G protein‐coupled receptors; deorphanization; glia; nervous system; nervous system disorders; neuron; orphan G protein‐coupled receptors; physiology; signalling; Pharmacology
Abstract :
[en] G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Birgül Iyison, Necla ✱; Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
Abboud, Clauda ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Abdulrahman, Abdulrasheed O; Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
Bondar, Ana-Nicoleta ; Faculty of Physics, University of Bucharest, Magurele, Romania ; Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
Dam, Julie; Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
Georgoussi, Zafiroula ; Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
Giraldo, Jesús ; Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain ; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain ; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
Horvat, Anemari ; Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
Karoussiotis, Christos ; Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
Paz-Castro, Alba; Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain ; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
Scarpa, Miriam; Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
Schihada, Hannes; Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
Scholz, Nicole; Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
Güvenc Tuna, Bilge; Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
Vardjan, Nina ✱; Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
DFG - Deutsche Forschungsgemeinschaft TÜBİTAK - Türkiye Bilimsel ve Teknolojik Araştırma Kurumu CNRS - Centre National de la Recherche Scientifique ANR - Agence Nationale de la Recherche WBI - Wallonie-Bruxelles International European Union. Marie Skłodowska-Curie Actions
Funding text :
This work was supported by the COST action CA18133 (ERNEST). was supported by the Scientific and Technological Research Council of Turkey (T\u00DCB\u0130TAK 119Z921 and 122Z988) and Bogazici University Scientific Research Projects (BAP 14502). and were supported by the grants from the Slovenian Research and Innovation Agency (P3\u20100310, J3\u20102523, J3\u201050104, I0\u20100034, I0\u20100022). was supported by the Institut National de la Sant\u00E9 et de la Recherche M\u00E9dicale (INSERM), Centre National de la Recherche Scientifique (CNRS), the \u2018Agence Nationale de la Recherche\u2019 (ANR\u201021\u2010CE14\u20100041, GPCR\u2010Metab ANR\u201023\u2010CE14), the programme \u2018Investissement d'Avenir\u2019 launched by the French Government and implemented by ANR, with the reference \u2018ANR\u201018\u2010IdEx\u20100001\u2019 as part of its programme \u2018Emergence\u2019. was supported by Wallonie\u2010Bruxelles International (WBI.IN) and T\u00E9l\u00E9vie postdoctoral fellowships. was supported by a Marie Sklodowska\u2010Curie (MSCA) postdoctoral fellowship. was supported by the grant PID2020\u2010119136RB\u2010I00 by MCIN/AEI/10.13039/501100011033. acknowledges the support from the programme NutriMED \u2018Nutritional supplements with anti\u2010anxiety and anti\u2010depressant properties from Greek medicinal plants\u2019 (\u039C\u0399S 5185062), which is implemented by the General Secretary of Research and Innovation under the framework of the Action \u2018Research and Innovation Synergies in the Region of Attica\u2019 (\u03A4\u03A4\u03A14\u20100339288), co\u2010financed by Greece and the European Union (NSRF 2014\u20102020). was founded by NutriMED\u2010MIS 5185062. acknowledges support from the Deutsche Forschungsgemeinschaft (265903901, FOR 2149/P01 and CRC 1423 project number 421152132, subproject B06). acknowledges support from the European Union's Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska\u2010Curie grant agreement No 101062195. performed this research under grant number PID2020\u2010119754GB\u2010I00 from the Spanish Ministry of Economy and Competitiveness (MINECO). All figures were created with BioRender.com . We apologise to everybody whose work could not be covered or cited in the paper due to the space limit. NBI NV AH JD DA CA JG ZG \u0391 CK NS HS APC
Abbracchio, M. P., Burnstock, G., Verkhratsky, A., & Zimmermann, H. (2009). Purinergic signalling in the nervous system: An overview. Trends in Neurosciences, 32(1), 19–29. https://doi.org/10.1016/j.tins.2008.10.001
Adamah-Biassi, E. B., Zhang, Y., Jung, H., Vissapragada, S., Miller, R. J., & Dubocovich, M. (2014). Distribution of MT1 melatonin receptor promoter-driven RFP expression in the brains of BAC C3H/HeN transgenic mice. The Journal of Histochemistry and Cytochemistry, 62(1), 70–84. https://doi.org/10.1369/0022155413507453
Agamah, F. E., Mazandu, G. K., Hassan, R., Bope, C. D., Thomford, N. E., Ghansah, A., & Chimusa, E. R. (2020). Computational/in silico methods in drug target and lead prediction. Briefings in Bioinformatics, 21(5), 1663–1675. https://doi.org/10.1093/bib/bbz103
Ahmad, R., Lahuna, O., Sidibe, A., Daulat, A., Zhang, Q., Luka, M., Guillaume, J. L., Gallet, S., Guillonneau, F., Hamroune, J., Polo, S., Prévot, V., Delagrange, P., Dam, J., & Jockers, R. (2020). GPR50-Ctail cleavage and nuclear translocation: A new signal transduction mode for G protein-coupled receptors. Cellular and Molecular Life Sciences, 77(24), 5189–5205. https://doi.org/10.1007/s00018-019-03440-7
Aicher, S. A., Hermes, S. M., Whittier, K. L., & Hegarty, D. M. (2012). Descending projections from the rostral ventromedial medulla (RVM) to trigeminal and spinal dorsal horns are morphologically and neurochemically distinct. Journal of Chemical Neuroanatomy, 43(2), 103–111. https://doi.org/10.1016/j.jchemneu.2011.11.00
Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Abbracchio, M. P., Abraham, G., Agoulnik, A., Alexander, W., Al-Hosaini, K., Bäck, M., Baker, J. G., Barnes, N. M., … Ye, R. D. (2023). The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. British Journal of Pharmacology, 180, S23–S144. https://doi.org/10.1111/bph.16177
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Beuve, A., Brouckaert, P., Bryant, C., Burnett, J. C., Farndale, R. W., Friebe, A., Garthwaite, J., Hobbs, A. J., Jarvis, G. E., … Waldman, S. A. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Catalytic receptors. British Journal of Pharmacology, 180, S241–S288. https://doi.org/10.1111/bph.16180
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180, S289–S373. https://doi.org/10.1111/bph.16181
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Amarosi, L., Anderson, C. M. H., Beart, P. M., Broer, S., Dawson, P. A., Gyimesi, G., Hagenbuch, B., Hammond, J. R., Hancox, J. C., … Verri, T. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Transporters. British Journal of Pharmacology, 180, S374–S469. https://doi.org/10.1111/bph.16182
Alexander, S. P. H., Mathie, A. A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Caceres, A. I., Catterall, W. A., Conner, A. C., … Zhu, M. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. British Journal of Pharmacology, 180, S145–S222. https://doi.org/10.1111/bph.16178
Alford, R. F., Leaver-Fay, A., Jeliazkov, J. R., O'Meara, M. J., DiMaio, F. P., Park, H., Shapovalov, M. V., Renfrew, P. D., Mulligan, V. K., Kappel, K., Labonte, J. W., Pacella, M. S., Bonneau, R., Bradley, P., Dunbrack, R. L. Jr., das, R., Baker, D., Kuhlman, B., Kortemme, T., & Gray, J. J. (2017). The Rosetta all-atom energy function for macromolecular modeling and design. Journal of Chemical Theory and Computation, 13(6), 3031–3048. https://doi.org/10.1021/acs.jctc.7b00125
Anderson, J. W., Greenway, F. L., Fujioka, K., Gadde, K. M., McKenney, J., & O'Neil, P. M. (2002). Bupropion SR enhances weight loss: A 48-week double-blind, placebo- controlled trial. Obesity Research, 10(7), 633–641. https://doi.org/10.1038/oby.2002.86
Andersson, M., Blomstrand, F., & Hanse, E. (2007). Astrocytes play a critical role in transient heterosynaptic depression in the rat hippocampal CA1 region. The Journal of Physiology, 585(Pt 3), 843–852. https://doi.org/10.1113/jphysiol.2007.142737
Andrews, S. P., & Cox, R. J. (2016). Small molecule CXCR3 antagonists. Journal of Medicinal Chemistry, 59(7), 2894–2917. https://doi.org/10.1021/acs.jmedchem.5b01337
Araç, D., Boucard, A. A., Bolliger, M. F., Nguyen, J., Soltis, S. M., Südhof, T. C., & Brunger, A. T. (2012). A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. The EMBO Journal, 31(6), 1364–1378. https://doi.org/10.1038/emboj.2012.26
Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (1999). Tripartite synapses: Glia, the unacknowledged partner. Trends in Neurosciences, 22(5), 208–215. https://doi.org/10.1016/S0166-2236(98)01349-6
Bachelerie, F., Ben-Baruch, A., Burkhardt, A. M., Combadiere, C., Farber, J. M., Graham, G. J., Horuk, R., Sparre-Ulrich, A. H., Locati, M., Luster, A. D., Mantovani, A., Matsushima, K., Murphy, P. M., Nibbs, R., Nomiyama, H., Power, C. A., Proudfoot, A. E. I., Rosenkilde, M. M., Rot, A., … Zlotnik, A. (2014). International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacological Reviews, 66(1), 1–79. https://doi.org/10.1124/pr.113.007724
Barnes, J. M., Przybyla, L., & Weaver, V. M. (2017). Tissue mechanics regulate brain development, homeostasis and disease. Journal of Cell Science, 130(1), 71–82. https://doi.org/10.1242/jcs.191742
Barnes, P. J. (2006). Receptor heterodimerization: A new level of cross-talk. The Journal of Clinical Investigation, 116(5), 1210–1212. https://doi.org/10.1172/JCI28535
Basile, A. S., Fedorova, I., Zapata, A., Liu, X., Shippenberg, T., Duttaroy, A., Yamada, M., & Wess, J. (2002). Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11452–11457. https://doi.org/10.1073/pnas.162371899
Beaulieu, J. M., & Gainetdinov, R. R. (2011). The physiology, ignaling, and pharmacology of dopamine receptors. Pharmacological Reviews, 63(1), 182–217. https://doi.org/10.1124/pr.110.002642
Bechtold, D. A., Sidibe, A., Saer, B. R., Li, J., Hand, L. E., Ivanova, E. A., Darras, V. M., Dam, J., Jockers, R., Luckman, S. M., & Loudon, A. S. I. (2012). A role for the melatonin-related receptor GPR50 in leptin signalling, adaptive thermogenesis, and torpor. Current Biology, 22(1), 70–77. https://doi.org/10.1016/j.cub.2011.11.043
Benarroch, E. E. (2012). Endogenous opioid systems: Current concepts and clinical correlations. Neurology, 79(8), 807–814. https://doi.org/10.1212/WNL.0b013e3182662098
Benleulmi-Chaachoua, A., Hegron, A., Le Boulch, M., Karamitri, A., Wierzbicka, M., Wong, V., Stagljar, I., Delagrange, P., Ahmad, R., & Jockers, R. (2018). Melatonin receptors limit dopamine reuptake by regulating dopamine transporter cell-surface exposure. Cellular and Molecular Life Sciences, 75(23), 4357–4370. https://doi.org/10.1007/s00018-018-2876-y
Benned-Jensen, T., & Rosenkilde, M. M. (2010). Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants. British Journal of Pharmacology, 159(5), 1092–1105. https://doi.org/10.1111/j.1476-5381.2009.00633.x
Berchiche, Y. A., & Sakmar, T. P. (2016). CXC chemokine receptor 3 alternative splice variants selectively activate different signalling pathways. Molecular Pharmacology, 90(4), 483–495. https://doi.org/10.1124/mol.116.105502
Bianchi, M. E., & Mezzapelle, R. (2020). The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Frontiers in Immunology, 11, 2109. https://doi.org/10.3389/fimmu.2020.02109
Birgül, N., Weise, C., Kreienkamp, H. J., & Richter, D. (1999). Reverse physiology in drosophila: Identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. The EMBO Journal, 18(21), 5892–5900. https://doi.org/10.1093/emboj/18.21.5892
Bodzęta, A., Scheefhals, N., & MacGillavry, H. D. (2021). Membrane trafficking and positioning of mGluRs at presynaptic and postsynaptic sites of excitatory synapses. Neuropharmacology, 200, 108799. https://doi.org/10.1016/j.neuropharm.2021.108799
Boison, D. (2007). Adenosine as a modulator of brain activity. Drug News & Perspectives, 20(10), 607–611. https://doi.org/10.1358/dnp.2007.20.10.1181353
Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F., & Varani, K. (2018). Pharmacology of adenosine receptors: The state of the art. Physiological Reviews, 98(3), 1591–1625. https://doi.org/10.1152/physrev.00049.2017
Bormann, A., Körner, M. B., Dahse, A-K., Gläser, M. S., Irmer, J., Lede, V., Alenfelder, J., Lehmann, J., Hall, D. C., Thane, M., & Scholz, N. (2023). Intron retention of an adhesion GPCR generates single transmembrane-helix isoforms to enable 7TM-adhesion GPCR function. bioRxiv, 2023.2001.2011.521585. https://doi.org/10.1101/2023.01.11.521585
Boutin, H., Dauphin, F., MacKenzie, E. T., & Jauzac, P. (1999). Differential time-course decreases in nonselective, μ-, δ-, and k-opioid receptors after focal cerebral ischemia in mice. Stroke, 6, 1271–1278. https://doi.org/10.1161/01.STR.30.6.1271
Boyé, K., Pujol, N., D Alves, I., Chen, Y. P., Daubon, T., Lee, Y. Z., Dedieu, S., Constantin, M., Bello, L., Rossi, M., Bjerkvig, R., Sue, S. C., Bikfalvi, A., & Billottet, C. (2017). The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors. Nature Communications, 8(1), 1571. https://doi.org/10.1038/s41467-017-01686-y
Brice, N. L., Schiffer, H. H., Monenschein, H., Mulligan, V. J., Page, K., Powell, J., Xu, X., Cheung, T., Burley, J. R., Sun, H., Dickson, L., Murphy, S. T., Kaushal, N., Sheardown, S., Lawrence, J., Chen, Y., Bartkowski, D., Kanta, A., Russo, J., … Carlton, M. B. (2021). Development of CVN424: A selective and novel GPR6 inverse agonist effective in models of Parkinson disease. The Journal of Pharmacology and Experimental Therapeutics, 377(3), 407–416. https://doi.org/10.1124/jpet.120.000438
Brust, T. F., Morgenweck, J., Kim, S. A., Rose, J. H., Locke, J. L., Schmid, C. L., Zhou, L., Stahl, E. L., Cameron, M. D., Scarry, S. M., Aubé, J., Jones, S. R., Martin, T. J., & Bohn, L. M. (2016). Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Science signalling, 9(456), ra117. https://doi.org/10.1126/scisignal.aai8441
Burgueño, J., Pujol, M., Monroy, X., Roche, D., Varela, M. J., Merlos, M., & Giraldo, J. (2017). A complementary scale of biased Agonism for agonists with differing maximal responses. Scientific Reports, 7(1), 15389. https://doi.org/10.1038/s41598-017-15258-z
Burnstock, G. (2006). Historical review: ATP as a neurotransmitter. Trends in Pharmacological Sciences, 27(3), 166–176. https://doi.org/10.1016/j.tips.2006.01.005
Burnstock, G. (2018). Purine and purinergic receptors. Brain and Neuroscience Advances, 2, 2398212818817494. https://doi.org/10.1177/2398212818817494
Burnstock, G., & Knight, G. E. (2004). Cellular distribution and functions of P2 receptor subtypes in different systems. International Review of Cytology, 240, 31–304. https://doi.org/10.1016/S0074-7696(04)40002-3
Calebiro, D., Koszegi, Z., Lanoiselée, Y., Miljus, T., & O'Brien, S. (2021). G protein-coupled receptor-G protein interactions: A single-molecule perspective. Physiological Reviews, 101(3), 857–906. https://doi.org/10.1152/physrev.00021.2020
Calo', G., Guerrini, R., Rizzi, A., Salvadori, S., & Regoli, D. (2000). Pharmacology of nociceptin and its receptor: A novel therapeutic target. British Journal of Pharmacology, 129(7), 1261–1283. https://doi.org/10.1038/sj.bjp.0703219
Cannon, D. M., Carson, R. E., Nugent, A. C., Eckelman, W. C., Kiesewetter, D. O., Williams, J., Rollis, D., Drevets, M., Gandhi, S., Solorio, G., & Drevets, W. C. (2006). Reduced muscarinic type 2 receptor binding in subjects with bipolar disorder. Archives of General Psychiatry, 63(7), 741–747. https://doi.org/10.1001/archpsyc.63.7.741
Celada, P., Puig, M. V., & Artigas, F. (2013). Serotonin modulation of cortical neurons and networks. Frontiers in Integrative Neuroscience, 7, 25. https://doi.org/10.3389/fnint.2013.00025
Chan, W. K. B., & Zhang, Y. (2020). Virtual screening of human class-a GPCRs using ligand profiles built on multiple ligand-receptor interactions. Journal of Molecular Biology, 432(17), 4872–4890. https://doi.org/10.1016/j.jmb.2020.07.003
Chen, C. J., Cheng, F. C., Liao, S. L., Chen, W. Y., Lin, N. N., & Kuo, J. S. (2000). Effects of naloxone on lactate, pyruvate metabolism and antioxidant enzyme activity in rat cerebral ischemia/reperfusion. Neuroscience Letters, 287(2), 113–116. https://doi.org/10.1016/s0304-3940(00)01151-4
Chen, D., Liu, X., Zhang, W., & Shi, Y. (2012). Targeted inactivation of GPR26 leads to hyperphagia and adiposity by activating AMPK in the hypothalamus. PLoS ONE, 7(7), e40764. https://doi.org/10.1371/journal.pone.0040764
Chen, X. L., Lu, G., Gong, Y. X., Zhao, L. C., Chen, J., Chi, Z. Q., Yang, Y. M., Chen, Z., Li, Q. L., & Liu, J. G. (2007). Expression changes of hippocampal energy metabolism enzymes contribute to behavioural abnormalities during chronic morphine treatment. Cell Research, 17(8), 689–700. https://doi.org/10.1038/cr.2007.63
Chen, Y., Wu, H., Wang, S., Koito, H., Li, J., Ye, F., Hoang, J., Escobar, S. S., Gow, A., Arnett, H. A., Trapp, B. D., Karandikar, N. J., Hsieh, J., & Lu, Q. R. (2009). The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nature Neuroscience, 12(11), 1398–1406. https://doi.org/10.1038/nn.2410
Chern, C. M., Liao, J. F., Wang, Y. H., & Shen, Y. C. (2012). Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radical Biology & Medicine, 52(9), 1634–1647. https://doi.org/10.1016/j.freeradbiomed.2012.01.030
Chun, L., Zhang, W. H., & Liu, J. F. (2012). Structure and ligand recognition of class C GPCRs. Acta Pharmacologica Sinica, 33(3), 312–323. https://doi.org/10.1038/aps.2011.186
Chung, S., Funakoshi, T., & Civelli, O. (2008). Orphan GPCR research. British Journal of Pharmacology, 153, S339–S346. https://doi.org/10.1038/sj.bjp.0707606
Ciana, P., Fumagalli, M., Trincavelli, M. L., Verderio, C., Rosa, P., Lecca, D., Ferrario, S., Parravicini, C., Capra, V., Gelosa, P., Guerrini, U., Belcredito, S., Cimino, M., Sironi, L., Tremoli, E., Rovati, G. E., Martini, C., & Abbracchio, M. P. (2006). The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. The EMBO Journal, 25(19), 4615–4627. https://doi.org/10.1038/sj.emboj.7601341
Civelli, O., Saito, Y., Wang, Z., Nothacker, H. P., & Reinscheid, R. K. (2006). Orphan GPCRs and their ligands. Pharmacology & Therapeutics, 110(3), 525–532. https://doi.org/10.1016/j.pharmthera.2005.10.001
Cleary, J., Weldon, J. T., O'Hare, E., Billington, C., & Levine, A. S. (1996). Naloxone effects on sucrose-motivated behavior. Psychopharmacology, 126, 110–114. https://doi.org/10.1007/BF02246345
Clement, N., Renault, N., Guillaume, J. L., Cecon, E., Journé, A. S., Laurent, X., Tadagaki, K., Cogé, F., Gohier, A., Delagrange, P., Chavatte, P., & Jockers, R. (2018). Importance of the second extracellular loop for melatonin MT. British Journal of Pharmacology, 175(16), 3281–3297. https://doi.org/10.1111/bph.14029
Cong, Z., Liang, Y. L., Zhou, Q., Darbalaei, S., Zhao, F., Feng, W., Zhao, L., Xu, H. E., Yang, D., & Wang, M. W. (2022). Structural perspective of class B1 GPCR signalling. Trends in Pharmacological Sciences, 43(4), 321–334. https://doi.org/10.1016/j.tips.2022.01.002
Conibear, A. E., Asghar, J., Hill, R., Henderson, G., Borbely, E., Tekus, V., Helyes, Z., Palandri, J., Bailey, C., Starke, I., von Mentzer, B., Kendall, D., & Kelly, E. (2020). A novel G protein-biased agonist at the. The Journal of Pharmacology and Experimental Therapeutics, 372(2), 224–236. https://doi.org/10.1124/jpet.119.258640
Conn, P. J., Lindsley, C. W., Meiler, J., & Niswender, C. M. (2014). Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nature Reviews. Drug Discovery, 13(9), 692–708. https://doi.org/10.1038/nrd4308
Corkrum, M., Covelo, A., Lines, J., Bellocchio, L., Pisansky, M., Loke, K., Quintana, R., Rothwell, P. E., Lujan, R., Marsicano, G., Martin, E. D., Thomas, M. J., Kofuji, P., & Araque, A. (2020). Dopamine-evoked synaptic regulation in the nucleus Accumbens requires astrocyte activity. Neuron, 105(6), 1036–1047.e5. https://doi.org/10.1016/j.neuron.2019.12.026
Covelo, A., & Araque, A. (2018). Neuronal activity determines distinct gliotransmitter release from a single astrocyte. eLife, 7, e32237. https://doi.org/10.7554/eLife.32237
Crupi, R., Impellizzeri, D., & Cuzzocrea, S. (2019). Role of metabotropic glutamate receptors in neurological disorders. Frontiers in Molecular Neuroscience, 12, 20. https://doi.org/10.3389/fnmol.2019.00020
Cunha, R. A. (2016). How does adenosine control neuronal dysfunction and neurodegeneration? Journal of Neurochemistry, 139(6), 1019–1055. https://doi.org/10.1111/jnc.13724
Dai, Y. W., Lee, Y. H., Chen, J. Y., Lin, Y. K., & Hwang, L. L. (2016). Expression of the M3 muscarinic receptor on orexin neurons that project to the rostral ventrolateral medulla. The Anatomical Record, 299(5), 660–668. https://doi.org/10.1002/ar.23329
Dalefield, M. L., Scouller, B., Bibi, R., & Kivell, B. M. (2022). The kappa opioid receptor: A promising therapeutic target for multiple pathologies. Frontiers in Pharmacology, 13, 837671. https://doi.org/10.3389/fphar.2022.837671
Dannhäuser, S., Lux, T. J., Hu, C., Selcho, M., Chen, J. T., Ehmann, N., Sachidanandan, D., Stopp, S., Pauls, D., Pawlak, M., Langenhan, T., Soba, P., Rittner, H. L., & Kittel, R. J. (2020). Antinociceptive modulation by the adhesion GPCR CIRL promotes mechanosensory signal discrimination. eLife, 9, e56738. https://doi.org/10.7554/eLife.56738
de Graaf, C., Song, G., Cao, C., Zhao, Q., Wang, M. W., Wu, B., & Stevens, R. C. (2017). Extending the structural view of class B GPCRs. Trends in Biochemical Sciences, 42(12), 946–960. https://doi.org/10.1016/j.tibs.2017.10.003
Delavest, M., Even, C., Benjemaa, N., Poirier, M. F., Jockers, R., & Krebs, M. O. (2012). Association of the intronic rs2072621 polymorphism of the X-linked GPR50 gene with affective disorder with seasonal pattern. European Psychiatry, 27(5), 369–371. https://doi.org/10.1016/j.eurpsy.2011.02.011
Dijkstra, I. M., Hulshof, S., van der Valk, P., Boddeke, H. W., & Biber, K. (2004). Cutting edge: Activity of human adult microglia in response to CC chemokine ligand 21. Journal of Immunology, 172(5), 2744–2747. https://doi.org/10.4049/jimmunol.172.5.2744
Dillenburg-Pilla, P., Patel, V., Mikelis, C. M., Zárate-Bladés, C. R., Doçi, C. L., Amornphimoltham, P., Wang, Z., Martin, D., Leelahavanichkul, K., Dorsam, R. T., Masedunskas, A., Weigert, R., Molinolo, A. A., & Gutkind, J. S. (2015). SDF-1/CXCL12 induces directional cell migration and spontaneous metastasis via a CXCR4/Gαi/mTORC1 axis. The FASEB Journal, 29(3), 1056–1068. https://doi.org/10.1096/fj.14-260083
Dorsam, R. T., & Gutkind, J. S. (2007). G-protein-coupled receptors and cancer. Nature Reviews. Cancer, 7(2), 79–94. https://doi.org/10.1038/nrc2069
Drago, A., & Kure Fischer, E. (2018). A molecular pathway analysis informs the genetic risk for arrhythmias during antipsychotic treatment. International Clinical Psychopharmacology, 33(1), 1–14. https://doi.org/10.1097/YIC.0000000000000198
Dwomoh, L., Rossi, M., Scarpa, M., Khajehali, E., Molloy, C., Herzyk, P., Mistry, S. N., Bottrill, A. R., Sexton, P. M., Christopoulos, A., Conn, P. J., Lindsley, C. W., Bradley, S. J., & Tobin, A. B. (2022). M1 muscarinic receptor activation reduces the molecular pathology and slows the progression of prion-mediated neurodegenerative disease. Science signalling, 15(760), eabm3720. https://doi.org/10.1126/scisignal.abm3720
Ehrlich, A. T., Maroteaux, G., Robe, A., Venteo, L., Nasseef, M. T., van Kempen, L. C., Mechawar, N., Turecki, G., Darcq, E., & Kieffer, B. L. (2018). Expression map of 78 brain-expressed mouse orphan GPCRs provides a translational resource for neuropsychiatric research. Communications Biology, 1, 102. https://doi.org/10.1038/s42003-018-0106-7
Felder, C. C. (1995). Muscarinic acetylcholine receptors: Signal transduction through multiple effectors. The FASEB Journal, 9(8), 619–625. https://doi.org/10.1096/fasebj.9.8.7768353
Feltri, M. L., Poitelon, Y., & Previtali, S. C. (2016). How Schwann cells Sort axons: New concepts. The Neuroscientist, 22(3), 252–265. https://doi.org/10.1177/1073858415572361
Fife, B. T., Paniagua, M. C., Lukacs, N. W., Kunkel, S. L., & Karpus, W. J. (2001). Selective CC chemokine receptor expression by central nervous system-infiltrating encephalitogenic T cells during experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 66(4), 705–714. https://doi.org/10.1002/jnr.10037
Fink, K., Velebit, J., Vardjan, N., Zorec, R., & Kreft, M. (2021). Noradrenaline-induced l-lactate production requires d-glucose entry and transit through the glycogen shunt in single-cultured rat astrocytes. Journal of Neuroscience Research, 99, 1084–1098. https://doi.org/10.1002/jnr.24783
Finnerup, N. B., Kuner, R., & Jensen, T. S. (2021). Neuropathic pain: From mechanisms to treatment. Physiological Reviews, 101(1), 259–301. https://doi.org/10.1152/physrev.00045.2019
Garzón, J., García-España, A., & Sánchez-Blázquez, P. (1997). Opioids binding mu and delta receptors exhibit diverse efficacy in the activation of Gi2 and G(x/z) transducer proteins in mouse periaqueductal gray matter. The Journal of Pharmacology and Experimental Therapeutics, 281(1), 549–557.
Georganta, E. M., Tsoutsi, L., Gaitanou, M., & Georgoussi, Z. (2013). δ-Opioid receptor activation leads to neurite outgrowth and neuronal differentiation via a STAT5B-Gαi/o pathway. Journal of Neurochemistry, 127(3), 329–341. https://doi.org/10.1111/jnc.12386
George, S., Berth-Jones, J., & Graham-Brown, R. A. (1997). A possible explanation for the increased referral of atopic dermatitis from the Asian community in Leicester. The British Journal of Dermatology, 136(4), 494–497. https://doi.org/10.1046/j.1365-2133.1997.d01-1223.x
Georgoussi, Z., Georganta, E. M., & Milligan, G. (2012). The other side of opioid receptor signalling: Regulation by protein-protein interaction. Current Drug Targets, 13(1), 80–102. https://doi.org/10.2174/138945012798868470
Georgoussi, Z., Merkouris, M., Mullaney, I., Megaritis, G., Carr, C., Zioudrou, C., & Milligan, G. (1997). Selective interactions of mu-opioid receptors with pertussis toxin-sensitive G proteins: Involvement of the third intracellular loop and the c-terminal tail in coupling. Biochimica et Biophysica Acta, 1359(3), 263–274. https://doi.org/10.1016/s0167-4889(97)00097-9
Gerbier, R., Ndiaye-Lobry, D., Martinez de Morentin, P. B., Cecon, E., Heisler, L. K., Delagrange, P., Gbahou, F., & Jockers, R. (2021). Pharmacological evidence for transactivation within melatonin MT. The FASEB Journal, 35(1), e21161. https://doi.org/10.1096/fj.202000305R
Giannos, T., Lešnik, S., Bren, U., Hodošček, M., Domratcheva, T., & Bondar, A. N. (2021). CHARMM force-field parameters for morphine, heroin, and oliceridine, and conformational dynamics of opioid drugs. Journal of Chemical Information and Modeling, 61(8), 3964–3977. https://doi.org/10.1021/acs.jcim.1c00667
Gillis, A., Gondin, A. B., Kliewer, A., Sanchez, J., Lim, H. D., Alamein, C., Manandhar, P., Santiago, M., Fritzwanker, S., Schmiedel, F., Katte, T. A., Reekie, T., Grimsey, N. L., Kassiou, M., Kellam, B., Krasel, C., Halls, M. L., Connor, M., Lane, J. R., … Canals, M. (2020). Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Science signalling, 13, 625. https://doi.org/10.1126/scisignal.aaz3140
Gillis, A., Kliewer, A., Kelly, E., Henderson, G., Christie, M. J., Schulz, S., & Canals, M. (2020). Critical assessment of G protein-biased Agonism at the μ-opioid receptor. Trends in Pharmacological Sciences, 41(12), 947–959. https://doi.org/10.1016/j.tips.2020.09.009
Gould, R. W., Grannan, M. D., Gunter, B. W., Ball, J., Bubser, M., Bridges, T. M., Wess, J., Wood, M. W., Brandon, N. J., Duggan, M. E., Niswender, C. M., Lindsley, C. W., Conn, P. J., & Jones, C. K. (2018). Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154. Neuropharmacology, 128, 492–502. https://doi.org/10.1016/j.neuropharm.2017.07.013
Groom, J. R., & Luster, A. D. (2011a). CXCR3 in T cell function. Experimental Cell Research, 317(5), 620–631. https://doi.org/10.1016/j.yexcr.2010.12.017
Groom, J. R., & Luster, A. D. (2011b). CXCR3 ligands: Redundant, collaborative and antagonistic functions. Immunology and Cell Biology, 89(2), 207–215. https://doi.org/10.1038/icb.2010.158
Grünewald, E., Kinnell, H. L., Porteous, D. J., & Thomson, P. A. (2009). GPR50 interacts with neuronal NOGO-A and affects neurite outgrowth. Molecular and Cellular Neurosciences, 42(4), 363–371. https://doi.org/10.1016/j.mcn.2009.08.007
Guo, W., Zhang, J., Zhou, Y., Zhou, C., Yang, Y., Cong, Z., Dong, J., Yang, D., Dai, B., & Wang, M. W. (2021). GPR160 is a potential biomarker associated with prostate cancer. Signal Transduction and Targeted Therapy, 6(1), 241. https://doi.org/10.1038/s41392-021-00583-7
Gutkind, J. S., & Kostenis, E. (2018). Arrestins as rheostats of GPCR signalling. Nature Reviews. Molecular Cell Biology, 19(10), 615–616. https://doi.org/10.1038/s41580-018-0041-y
Guzman, S. J., & Gerevich, Z. (2016). P2Y receptors in synaptic transmission and plasticity: Therapeutic potential in cognitive dysfunction. Neural Plasticity, 2016, 1207393. https://doi.org/10.1155/2016/1207393
Hamann, J., Aust, G., Araç, D., Engel, F. B., Formstone, C., Fredriksson, R., Hall, R. A., Harty, B. L., Kirchhoff, C., Knapp, B., Krishnan, A., Liebscher, I., Lin, H. H., Martinelli, D. C., Monk, K. R., Peeters, M. C., Piao, X., Prömel, S., Schöneberg, T., … Schiöth, H. B. (2015). International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacological Reviews, 67(2), 338–367. https://doi.org/10.1124/pr.114.009647
Hamilton, N. H., Banyer, J. L., Hapel, A. J., Mahalingam, S., Ramsay, A. J., Ramshaw, I. A., & Thomson, S. A. (2002). IFN-gamma regulates murine interferon-inducible T cell alpha chemokine (I-TAC) expression in dendritic cell lines and during experimental autoimmune encephalomyelitis (EAE). Scandinavian Journal of Immunology, 55(2), 171–177. https://doi.org/10.1046/J.0300-9475.2001.01019.X
Hamouda, H. O., Chen, P., Levoye, A., Sözer-Topçular, N., Daulat, A. M., Guillaume, J. L., Ravid, R., Savaskan, E., Ferry, G., Boutin, J. A., Delagrange, P., Jockers, R., & Maurice, P. (2007). Detection of the human GPR50 orphan seven transmembrane protein by polyclonal antibodies mapping different epitopes. Journal of Pineal Research, 43(1), 10–15. https://doi.org/10.1111/j.1600-079X.2007.00437.x
Han, J., Zhang, J., Nazarova, A. L., Bernhard, S. M., Krumm, B. E., Zhao, L., Lam, J. H., Rangari, V. A., Majumdar, S., Nichols, D. E., Katritch, V., Yuan, P., Fay, J. F., & Che, T. (2023). Ligand and G-protein selectivity in the κ-opioid receptor. Nature, 617(7960), 417–425. https://doi.org/10.1038/s41586-023-06030-7
Harden, T. K. (2013). Enigmatic GPCR finds a stimulating drug. Science signalling, 6(298), pe34. https://doi.org/10.1126/scisignal.2004755
Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. B., & Gloriam, D. E. (2017). Trends in GPCR drug discovery: New agents, targets and indications. Nature Reviews. Drug Discovery, 16(12), 829–842. https://doi.org/10.1038/nrd.2017.178
Hertz, L., Lovatt, D., Goldman, S. A., & Nedergaard, M. (2010). Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca(2+)]i. Neurochemistry International, 57(4), 411–420. https://10.1016/j.neuint.2010.03.019
Hirai, H., Sakaba, T., & Hashimotodani, Y. (2022). Subcortical glutamatergic inputs exhibit a Hebbian form of long-term potentiation in the dentate gyrus. Cell Reports, 41(13), 111871. https://doi.org/10.1016/j.celrep.2022.111871
Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
Horvat, A., Muhič, M., Smolič, T., Begić, E., Zorec, R., Kreft, M., & Vardjan, N. (2021). Ca2+ as the prime trigger of aerobic glycolysis in astrocytes. Cell Calcium, 95, 102368. https://doi.org/10.1016/j.ceca.2021.102368
Horvat, A., Zorec, R., & Vardjan, N. (2021). Lactate as an Astroglial signal augmenting aerobic glycolysis and lipid metabolism. Frontiers in Physiology, 12, 735532. https://doi.org/10.3389/fphys.2021.735532
Hsiao, K., Noble, C., Pitman, W., Yadav, N., Kumar, S., Keele, G. R., Terceros, A., Kanke, M., Conniff, T., Cheleuitte-Nieves, C., Tolwani, R., Sethupathy, P., & Rajasethupathy, P. (2020). A thalamic orphan receptor drives variability in short-term memory. Cell, 183(2), 522–536.e519. https://doi.org/10.1016/j.cell.2020.09.011
Huang, D., Han, Y., Rani, M. R., Glabinski, A., Trebst, C., Sørensen, T., Tani, M., Wang, J., Chien, P., O'Bryan, S., Bielecki, B., Zhou, Z. L., Majumder, S., & Ransohoff, R. M. (2000). Chemokines and chemokine receptors in inflammation of the nervous system: Manifold roles and exquisite regulation. Immunological Reviews, 177, 52–67. https://doi.org/10.1034/j.1600-065x.2000.17709.x
Huang, Y., Rafael Guimarães, T., Todd, N., Ferguson, C., Weiss, K. M., Stauffer, F. R., McDermott, B., Hurtle, B. T., Saito, T., Saido, T. C., MacDonald, M. L., Homanics, G. E., & Thathiah, A. (2022). G protein-biased GPR3 signalling ameliorates amyloid pathology in a preclinical Alzheimer's disease mouse model. Proceedings of the National Academy of Sciences of the United States of America, 119(40), e2204828119. https://doi.org/10.1073/pnas.2204828119
Huang, Y., Skwarek-Maruszewska, A., Horré, K., Vandewyer, E., Wolfs, L., Snellinx, A., Saito, T., Radaelli, E., Corthout, N., Colombelli, J., Lo, A. C., van Aerschot, L., Callaerts-Vegh, Z., Trabzuni, D., Bossers, K., Verhaagen, J., Ryten, M., Munck, S., D'Hooge, R., … Thathiah, A. (2015). Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer's disease mouse models. Science Translational Medicine, 7(309), 309ra164. https://doi.org/10.1126/scitranslmed.aab3492
Huang, Y., & Thathiah, A. (2015). Regulation of neuronal communication by G protein-coupled receptors. FEBS Letters, 589(14), 1607–1619. https://doi.org/10.1016/j.febslet.2015.05.007
Husain, S. (2018). Delta opioids: Neuroprotective roles in preclinical studies. Journal of Ocular Pharmacology and Therapeutics, 34(1–2), 119–128. https://doi.org/10.1089/jop.2017.0039
Huynh, C., Dingemanse, J., Meyer zu Schwabedissen, H. E., & Sidharta, P. N. (2020). Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacological Research, 161, 105092. https://doi.org/10.1016/j.phrs.2020.105092
Im, D. S. (2002). Orphan G protein-coupled receptors and beyond. Japanese Journal of Pharmacology, 90(2), 101–106. https://doi.org/10.1254/jjp.90.101
Inoue, A., Ishiguro, J., Kitamura, H., Arima, N., Okutani, M., Shuto, A., Higashiyama, S., Ohwada, T., Arai, H., Makide, K., & Aoki, J. (2012). TGFα shedding assay: An accurate and versatile method for detecting GPCR activation. Nature Methods, 9(10), 1021–1029. https://doi.org/10.1038/nmeth.2172
Jacob, L., Hoffmann, B., Stoven, V., & Vert, J. P. (2008). Virtual screening of GPCRs: An in silico chemogenomics approach. BMC Bioinformatics, 9, 363. https://doi.org/10.1186/1471-2105-9-363
Jain, R., Watson, U., Vasudevan, L., & Saini, D. K. (2018). ERK activation pathways downstream of GPCRs. International Review of Cell and Molecular Biology, 338, 79–109. https://doi.org/10.1016/bs.ircmb.2018.02.003
Jaiteh, M., Rodríguez-Espigares, I., Selent, J., & Carlsson, J. (2020). Performance of virtual screening against GPCR homology models: Impact of template selection and treatment of binding site plasticity. PLoS Computational Biology, 16(3), e1007680. https://doi.org/10.1371/journal.pcbi.1007680
Jean-Charles, P. Y., Kaur, S., & Shenoy, S. K. (2017). G protein-coupled receptor signalling through β-Arrestin-dependent mechanisms. Journal of Cardiovascular Pharmacology, 70(3), 142–158. https://doi.org/10.1097/FJC.0000000000000482
Jennings, A., Tyurikova, O., Bard, L., Zheng, K., Semyanov, A., Henneberger, C., & Rusakov, D. A. (2017). Dopamine elevates and lowers astroglial ca. Glia, 65(3), 447–459. https://doi.org/10.1002/glia.23103
Jiang, X., Li, J., & Ma, L. (2007). Metabolic enzymes link morphine withdrawal with metabolic disorder. Cell Research, 17(9), 741–743. https://doi.org/10.1038/cr.2007.75
Jiménez-Vargas, N. N., Yu, Y., Jensen, D. D., Bok, D. D., Wisdom, M., Latorre, R., Lopez, C., Jaramillo-Polanco, J. O., Degro, C., Guzman-Rodriguez, M., Tsang, Q., Snow, Z., Schmidt, B. L., Reed, D. E., Lomax, A. E., Margolis, K. G., Stein, C., Bunnett, N. W., & Vanner, S. J. (2021). Agonist that activates the m-opioid receptor in acidified microenvironments inhibits colitis pain without side effects. Gut, 71, 695–704. https://doi.org/10.1136/gutjnl-2021-324070
Jones, P. G., Nawoschik, S. P., Sreekumar, K., Uveges, A. J., Tseng, E., Zhang, L., Johnson, J., He, L., Paulsen, J. E., Bates, B., & Pausch, M. H. (2007). Tissue distribution and functional analyses of the constitutively active orphan G protein coupled receptors, GPR26 and GPR78. Biochimica et Biophysica Acta, 1770(6), 890–901. https://doi.org/10.1016/j.bbagen.2007.01.013
Kaiser, L. M., Hunter, Z. R., Treon, S. P., & Buske, C. (2021). CXCR4 in Waldenström's Macroglobulinema: Chances and challenges. Leukemia, 35(2), 333–345. https://doi.org/10.1038/s41375-020-01102-3
Kankanamge, D., Tennakoon, M., Karunarathne, A., & Gautam, N. (2022). G protein gamma subunit, a hidden master regulator of GPCR signalling. The Journal of Biological Chemistry, 298(12), 102618. https://doi.org/10.1016/j.jbc.2022.102618
Karoussiotis, C., Sotiriou, A., Polissidis, A., Symeonof, A., Papavranoussi-Daponte, D., Nikoletopoulou, V., & Georgoussi, Z. (2022). The κ-opioid receptor-induced autophagy is implicated in stress-driven synaptic alterations. Frontiers in Molecular Neuroscience, 15, 1039135. https://doi.org/10.3389/fnmol.2022.1039135
Khakh, B. S. (2019). Astrocyte-neuron interactions in the striatum: Insights on identity, form, and function. Trends in Neurosciences, 42(9), 617–630. https://doi.org/10.1016/j.tins.2019.06.003
Kibaly, C., Xu, C., Cahill, C. M., Evans, C. J., & Law, P. Y. (2019). Non-nociceptive roles of opioids in the CNS: Opioids' effects on neurogenesis, learning, memory and affect. Nature Reviews. Neuroscience, 20(1), 5–18. https://doi.org/10.1038/s41583-018-0092-2
Kichi, Z. A., Natarelli, L., Sadeghian, S., Boroumand, M. A., Behmanesh, M., & Weber, C. (2022). Orphan GPR26 counteracts early phases of hyperglycemia-mediated monocyte activation and is suppressed in diabetic patients. Biomedicine, 10(7), 1736. https://doi.org/10.3390/biomedicines10071736
King, B. M., Castellanos, F. X., Kastin, A. J., Berzas, M. C., Mauk, M. D., Olson, G. A., & Olson, R. D. (1979). Naloxone-induced supression of food intake in normal and hypothalamic obese rats. Pharmacology Biochemistry & Behaviour, 11, 729–732. https://doi.org/10.1016/0091-3057(79)90272-7
Kivisäkk, P., Trebst, C., Liu, Z., Tucky, B. H., Sørensen, T. L., Rudick, R. A., Mack, M., & Ransohoff, R. M. (2002). T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation: Implications for CNS trafficking. Clinical and Experimental Immunology, 129(3), 510–518. https://doi.org/10.1046/j.1365-2249.2002.01947.x
Klosen, P., Lapmanee, S., Schuster, C., Guardiola, B., Hicks, D., Pevet, P., & Felder-Schmittbuhl, M. P. (2019). MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. Journal of Pineal Research, 67(1), e12575. https://doi.org/10.1111/jpi.12575
Kofuji, P., & Araque, A. (2021). G-protein-coupled receptors in astrocyte-neuron communication. Neuroscience, 456, 71–84. https://doi.org/10.1016/j.neuroscience.2020.03.025
Koshimizu, H., Leiter, L. M., & Miyakawa, T. (2012). M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Molecular Brain, 5, 10. https://doi.org/10.1186/1756-6606-5-10
Kudla, L., & Przewlocki, R. (2021). Influence of G protein-biased agonists of μ-opioid receptor on addiction-related behaviors. Pharmacological Reports, 73(4), 1033–1051. https://doi.org/10.1007/s43440-021-00251-1
Küffer, A., Lakkaraju, A. K., Mogha, A., Petersen, S. C., Airich, K., Doucerain, C., Marpakwar, R., Bakirci, P., Senatore, A., Monnard, A., Schiavi, C., Nuvolone, M., Grosshans, B., Hornemann, S., Bassilana, F., Monk, K. R., & Aguzzi, A. (2016). The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature, 536(7617), 464–468. https://doi.org/10.1038/nature19312
Lasagni, L., Francalanci, M., Annunziato, F., Lazzeri, E., Giannini, S., Cosmi, L., Sagrinati, C., Mazzinghi, B., Orlando, C., Maggi, E., Marra, F., Romagnani, S., Serio, M., & Romagnani, P. (2003). An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. The Journal of Experimental Medicine, 197(11), 1537–1549. https://doi.org/10.1084/jem.20021897
Laschet, C., Dupuis, N., & Hanson, J. (2018). The G protein-coupled receptors deorphanization landscape. Biochemical Pharmacology, 153, 62–74. https://doi.org/10.1016/j.bcp.2018.02.016
Lavalou, J., Mao, Q., Harmansa, S., Kerridge, S., Lellouch, A. C., Philippe, J. M., Audebert, S., Camoin, L., & Lecuit, T. (2021). Formation of polarized contractile interfaces by self-organized Toll-8/Cirl GPCR asymmetry. Developmental Cell, 56(11), 1574–1588.e7. https://doi.org/10.1016/j.devcel.2021.03.030
Le Merrer, J., Becker, J. A., Befort, K., & Kieffer, B. L. (2009). Reward processing by the opioid system in the brain. Physiological Reviews, 89, 1379–1412. https://doi.org/10.1152/physrev.00005.2009
le Roux, C. W., Fils-Aimé, N., Camachi, F., Gould, E., & Barakat, M. (2022). The relationship between early weight loss and weight loss maintenance with naltrexone-bupropion therapy. eClinicalMedicine, 49, 101436. https://doi.org/10.1016/j.eclinm.2022.101436
Lebois, E. P., Schroeder, J. P., Esparza, T. J., Bridges, T. M., Lindsley, C. W., Conn, P. J., … Levey, A. I. (2017). Disease-modifying effects of M1 muscarinic acetylcholine receptor activation in an Alzheimer's disease mouse model. ACS Chemical Neuroscience, 8(6), 1177–1187. https://doi.org/10.1021/acschemneuro.6b00278
Lee, C. W., Muo, C. H., Liang, J. A., Sung, F. C., & Kao, C. H. (2013). Association of intensive morphine treatment and increased stroke incidence in prostate cancer patients: A population-based nested case–control study. Japanese Journal of Clinical Oncology, 43(8), 776–781. https://doi.org/10.1093/jjco/hyt080
Lee, D. K., Lynch, K. R., Nguyen, T., Im, D. S., Cheng, R., Saldivia, V. R., Liu, Y., Liu, I. S. C., Heng, H. H. Q., Seeman, P., George, S. R., O'Dowd, B. F., & Marchese, A. (2000). Cloning and characterization of additional members of the G protein-coupled receptor family. Biochimica et Biophysica Acta, 1490(3), 311–323. https://doi.org/10.1016/s0167-4781(99)00241-9
Lešnik, S., Bren, U., Domratcheva, T., & Bondar, A. N. (2023). Fentanyl and the fluorinated fentanyl derivative NFEPP elicit distinct hydrogen-bond dynamics of the opioid receptor. Journal of Chemical Information and Modeling, 63(15), 4732–4748. https://doi.org/10.1021/acs.jcim.3c00197
Levoye, A., Dam, J., Ayoub, M. A., Guillaume, J. L., Couturier, C., Delagrange, P., & Jockers, R. (2006). The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. The EMBO Journal, 25(13), 3012–3023. https://doi.org/10.1038/sj.emboj.7601193
Li, Q., & Shah, S. (2017). Structure-based virtual screening. Methods in Molecular Biology, 1558, 111–124. https://doi.org/10.1007/978-1-4939-6783-4_5
Li, W., Sun, H., Chen, H., Yang, X., Xiao, L., Liu, R., Shao, L., & Qiu, Z. (2016). Major depressive disorder and kappa opioid receptor antagonists. Transl Perioper Pain Med, 1(2), 4–16.
Liebscher, I., Cevheroğlu, O., Hsiao, C. C., Maia, A. F., Schihada, H., Scholz, N., Soave, M., Spiess, K., Trajković, K., Kosloff, M., & Prömel, S. (2022). A guide to adhesion GPCR research. The FEBS Journal, 289(24), 7610–7630. https://doi.org/10.1111/febs.16258
Liebscher, I., Schön, J., Petersen, S. C., Fischer, L., Auerbach, N., Demberg, L. M., Mogha, A., Cöster, M., Simon, K. U., Rothemund, S., Monk, K. R., & Schöneberg, T. (2014). A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Reports, 9(6), 2018–2026. https://doi.org/10.1016/j.celrep.2014.11.036
Lin, H. H., Ng, K. F., Chen, T. C., & Tseng, W. Y. (2022). Ligands and beyond: Mechanosensitive adhesion GPCRs. Pharmaceuticals (Basel), 15(2), 219. https://doi.org/10.3390/ph15020219
Lin, S. H., & Civelli, O. (2004). Orphan G protein-coupled receptors: Targets for new therapeutic interventions. Annals of Medicine, 36(3), 204–214. https://doi.org/10.1080/07853890310024668
Lin, X., Li, M., Wang, N., Wu, Y., Luo, Z., Guo, S., Han, G. W., Li, S., Yue, Y., Wei, X., Xie, X., Chen, Y., Zhao, S., Wu, J., Lei, M., & Xu, F. (2020). Structural basis of ligand recognition and self-activation of orphan GPR52. Nature, 579(7797), 152–157. https://doi.org/10.1038/s41586-020-2019-0
Liu, Y., Zhao, J., Fan, X., & Guo, W. (2019). Dysfunction in serotonergic and noradrenergic systems and somatic symptoms in psychiatric disorders. Frontiers in Psychiatry, 10, 286. https://doi.org/10.3389/fpsyt.2019.00286
Lobo, M. K., Cui, Y., Ostlund, S. B., Balleine, B. W., & Yang, X. W. (2007). Genetic control of instrumental conditioning by striatopallidal neuron-specific S1P receptor Gpr6. Nature Neuroscience, 10(11), 1395–1397. https://doi.org/10.1038/nn1987
Luster, A. D., Greenberg, S. M., & Leder, P. (1995). The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. The Journal of Experimental Medicine, 182(1), 219–231. https://doi.org/10.1084/jem.182.1.219
Madadi Asl, M., Vahabie, A. H., & Valizadeh, A. (2019). Dopaminergic modulation of synaptic plasticity, its role in neuropsychiatric disorders, and its computational modeling. Basic and Clinical Neuroscience, 10(1), 1–12. https://doi.org/10.32598/bcn.9.10.125
Malcolm, R., O'Neil, P. M., Sexauer, J. D., Riddle, F. E., Currey, H. S., & Counts, C. (1985). A controlled trial of naltrexone in obese humans. International Journal of Obesity, 9(5), 347–353.
Margolin, D. H., Brice, N. L., Davidson, A. M., Matthews, K. L., & Carlton, M. B. L. (2022). A phase I, first-in-human, healthy volunteer study to investigate the safety, tolerability, and pharmacokinetics of CVN424, a novel G protein-coupled receptor 6 inverse agonist for Parkinson's disease. The Journal of Pharmacology and Experimental Therapeutics, 381(1), 33–41. https://doi.org/10.1124/jpet.121.000842
Margolis, E. B., Moulton, M. G., Lambeth, P. S., & O'Meara, M. J. (2023). The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology, 225, 109376. https://doi.org/10.1016/j.neuropharm.2022.109376
Masuda, S., Tanaka, S., Shiraki, H., Sotomaru, Y., Harada, K., Hide, I., Kiuchi, Y., & Sakai, N. (2022). GPR3 expression in retinal ganglion cells contributes to neuron survival and accelerates axonal regeneration after optic nerve crush in mice. Neurobiology of Disease, 172, 105811. https://doi.org/10.1016/j.nbd.2022.105811
Meng, L., Jiang, Y. P., Zhu, J., & Li, B. (2020). MiR-188-3p/GPR26 modulation functions as a potential regulator in manipulating glioma cell properties. Neurological Research, 42(3), 222–227. https://doi.org/10.1080/01616412.2020.1723298
Mishra, A., Singh, S., & Shukla, S. (2018). Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinson's disease. Journal of Experimental Neuroscience, 12, 1179069518779829. https://doi.org/10.1177/1179069518779829
Mogha, A., Benesh, A. E., Patra, C., Engel, F. B., Schöneberg, T., Liebscher, I., & Monk, K. R. (2013). Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. The Journal of Neuroscience, 33(46), 17976–17985. https://doi.org/10.1523/JNEUROSCI.1809-13.2013
Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Methods in Molecular Biology, 443, 365–382. https://doi.org/10.1007/978-1-59745-177-2_19
Müller, F. E., Schade, S. K., Cherkas, V., Stopper, L., Breithausen, B., Minge, D., Varbanov, H., Wahl-Schott, C., Antoniuk, S., Domingos, C., Compan, V., Kirchhoff, F., Henneberger, C., Ponimaskin, E., & Zeug, A. (2021). Serotonin receptor 4 regulates hippocampal astrocyte morphology and function. Glia, 69(4), 872–889. https://doi.org/10.1002/glia.23933
Murray, T. E., Richards, C. M., Robert-Gostlin, V. N., Bernath, A. K., Lindhout, I. A., & Klegeris, A. (2022). Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Research Bulletin, 189, 80–101. https://doi.org/10.1016/j.brainresbull.2022.08.015
Nagai, J., Rajbhandari, A. K., Gangwani, M. R., Hachisuka, A., Coppola, G., Masmanidis, S. C., Fanselow, M. S., & Khakh, B. S. (2019). Hyperactivity with disrupted attention by activation of an astrocyte Synaptogenic Cue. Cell, 177(5), 1280–1292.e20. https://doi.org/10.1016/j.cell.2019.03.019
Nash, B., & Meucci, O. (2014). Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. International Review of Neurobiology, 118, 105–128. https://doi.org/10.1016/B978-0-12-801284-0.00005-1
Nelson, C. D., & Sheng, M. (2013). Gpr3 stimulates Aβ production via interactions with APP and β-arrestin2. PLoS ONE, 8(9), e74680. https://doi.org/10.1371/journal.pone.0074680
Noonan, T., Denzinger, K., Talagayev, V., Chen, Y., Puls, K., Wolf, C. A., Liu, S., Nguyen, T. N., & Wolber, G. (2022). Mind the gap-deciphering GPCR pharmacology using 3D pharmacophores and artificial intelligence. Pharmaceuticals (Basel), 15, 1304. https://doi.org/10.3390/ph15111304
Oeckl, P., Hengerer, B., & Ferger, B. (2014). G-protein coupled receptor 6 deficiency alters striatal dopamine and cAMP concentrations and reduces dyskinesia in a mouse model of Parkinson's disease. Experimental Neurology, 257, 1–9. https://doi.org/10.1016/j.expneurol.2014.04.010
Oishi, A., Cecon, E., & Jockers, R. (2018). Melatonin Receptor signalling: Impact of Receptor Oligomerization on Receptor Function. International Review of Cell and Molecular Biology, 338, 59–77. https://10.1016/bs.ircmb.2018.02.002
Paavola, K. J., Sidik, H., Zuchero, J. B., Eckart, M., & Talbot, W. S. (2014). Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Science signalling, 7(338), ra76. https://doi.org/10.1126/scisignal.2005347
Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Trong, I. L., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289(5480), 739–745. https://doi.org/10.1126/science.289.5480.739
Pallaki, P., Georganta, E. M., Serafimidis, I., Papakonstantinou, M. P., Papanikolaou, V., Koutloglou, S., Papadimitriou, E., Agalou, A., Tserga, A., Simeonof, A., Thomaidou, D., Gaitanou, M., & Georgoussi, Z. (2017). A novel regulatory role of RGS4 in STAT5B activation, neurite outgrowth and neuronal differentiation. Neuropharmacology, 117, 408–421. https://doi.org/10.1016/j.neuropharm.2017.02.012
Pasquini, S., Contri, C., Merighi, S., Gessi, S., Borea, P. A., Varani, K., & Vincenzi, F. (2022). Adenosine receptors in neuropsychiatric disorders: Fine regulators of neurotransmission and potential therapeutic targets. International Journal of Molecular Sciences, 23(3), 1219. https://doi.org/10.3390/ijms23031219
Pasquinucci, L., Parenti, C., Georgoussi, Z., Reina, L., Tomarchio, E., & Turnaturi, R. (2021). LP1 and LP2: Dual-target MOPr/DOPr ligands as drug candidates for persistent pain relief. Molecules, 26(14), 4168. https://doi.org/10.3390/molecules26144168
Pathan, H., & Williams, J. (2012). Basic opioid pharmacology: An update. British Journal of Pain, 6, 11–16. https://doi.org/10.1177/2049463712438493
Perea, G., & Araque, A. (2007). Astrocytes potentiate transmitter release at single hippocampal synapses. Science, 317(5841), 1083–1086. https://doi.org/10.1126/science.1144640
Perea, G., Gómez, R., Mederos, S., Covelo, A., Ballesteros, J. J., Schlosser, L., Hernández-Vivanco, A., Martín-Fernández, M., Quintana, R., Rayan, A., Díez, A., Fuenzalida, M., Agarwal, A., Bergles, D. E., Bettler, B., Manahan-Vaughan, D., Martín, E. D., Kirchhoff, F., & Araque, A. (2016). Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks. eLife, 5, e20362. https://doi.org/10.7554/eLife.20362
Petersen, S. C., Luo, R., Liebscher, I., Giera, S., Jeong, S. J., Mogha, A., Ghidinelli, M., Feltri, M. L., Schöneberg, T., Piao, X., & Monk, K. R. (2015). The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron, 85(4), 755–769. https://doi.org/10.1016/j.neuron.2014.12.057
Pu, Y., Li, S., Zhang, C., Bao, Z., Yang, Z., & Sun, L. (2015). High expression of CXCR3 is an independent prognostic factor in glioblastoma patients that promotes an invasive phenotype. Journal of Neuro-Oncology, 122(1), 43–51. https://doi.org/10.1007/s11060-014-1692-y
Qi, A. D., Harden, T. K., & Nicholas, R. A. (2013). Is GPR17 a P2Y/leukotriene receptor? Examination of uracil nucleotides, nucleotide sugars, and cysteinyl leukotrienes as agonists of GPR17. The Journal of Pharmacology and Experimental Therapeutics, 347(1), 38–46. https://doi.org/10.1124/jpet.113.207647
Qu, Q., Huang, W., Aydin, D., Paggi, J. M., Seven, A. B., Wang, H., Chakraborty, S., Che, T., DiBerto, J., Robertson, M. J., Inoue, A., Suomivuori, C. M., Roth, B. L., Majumdar, S., Dror, R. O., Kobilka, B. K., & Skiniotis, G. (2022). Insights into distinct signalling profiles of the μOR activated by diverse agonists. Nature Chemical Biology, 19(4), 423–430. https://doi.org/10.1038/s41589-022-01208-y
Raehal, K. M., Walker, J. K., & Bohn, L. M. (2005). Morphine side effects in beta-arrestin 2 knockout mice. The Journal of Pharmacology and Experimental Therapeutics, 314(3), 1195–1201. https://doi.org/10.1124/jpet.105.087254
Rappert, A., Bechmann, I., Pivneva, T., Mahlo, J., Biber, K., Nolte, C., Kovac, A. D., Gerard, C., Boddeke, H. W. G. M., Nitsch, R., & Kettenmann, H. (2004). CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. The Journal of Neuroscience, 24(39), 8500–8509. https://doi.org/10.1523/JNEUROSCI.2451-04.2004
Rasmussen, S. G., Choi, H. J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R. P., Sanishvili, R., Fischetti, R. F., Schertler, G. F. X., Weis, W. I., & Kobilka, B. K. (2007). Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature, 450(7168), 383–387. https://doi.org/10.1038/nature06325
Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T. A., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K., & Kobilka, B. K. (2011). Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 477(7366), 549–555. https://doi.org/10.1038/nature10361
Reiner, A., & Levitz, J. (2018). Glutamatergic signalling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 98(6), 1080–1098. https://doi.org/10.1016/j.neuron.2018.05.018
Ruiz-Medina, J., Ledent, C., & Valverde, O. (2011). GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury and regulates morphine-induced antinociception. Neuropharmacology, 61(1–2), 43–50. https://doi.org/10.1016/j.neuropharm.2011.02.014
Salahpour, A., Espinoza, S., Masri, B., Lam, V., Barak, L. S., & Gainetdinov, R. R. (2012). BRET biosensors to study GPCR biology, pharmacology, and signal transduction. Frontiers in Endocrinology, 3, 105. https://doi.org/10.3389/fendo.2012.00105
Santino, F., & Gentilucci, L. (2023). Design of κ-opioid receptor agonists for the development of potential treatments of pain with reduced side effects. Molecules, 28(1), 346. https://doi.org/10.3390/molecules28010346
Scarpa, M., Hesse, S., & Bradley, S. J. (2020). M1 muscarinic acetylcholine receptors: A therapeutic strategy for symptomatic and disease-modifying effects in Alzheimer's disease? Advances in Pharmacology, 88, 277–310. https://doi.org/10.1016/bs.apha.2019.12.003
Scarpa, M., Molloy, C., Jenkins, L., Strellis, B., Budgett, R. F., Hesse, S., Dwomoh, L., Marsango, S., Tejeda, G. S., Rossi, M., Ahmed, Z., Milligan, G., Hudson, B. D., Tobin, A. B., & Bradley, S. J. (2021). Biased M1 muscarinic receptor mutant mice show accelerated progression of prion neurodegenerative disease. Proceedings of the National Academy of Sciences of the United States of America, 118, 50. https://doi.org/10.1073/pnas.2107389118
Scholz, N., Dahse, A. K., Kemkemer, M., Bormann, A., Auger, G. M., Vieira Contreras, F., Ernst, L. F., Staake, H., Körner, M. B., Buhlan, M., Meyer-Mölck, A., Chung, Y. K., Blanco-Redondo, B., Klose, F., Jarboui, M. A., Ljaschenko, D., Bigl, M., & Langenhan, T. (2023). Molecular sensing of mechano- and ligand-dependent adhesion GPCR dissociation. Nature, 615(7954), 945–953. https://doi.org/10.1038/s41586-023-05802-5
Scholz, N., Gehring, J., Guan, C., Ljaschenko, D., Fischer, R., Lakshmanan, V., Kittel, R. J., & Langenhan, T. (2015). The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Reports, 11(6), 866–874. https://doi.org/10.1016/j.celrep.2015.04.008
Scholz, N., Guan, C., Nieberler, M., Grotemeyer, A., Maiellaro, I., Gao, S., Beck, S., Pawlak, M., Sauer, M., Asan, E., Rothemund, S., & Kittel, R. J. (2017). Mechano-dependent signalling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons. eLife, 6, e28360. https://doi.org/10.7554/eLife.28360
Scholz, N., Monk, K. R., Kittel, R. J., & Langenhan, T. (2016). Adhesion GPCRs as a putative class of metabotropic Mechanosensors. Handbook of Experimental Pharmacology, 234, 221–247. https://doi.org/10.1007/978-3-319-41523-9_10
Seibt, B. F., Schiedel, A. C., Thimm, D., Hinz, S., Sherbiny, F. F., & Muller, C. E. (2013). The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors. Biochemical Pharmacology, 85(9), 1317–1329. https://doi.org/10.1016/j.bcp.2013.03.005
Seifert, R., & Wenzel-Seifert, K. (2002). Constitutive activity of G-protein-coupled receptors: Cause of disease and common property of wild-type receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 366(5), 381–416. https://doi.org/10.1007/s00210-002-0588-0
Shekhar, A., Potter, W. Z., Lightfoot, J., Lienemann, J., Dubé, S., Mallinckrodt, C., Bymaster, F. P. M.Sc., McKinzie, D. L. Ph.D., & Felder, C. C. Ph.D. (2008). Selective muscarinic receptor agonist Xanomeline as a novel treatment approach for schizophrenia. American Journal of Psychiatry, 165(8), 1033–1039. https://doi.org/10.1176/appi.ajp.2008.06091591
Sheng, S., Huang, J., Ren, Y., Zhi, F., Tian, X., Wen, G., Ding, G., Xia, T. C., Hua, F., & Xia, Y. (2018). Neuroprotection against hypoxic/ischemic injury: δ-opioid receptors and BDNF-TrkB pathway. Cellular Physiology and Biochemistry, 47(1), 302–315. https://doi.org/10.1159/000489808
Shimada, I., Ueda, T., Kofuku, Y., Eddy, M. T., & Wüthrich, K. (2019). GPCR drug discovery: Integrating solution NMR data with crystal and cryo-EM structures. Nature Reviews. Drug Discovery, 18(1), 59–82. https://doi.org/10.1038/nrd.2018.180
Sokoloff, L. (1960). The metabolism of the central nervous system in vivo. In J. Field, H. W. Magoun, & V. E. Hall (Eds.), Handbook of physiology—Neurophysiology (Vol. 3, pp. 1843–1864). American Physiological Society.
Sommer, M. E., Selent, J., Carlsson, J., De Graaf, C., Gloriam, D. E., Keseru, G. M., Kosloff, M., Mordalski, S., Rizk, A., Rosenkilde, M. M., Sotelo, E., Tiemann, J. K. S., Tobin, A., Vardjan, N., Waldhoer, M., & Kolb, P. (2020). The European research network on signal transduction (ERNEST): Toward a multidimensional holistic understanding of G protein-coupled receptor signalling. ACS Pharmacology & Translational Science, 3(2), 361–370. https://doi.org/10.1021/acsptsci.0c00024
Sowa, J. E., & Tokarski, K. (2021). Cellular, synaptic, and network effects of chemokines in the central nervous system and their implications to behavior. Pharmacological Reports, 73(6), 1595–1625. https://doi.org/10.1007/s43440-021-00323-2
Spahn, V., del Vecchio, G., Labuz, D., Rodriguez-Gaztelumendi, A., Massaly, N., Temp, J., Durmaz, V., Sabri, P., Reidelbach, M., Machelska, H., Weber, M., & Stein, C. (2017). A nontoxic pain killer designed by modeling of pathological receptor conformations. Science, 355, 966–969. https://doi.org/10.1126/science.aai8636
Sprang, S. R. (2016). Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Biopolymers, 105(8), 449–462. https://doi.org/10.1002/bip.22836
Stauch, B., Johansson, L. C., McCorvy, J. D., Patel, N., Han, G. W., Huang, X. P., Gati, C., Batyuk, A., Slocum, S. T., Ishchenko, A., Brehm, W., White, T. A., Michaelian, N., Madsen, C., Zhu, L., Grant, T. D., Grandner, J. M., Shiriaeva, A., Olsen, R. H. J., … Cherezov, V. (2019). Structural basis of ligand recognition at the human MT. Nature, 569(7755), 284–288. https://doi.org/10.1038/s41586-019-1141-3
Stein, R. M., Kang, H. J., McCorvy, J. D., Glatfelter, G. C., Jones, A. J., Che, T., Slocum, S., Huang, X. P., Savych, O., Moroz, Y. S., Stauch, B., Johansson, L. C., Cherezov, V., Kenakin, T., Irwin, J. J., Shoichet, B. K., Roth, B. L., & Dubocovich, M. L. (2020). Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature, 579(7800), 609–614. https://doi.org/10.1038/s41586-020-2027-0
Sun, H., Monenschein, H., Schiffer, H. H., Reichard, H. A., Kikuchi, S., Hopkins, M., Macklin, T. K., Hitchcock, S., Adams, M., Green, J., Brown, J., Murphy, S. T., Kaushal, N., Collia, D. R., Moore, S., Ray, W. J., English, N. M., Carlton, M. B. L., & Brice, N. L. (2021). First-time disclosure of CVN424, a potent and selective GPR6 inverse agonist for the treatment of Parkinson's disease: Discovery, pharmacological validation, and identification of a clinical candidate. Journal of Medicinal Chemistry, 64(14), 9875–9890. https://doi.org/10.1021/acs.jmedchem.0c02081
Suofu, Y., Li, W., Jean-Alphonse, F. G., Jia, J., Khattar, N. K., Li, J., Baranov, S. V., Leronni, D., Mihalik, A. C., He, Y., Cecon, E., Wehbi, V. L., Kim, J. H., Heath, B. E., Baranova, O. V., Wang, X., Gable, M. J., Kretz, E. S., di Benedetto, G., … Friedlander, R. M. (2017). Dual role of mitochondria in producing melatonin and driving GPCR signalling to block cytochrome c release. Proceedings of the National Academy of Sciences of the United States of America, 114(38), E7997–E8006. https://doi.org/10.1073/pnas.1705768114
Syrovatkina, V., Alegre, K. O., Dey, R., & Huang, X. Y. (2016). Regulation, signalling, and physiological functions of G-proteins. Journal of Molecular Biology, 428(19), 3850–3868. https://doi.org/10.1016/j.jmb.2016.08.002
Tanaka, S., Miyagi, T., Dohi, E., Seki, T., Hide, I., Sotomaru, Y., Saeki, Y., Antonio Chiocca, E., Matsumoto, M., & Sakai, N. (2014). Developmental expression of GPR3 in rodent cerebellar granule neurons is associated with cell survival and protects neurons from various apoptotic stimuli. Neurobiology of Disease, 68, 215–227. https://doi.org/10.1016/j.nbd.2014.04.007
Tanaka, S., Shimada, N., Shiraki, H., Miyagi, T., Harada, K., Hide, I., & Sakai, N. (2022). GPR3 accelerates neurite outgrowth and neuronal polarity formation via PI3 kinase-mediating signalling pathway in cultured primary neurons. Molecular and Cellular Neurosciences, 118, 103691. https://doi.org/10.1016/j.mcn.2021.103691
Thathiah, A., Horré, K., Snellinx, A., Vandewyer, E., Huang, Y., Ciesielska, M., De Kloe, G., Munck, S., & De Strooper, B. (2013). β-Arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer's disease. Nature Medicine, 19(1), 43–49. https://doi.org/10.1038/nm.3023
Thelen, M., & Stein, J. V. (2008). How chemokines invite leukocytes to dance. Nature Immunology, 9(9), 953–959. https://doi.org/10.1038/ni.f.207
Thomson, P. A., Wray, N. R., Thomson, A. M., Dunbar, D. R., Grassie, M. A., Condie, A., Walker, M. T., Smith, D. J., Pulford, D. J., Muir, W., Blackwood, D. H. R., & Porteous, D. J. (2005). Sex-specific association between bipolar affective disorder in women and GPR50, an X-linked orphan G protein-coupled receptor. Molecular Psychiatry, 10(5), 470–478. https://doi.org/10.1038/sj.mp.4001593
Tourino, C., Valjent, E., Ruiz-Medina, J., Herve, D., Ledent, C., & Valverde, O. (2012). The orphan receptor GPR3 modulates the early phases of cocaine reinforcement. British Journal of Pharmacology, 167(4), 892–904. https://doi.org/10.1111/j.1476-5381.2012.02043.x
Tuteja, N. (2009). signalling through G protein coupled receptors. Plant signalling & Behavior, 4(10), 942–947. https://doi.org/10.4161/psb.4.10.9530
Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I. M., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A. K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., … Pontén, F. (2015). Proteomics. Tissue-based map of the human proteome. Science, 347(6220), 1260419. https://doi.org/10.1126/science.1260419
Valentino, R. J., & Volkow, N. D. (2018). Untangling the complexity of opioid receptor function. Neuropsychophamacology, 43, 2514–2520. https://doi.org/10.1038/s41386-018-0225-3
Valverde, O., Célérier, E., Baranyi, M., Vanderhaeghen, P., Maldonado, R., Sperlagh, B., Vassart, G., & Ledent, C. (2009). GPR3 receptor, a novel actor in the emotional-like responses. PLoS ONE, 4(3), e4704. https://doi.org/10.1371/journal.pone.0004704
Van Der Meer, P., Goldberg, S. H., Fung, K. M., Sharer, L. R., González-Scarano, F., & Lavi, E. (2001). Expression pattern of CXCR3, CXCR4, and CCR3 chemokine receptors in the developing human brain. Journal of Neuropathology and Experimental Neurology, 60(1), 25–32. https://doi.org/10.1093/jnen/60.1.25
van Montfort, R. L. M., & Workman, P. (2017). Structure-based drug design: Aiming for a perfect fit. Essays in Biochemistry, 61(5), 431–437. https://doi.org/10.1042/EBC20170052
Vardjan, N., Chowdhury, H. H., Horvat, A., Velebit, J., Malnar, M., Muhič, M., Kreft, M., Krivec, Š. G., Bobnar, S. T., Miš, K., Pirkmajer, S., Offermanns, S., Henriksen, G., Storm-Mathisen, J., Bergersen, L. H., & Zorec, R. (2018). Enhancement of Astroglial aerobic glycolysis by extracellular lactate-mediated increase in cAMP. Frontiers in Molecular Neuroscience, 11, 148. https://doi.org/10.3389/fnmol.2018.00148
Vasudevan, N. T. (2017). cAMP assays in GPCR drug discovery. Methods in Cell Biology, 142, 51–57. https://doi.org/10.1016/bs.mcb.2017.07.014
Verkhratsky, A., & Nedergaard, M. (2018). Physiology of Astroglia. Physiological Reviews, 98(1), 239–389. https://doi.org/10.1152/physrev.00042.2016
Vizurraga, A., Adhikari, R., Yeung, J., Yu, M., & Tall, G. G. (2020). Mechanisms of adhesion G protein-coupled receptor activation. The Journal of Biological Chemistry, 295(41), 14065–14083. https://doi.org/10.1074/jbc.REV120.007423
Volpicelli, L. A., & Levey, A. I. (2004). Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Progress in Brain Research, 145, 59–66. https://doi.org/10.1016/S0079-6123(03)45003-6
Wacker, D., Stevens, R. C., & Roth, B. L. (2017). How ligands illuminate GPCR molecular pharmacology. Cell, 170(3), 414–427. https://doi.org/10.1016/j.cell.2017.07.009
Walker, L. C., Huckstep, K. L., Chen, N. A., Hand, L. J., Lindsley, C. W., Langmead, C. J., & Lawrence, A. J. (2021). Muscarinic M4 and M5 receptors in the ventral subiculum differentially modulate alcohol seeking versus consumption in male alcohol-preferring rats. British Journal of Pharmacology, 178(18), 3730–3746. https://doi.org/10.1111/bph.15513
Wang, J., He, X., Meng, H., Li, Y., Dmitriev, P., Tian, F., Page, J. C., Lu, Q. R., & He, Z. (2020). Robust myelination of regenerated axons induced by combined manipulations of GPR17 and microglia. Neuron, 108(5), 876–886.e4. https://doi.org/10.1016/j.neuron.2020.09.016
Wang, Q., Lu, Q., Guo, Q., Teng, M., Gong, Q., Li, X., du, Y., Liu, Z., & Tao, Y. (2022). Structural basis of the ligand binding and signalling mechanism of melatonin receptors. Nature Communications, 13(1), 454. https://doi.org/10.1038/s41467-022-28111-3
Wang, S. Y., Duan, Y. L., Zhao, B., Wang, X. R., Zhao, Z., & Zhang, G. M. (2016). Effect of delta opioid receptor activation on spatial cognition and neurogenesis in cerebral ischemic rats. Neuroscience Letters, 620, 20–26. https://doi.org/10.1016/j.neulet.2016.03.035
Watkins, L. R., & Orlandi, C. (2021). In vitro profiling of orphan G protein coupled receptor (GPCR) constitutive activity. British Journal of Pharmacology, 178(15), 2963–2975. https://doi.org/10.1111/bph.15468
Weisman, G. A., Woods, L. T., Erb, L., & Seye, C. I. (2012). P2Y receptors in the mammalian nervous system: Pharmacology, ligands and therapeutic potential. CNS & Neurological Disorders Drug Targets, 11(6), 722–738. https://doi.org/10.2174/187152712803581047
Wnorowski, A., & Jozwiak, K. (2014). Homo- and hetero-oligomerization of β2-adrenergic receptor in receptor trafficking, signalling pathways and receptor pharmacology. Cellular Signalling, 26(10), 2259–2265. https://doi.org/10.1016/j.cellsig.2014.06.016
Wojciech, S., Ahmad, R., Belaid-Choucair, Z., Journé, A. S., Gallet, S., Dam, J., Daulat, A., Ndiaye-Lobry, D., Lahuna, O., Karamitri, A., Guillaume, J. L., Do Cruzeiro, M., Guillonneau, F., Saade, A., Clément, N., Courivaud, T., Kaabi, N., Tadagaki, K., Delagrange, P., … Jockers, R. (2018). The orphan GPR50 receptor promotes constitutive TGFβ receptor signalling and protects against cancer development. Nature Communications, 9(1), 1216. https://doi.org/10.1038/s41467-018-03609-x
Wold, E. A., & Zhou, J. (2018). GPCR allosteric modulators: Mechanistic advantages and therapeutic applications. Current Topics in Medicinal Chemistry, 18(23), 2002–2006. https://doi.org/10.2174/1568026619999190101151837
Woolley, M. L., Carter, H. J., Gartlon, J. E., Watson, J. M., & Dawson, L. A. (2009). Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. European Journal of Pharmacology, 603(1–3), 147–149. https://doi.org/10.1016/j.ejphar.2008.12.020
Xu, W., Dahlke, S. P., Sung, M., Samal, B., Emery, A. C., Elkahloun, A., & Eiden, L. E. (2022). ERK-dependent induction of the immediate-early gene Egr1 and the late gene Gpr50 contribute to two distinct phases of PACAP Gs-GPCR signalling for neuritogenesis. Journal of Neuroendocrinology, 34(9), e13182. https://doi.org/10.1111/jne.13182
Xu, Y., Zhi, F., Balboni, G., Yang, Y., & Xia, Y. (2020). Opposite roles of δ- and μ-opioid receptors in BACE1 regulation and Alzheimer's injury. Frontiers in Cellular Neuroscience, 14, 88. https://doi.org/10.3389/fncel.2020.00088
Yang, D., Zhou, Q., Labroska, V., Qin, S., Darbalaei, S., Wu, Y., Yuliantie, E., Xie, L., Tao, H., Cheng, J., Liu, Q., Zhao, S., Shui, W., Jiang, Y., & Wang, M. W. (2021). G protein-coupled receptors: Structure- and function-based drug discovery. Signal Transduction and Targeted Therapy, 6(1), 7. https://doi.org/10.1038/s41392-020-00435-w
Yarishkin, O., Lee, J., Jo, S., Hwang, E. M., & Lee, C. J. (2015). Disinhibitory action of astrocytic GABA at the Perforant path to dentate gyrus granule neuron synapse reverses to inhibitory in Alzheimer's disease model. Experimental Neurobiology, 24(3), 211–218. https://doi.org/10.5607/en.2015.24.3.211
Ye, F., Wong, T. S., Chen, G., Zhang, Z., Zhang, B., Gan, S., Gao, W., Li, J., Wu, Z., Pan, X., & du, Y. (2022). Cryo-EM structure of G-protein-coupled receptor GPR17 in complex with inhibitory G protein. MedComm, 3(4), e159. https://doi.org/10.1002/mco2.159
Yoshino, R., Yasuo, N., & Sekijima, M. (2019). Molecular dynamics simulation reveals the mechanism by which the influenza cap-dependent endonuclease acquires resistance against Baloxavir marboxil. Scientific Reports, 9(1), 17464. https://doi.org/10.1038/s41598-019-53945-1
Yosten, G. L., Harada, C. M., Haddock, C., Giancotti, L. A., Kolar, G. R., Patel, R., Guo, C., Chen, Z., Zhang, J., Doyle, T. M., Dickenson, A. H., Samson, W. K., & Salvemini, D. (2020). GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. The Journal of Clinical Investigation, 130(5), 2587–2592. https://doi.org/10.1172/JCI133270
Zarrinmayeh, H., & Territo, P. R. (2020). Purinergic receptors of the central nervous system: Biology, PET ligands, and their applications. Molecular Imaging, 19, 1536012120927609. https://doi.org/10.1177/1536012120927609
Zhang, L. L., Wang, J. J., Liu, Y., Lu, X. B., Kuang, Y., Wan, Y. H., Chen, Y., Yan, H. M., Fei, J., & Wang, Z. G. (2011). GPR26-deficient mice display increased anxiety- and depression-like behaviors accompanied by reduced phosphorylated cyclic AMP responsive element-binding protein level in central amygdala. Neuroscience, 196, 203–214. https://doi.org/10.1016/j.neuroscience.2011.08.069
Zhang, X., Perez-Sanchez, H., & Lightstone, F. C. (2017). A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding Antithrombin. Current Topics in Medicinal Chemistry, 17(14), 1631–1639. https://doi.org/10.2174/1568026616666161117112604
Zhao, M., Ma, J., Li, M., Zhu, W., Zhou, W., Shen, L., Wu, H., Zhang, N., Wu, S., Fu, C., Li, X., Yang, K., Tang, T., Shen, R., He, L., Huai, C., & Qin, S. (2022). Different responses to risperidone treatment in schizophrenia: A multicenter genome-wide association and whole exome sequencing joint study. Translational Psychiatry, 12(1), 173. https://doi.org/10.1038/s41398-022-01942-w
Zhao, Q., Hu, J., Kong, L., Jiang, S., Tian, X., Wang, J., Hashizume, R., Jia, Z., Fowlkes, N. W., Yan, J., Xia, X., Yi, S. F., Dao, L. H., Masopust, D., Heimberger, A. B., & Li, S. (2023). FGL2-targeting T cells exhibit antitumor effects on glioblastoma and recruit tumor-specific brain-resident memory T cells. Nature Communications, 14(1), 735. https://doi.org/10.1038/s41467-023-36430-2
Zhou, C., Dai, X., Chen, Y., Shen, Y., Lei, S., Xiao, T., Bartfai, T., Ding, J., & Wang, M. W. (2016). G protein-coupled receptor GPR160 is associated with apoptosis and cell cycle arrest of prostate cancer cells. Oncotarget, 7(11), 12823–12839. https://doi.org/10.18632/oncotarget.7313