Hoxha, Jean-Luc ; Université de Liège - ULiège > Chemical engineering
Grogna, Mathurin ; Université de Liège - ULiège > Centres attachés à la Faculté (Sciences) > Centre d'études et de recherches sur les macromolécules (CERM)
Calvo, Sébastien ; Université de Liège - ULiège > Chemical engineering
Toye, Dominique ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Language :
English
Title :
Process intensification for zinc dithionite synthesis: Transition from batch to continuous mesofluidic reactor
Lakshmi Vegunta, V., Stevanic, J.S., Lindström, M., Salmen, L., Thermal and alkali stability of sodium dithionite studied using ATR-FTIR spectroscopy. Bioresources 12:2 (2017), 2496–2506, 10.15376/biores.12.2.2496-2506.
Holding, Silox, About us - our products and their applications. Accessed: Feb., 22, 2025 [Online]. Available: https://silox.com/about-us/.
Eckman, J.R., Rossini, F.D., The heat of formation of sulphur dioxide. J. Res. Natl. Bur. Stand., 1929, 597–618.
Rossini, D., Frederick, D., Selected values of chemical thermodynamic properties. 1952, U.S. Gov. Print.Off., Washington, D.C.
J. D. Cox D. D. Wagman V. A. Medvedev Codata key values for thermodynamics Hemisphere Pub. Corp. New York 1989.
Elvira, K.S., Solvas, X.C. i, Wootton, R.C.R., deMello, A.J., The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 5:11 (2013), 905–915, 10.1038/nchem.1753.
Jähnisch, K., Hessel, V., Löwe, H., Baerns, M., Chemistry in microstructured reactors. Angew. Chem. Int. Ed. 43:4 (2004), 406–446, 10.1002/anie.200300577.
Ahmad, S., Ben Mustapha, L., Calvo, S., Collignon, F., Fernandes, A.E., Toye, D., Continuous flow hydrothermal synthesis of zeolite LTA in intensified reactor. Experimental and multiphysics CFD modeling approach. Chemical Engineering and Processing - Process Intensification, 189, Jul. 2023, 109399, 10.1016/j.cep.2023.109399.
J.-C. Monbaliu and Collignon, F. L'intensification des procédés chimiques - une approche radicale. Chim. Ind., 118, 29-32, Jun. 2015. Accessed: Sep. 25, 2024. [Online]. Available: http://chimienouvelle.be/CN118web/Article%20Monbaliu.pdf.
S. Kuhn, K. U. Leuven, and K. Wu, “Strategies for solids handling in microreactors,” 2014. [Online]. Available: https://www.researchgate.net/publication/286448225.
Dressaire, E., Sauret, A., Clogging of microfluidic systems. Soft Matter 13:1 (2017), 37–48, 10.1039/C6SM01879C.
Akwi, F.M., Watts, P., Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem. Commun. 54:99 (2018), 13894–13928, 10.1039/C8CC07427E.
Gao, Y., Pinho, B., Torrente-Murciano, L., Recent progress on the manufacturing of nanoparticles in multi-phase and single-phase flow reactors. Curr. Opin. Chem. Eng. 29 (2020), 26–33, 10.1016/j.coche.2020.03.008.
Dong, Z., Delacour, C., Mc Carogher, K., Udepurkar, A.P., Kuhn, S., Continuous ultrasonic reactors: design, mechanism and application. Materials, 13(2), 2020, 344, 10.3390/ma13020344.
Doyle, B.J., Gutmann, B., Bittel, M., Hubler, T., Macchi, A., Roberge, D.M., Handling of solids and flow characterization in a Baffleless oscillatory flow coil reactor. Ind. Eng. Chem. Res. 59:9 (2020), 4007–4019, 10.1021/acs.iecr.9b04496.
Fernandez Rivas, D., Kuhn, S., Synergy of microfluidics and ultrasound. Top. Curr. Chem., 374(5), 2016, 70, 10.1007/s41061-016-0070-y.
Vancleef, A., De Beuckeleer, W., Van Gerven, T., Thomassen, L.C.J., Braeken, L., Continuous crystallization using ultrasound assisted nucleation, cubic cooling profiles and oscillatory flow. Processes, 9(12), 2021, 10.3390/pr9122268.
Zhao, S., Yao, C., Dong, Z., Chen, G., Yuan, Q., Role of ultrasonic oscillation in chemical processes in microreactors: a mesoscale issue. Particuology 48 (2020), 88–99, 10.1016/j.partic.2018.08.009.
Bianchi, P., Williams, J.D., Kappe, C.O., Oscillatory flow reactors for synthetic chemistry applications. J. Flow Chem. 10 (2020), 475–490, 10.1007/s41981-020-00105-6.
Sastri, N.V.S., Epstein, N., Hirata, A., Koshijima, I., Izumi, M., Zinc hydrosulphite by three-phase fluidization: experiments and model. Can J Chem Eng 61:5 (1983), 635–646, 10.1002/cjce.5450610504.
Toor, H.L., Chiang, S.H., Diffusion-controlled chemical reactions. AIChE J. 5:3 (1959), 339–344, 10.1002/aic.690050317.
Eigen, M., Kustin, K., Maass, G., Die Geschwindigkeit der Hydratation von SO2 in wassriger Losung. Biol. Chem. 30 (1961), 130–136.
Szabo, M., Kaldi, P., A continuous method for producing ZnS2O4 solutions. Hung. J. Ind. Chem. 4 (1976), 39–60.
Lynn, S., Straatemier, J.R., Krammers, H., Absorption studies in the light of the penetration theory. Chem. Engng. Sci., 4, 1955, 49.
Nijsing, R.A.O., Hendrksz, R.H., Krammers, H., Absorption of CO2 in jets and falling films of electrolyte solutions, with and without chemical reaction. Chem. Engng. Sc. 10 (1959), 88–104.
Sastri, N.V.S., Epstein, N., Chemical kinetics of zinc dissolution in sulfurous acid solutions. Can. J. Chem. Eng. 56:1 (1978), 124–125, 10.1002/cjce.5450560118.
Khalil, S.A., El-Manguch, M.A., The kinetics of zinc dissolution in nitric acid. Monatshefte für Chemie - Chemical Monthly 118:4 (1987), 453–462, 10.1007/BF00809928.
Ingruber, O.V., Kopanidis, J., Hydrosulphite bleaching part I. decomposition of hydrosulphite (dithionite) solutions with and without pulp. Pulp Pap. Can. 68:6 (1967), 258–267.
Barberá, J.J., Metzger, A., Wolf, M., Sulfites, thiosulfates, and dithionites. Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley, 10.1002/14356007.a25_477.
Moeller, T. Inorganic chemistry: an advanced textbook. 2nd ed. New York. 1952.
Thomas, S., Birbilis, N., Venkatraman, M.S., Cole, I.S., Corrosion of zinc as a function of pH. Corrosion 68:1 (2012), 015009-1–015009-9, 10.5006/1.3676630.
Kockmann, N., Roberge, D.M., Harsh reaction conditions in continuous-flow microreactors for pharmaceutical production. Chem. Eng. Technol., 2009, 10.1002/ceat.200900355.
James, T.H., Cannon, C., Apblett, A., Materer, N.F., Sodium dithionite purity and decomposition products in solid samples spanning 50 years. Phosphorus Sulfur Silicon Relat. Elem. 190:2 (2015), 158–169, 10.1080/10426507.2014.914939.
Danehy, J.P., Zubritsky, C.W., Iodometric method for the determination of dithionite, bisulfite, and thiosulfate in the presence of each other and its use in following the decomposition of aqueous solutions of sodium dithionite. Anal. Chem. 46:3 (1974), 391–395, 10.1021/ac60339a022.
TAPPI Standards Departements, “Analysis of sodium hydrosulfite - T 622 cm-10.”.
Sans, V., Cronin, L., Towards dial-a-molecule by integrating continuous flow, analytics and self-optimisation. Chem. Soc. Rev., 2016, 10.1039/c5cs00793c.
Fox, J.L., Sodium dithionite reduction of flavin. FEBS Lett. 39:1 (1974), 53–55, 10.1016/0014-5793(74)80015-3.
Newton, S., et al. Accelerating Spirocyclic polyketide synthesis using flow chemistry. Angew. Chem. Int. Ed. 53:19 (2014), 4915–4920, 10.1002/anie.201402056.
Fogler, S.H., Elements of Chemical Reaction Engineering. 5th ed., 2016 Boston. Accessed: Feb. 21, 2025. [Online]. Available: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1601903.
Tropea, C., Yarin, A. L., and Foss, J. F. Springer handbook of experimental fluid mechanics, 1st Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-30299-5.
BELL, R.P., The kinetics of reactions in solution. Nature 162:4112 (1948), 275–276, 10.1038/162275a0.
Kunin, T.I., Lobanov, Y.A., Kinetics of the formation of zinc dithionite. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1965, 921–925.