Star Protoc. 2 100684 1:CAS:528:DC%2BB38XitVKht7jM 34401772 8348292 10.1016/j.xpro.2021.100684
R.S.M. Landers V. Padmanabhan R.C. Cardoso Developmental programming: gestational testosterone excess disrupts LH secretion in the female sheep fetus Reprod. Biol. Endocrinol. 18 1:CAS:528:DC%2BB3cXisVGlsLzN 33158439 7648305 10.1186/s12958-020-00667-z 106
V. Padmanabhan A. Veiga-Lopez Sheep models of polycystic ovary syndrome phenotype Mol. Cell Endocrinol. 373 8 20 1:CAS:528:DC%2BC38Xhs1CjsLjL 23084976 10.1016/j.mce.2012.10.005
Z. Yang et al. A pilot study on polycystic ovarian syndrome caused by neonatal exposure to tributyltin and bisphenol A in rats Chemosphere 231 151 160 1:CAS:528:DC%2BC1MXhtVersb%2FK 31129395 10.1016/j.chemosphere.2019.05.129
M. Fernández M. Bianchi V. Lux-Lantos C. Libertun Neonatal exposure to bisphenol A alters reproductive parameters and gonadotropin releasing hormone signaling in female rats Environ. Health Perspect. 117 757 762 19479018 2685838 10.1289/ehp.0800267
R.R. Newbold W.N. Jefferson E. Padilla-Banks Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract Reprod. Toxicol. 24 253 258 1:CAS:528:DC%2BD2sXhtVCisLzO 17804194 2043380 10.1016/j.reprotox.2007.07.006
V.P. Eroschenko A.A. Abuel-Atta M.S. Grober Neonatal exposures to technical methoxychlor alters ovaries in adult mice Reprod. Toxicol. 9 379 387 1:STN:280:DyaK28%2FltVWlug%3D%3D 7496094 10.1016/0890-6238(95)00025-6
Y. Feng et al. Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells Chemosphere 147 9 19 1:CAS:528:DC%2BC28XktVahtA%3D%3D 26751127 10.1016/j.chemosphere.2015.12.081
W. Zhou J. Liu L. Liao S. Han J. Liu Effect of bisphenol A on steroid hormone production in rat ovarian theca-interstitial and granulosa cells Mol. Cell Endocrinol. 283 12 18 1:CAS:528:DC%2BD1cXitVegsbo%3D 18191889 10.1016/j.mce.2007.10.010
A.M. Neff J.A. Flaws The effects of plasticizers on the ovary Curr. Opin. Endocr. Metab. Res. 18 35 47 1:CAS:528:DC%2BB3MXhs1aqt7fL 33997465 8117085 10.1016/j.coemr.2021.01.004
S.L. Berga D.S. Guzick S.J. Winters Increased luteinizing hormone and alpha-subunit secretion in women with hyperandrogenic anovulation J. Clin. Endocrinol. Metab. 77 895 901 1:CAS:528:DyaK2cXltFOmtw%3D%3D 7691863
M.S.B. Silva et al. Overactivation of GnRH neurons is sufficient to trigger polycystic ovary syndrome-like traits in female mice EBioMedicine 97 1:CAS:528:DC%2BB3sXit1entrnN 37898094 10630624 10.1016/j.ebiom.2023.104850 104850
B. Tata et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood Nat. Med. 24 834 846 1:CAS:528:DC%2BC1cXpsFOltLY%3D 29760445 6098696 10.1038/s41591-018-0035-5
N.E.H. Mimouni et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process Cell Metab. 33 513 530.e8 1:CAS:528:DC%2BB3MXjtlelu7k%3D 33539777 7928942 10.1016/j.cmet.2021.01.004
I. Cimino et al. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion Nat. Commun. 7 1:CAS:528:DC%2BC28Xos1ertA%3D%3D 26753790 4729924 10.1038/ncomms10055 10055
A.-L. Barbotin et al. Hypothalamic neuroglial plasticity is regulated by anti-Müllerian hormone and disrupted in polycystic ovary syndrome EBioMedicine 90 1:CAS:528:DC%2BB3sXms1Kkur8%3D 37001236 10070524 10.1016/j.ebiom.2023.104535 104535
C. Hakim V. Padmanabhan A.K. Vyas Gestational hyperandrogenism in developmental programming Endocrinology 158 199 212 1:CAS:528:DC%2BB3cXntlajtA%3D%3D 27967205 10.1210/en.2016-1801
C. Messerlian R.M. Martinez R. Hauser A.A. Baccarelli Omics’ and endocrine-disrupting chemicals — new paths forward Nat. Rev. Endocrinol. 13 740 748 1:CAS:528:DC%2BC2sXhtFyitrfM 28707677 7141602 10.1038/nrendo.2017.81
B.M. Nugent T.L. Bale The omniscient placenta: metabolic and epigenetic regulation of fetal programming Front. Neuroendocrinol. 39 28 37 1:CAS:528:DC%2BC2MXhs1ShurvF 26368654 4681645 10.1016/j.yfrne.2015.09.001
J. Mao et al. Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta–brain axis Proc. Natl Acad. Sci. USA 117 4642 4652 1:CAS:528:DC%2BB3cXksVSqsrs%3D 32071231 7060676 10.1073/pnas.1919563117
W.P. Marinello et al. Gestational exposure to firemaster 550 (FM 550) disrupts the placenta–brain axis in a socially monogamous rodent species, the prairie vole (Microtus ochrogaster) Mol. Cell Endocrinol. 576 1:CAS:528:DC%2BB3sXhslensrvL 37562579 10795011 10.1016/j.mce.2023.112041 112041
Y. Wang et al. Gut microbiota–metabolite interactions meditate the effect of dietary patterns on precocious puberty iScience 27 1:CAS:528:DC%2BB2cXht1agsbjP 38784002 11112371 10.1016/j.isci.2024.109887 109887
C. Lin et al. Aspartame intake delayed puberty onset in female offspring rats and girls Mol. Nutr. Food Res. 68 38389198 10.1002/mnfr.202300270 e2300270
N.N. Nguyen et al. Natural sweetener glycyrrhizin protects against precocious puberty by modulating the gut microbiome Life Sci. 350 1:CAS:528:DC%2BB2cXht1OrtbrN 38848942 10.1016/j.lfs.2024.122789 122789
Y. Liang et al. Gut microbiota dysbiosis in polycystic ovary syndrome: association with obesity — a preliminary report Can. J. Physiol. Pharmacol. 98 803 809 1:CAS:528:DC%2BB3cXit1ChsLfF 32150694 10.1139/cjpp-2019-0413
L. Calero-Medina et al. Dietary exposure to endocrine disruptors in gut microbiota: a systematic review Sci. Total. Environ. 886 1:CAS:528:DC%2BB3sXhtVSisLvK 37169193 10.1016/j.scitotenv.2023.163991 163991
S.G. Vitale et al. The role of genital tract microbiome in fertility: a systematic review Int. J. Mol. Sci. 23 180 35008605 8745627 10.3390/ijms23010180
Y. Ono et al. Uterine endometrium microbiome in women with repeated implantation failure complicated by endometriosis J. Clin. Med. 13 4605 1:CAS:528:DC%2BB2cXhvFCqsbzN 39200747 11354447 10.3390/jcm13164605
S. Tamburini N. Shen H.C. Wu J.C. Clemente The microbiome in early life: implications for health outcomes Nat. Med. 22 713 722 1:CAS:528:DC%2BC28XhtFens7bM 27387886 10.1038/nm.4142
Y. Fan O. Pedersen Gut microbiota in human metabolic health and disease Nat. Rev. Microbiol. 19 55 71 1:CAS:528:DC%2BB3cXhslGhsbrJ 32887946 10.1038/s41579-020-0433-9
A.M. Ceasrine et al. Maternal diet disrupts the placenta–brain axis in a sex-specific manner Nat. Metab. 4 1732 1745 1:CAS:528:DC%2BB38XjtVajt7%2FL 36443520 10507630 10.1038/s42255-022-00693-8
T. Svingen et al. Enhanced identification of endocrine disruptors through integration of science-based regulatory practices and innovative methodologies: the MERLON Project Open. Res. Eur. 4 68 38883262 11179054 10.12688/openreseurope.17319.1
M.A. La Merrill et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification Nat. Rev. Endocrinol. 16 45 57 31719706 10.1038/s41574-019-0273-8
A.J. Pask A role for estrogen in somatic cell fate of the mammalian gonad Chromosome Res. 20 239 245 1:CAS:528:DC%2BC38XitlGhtL0%3D 22161125 10.1007/s10577-011-9260-1