The Spx stress regulator confers high-level β-lactam resistance and decreases susceptibility to last-line antibiotics in methicillin-resistant Staphylococcus aureus.
Nielsen, Tobias Krogh; Petersen, Ida Birkjær; Xu, Lijuanet al.
2024 • In Antimicrobial Agents and Chemotherapy, 68 (6), p. 0033524
[en] Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a leading cause of mortality worldwide. MRSA has acquired resistance to next-generation β-lactam antibiotics through the horizontal acquisition of the mecA resistance gene. Development of high resistance is, however, often associated with additional mutations in a set of chromosomal core genes, known as potentiators, which, through poorly described mechanisms, enhance resistance. The yjbH gene was recently identified as a hot spot for adaptive mutations during severe infections. Here, we show that inactivation of yjbH increased β-lactam MICs up to 16-fold and transformed MRSA cells with low levels of resistance to being homogenously highly resistant to β-lactams. The yjbH gene encodes an adaptor protein that targets the transcriptional stress regulator Spx for degradation by the ClpXP protease. Using CRISPR interference (CRISPRi) to knock down spx transcription, we unambiguously linked hyper-resistance to the accumulation of Spx. Spx was previously proposed to be essential; however, our data suggest that Spx is dispensable for growth at 37°C but becomes essential in the presence of antibiotics with various targets. On the other hand, high Spx levels bypassed the role of PBP4 in β-lactam resistance and broadly decreased MRSA susceptibility to compounds targeting the cell wall or the cell membrane, including vancomycin, daptomycin, and nisin. Strikingly, Spx potentiated resistance independently of its redox-sensing switch. Collectively, our study identifies a general stress pathway that, in addition to promoting the development of high-level, broad-spectrum β-lactam resistance, also decreases MRSA susceptibility to critical antibiotics of last resort.
Disciplines :
Microbiology
Author, co-author :
Nielsen, Tobias Krogh; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Petersen, Ida Birkjær; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Xu, Lijuan; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Barbuti, Maria Disen ; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
Mebus, Viktor; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Justh, Anni; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Alqarzaee, Abdulelah Ahmed; Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
Jacques, Nicolas ; Université de Liège - ULiège > GIGA > GIGA Metabolism & Cardiovascular Biology - Cardiology
Oury, Cécile ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Thomas, Vinai ; Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
Kjos, Morten ; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
Henriksen, Camilla; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Frees, Dorte ; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
The Spx stress regulator confers high-level β-lactam resistance and decreases susceptibility to last-line antibiotics in methicillin-resistant Staphylococcus aureus.
Liu CM, Price LB, Hungate BA, Abraham AG, Larsen LA, Christensen K, Stegger M, Skov R, Andersen PS. 2015. Staphylococcus aureus and the ecology of the nasal microbiome. Sci Adv 1:e1400216. https://doi.org/10.1126/sciadv.1400216
Krismer B, Weidenmaier C, Zipperer A, Peschel A. 2017. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 15:675-687. https://doi.org/10.1038/nrmicro.2017.104
Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603-661. https://doi.org/10.1128/CMR.00134-14
Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. 2003. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 36:53-59. https://doi.org/10.1086/345476
Chambers HF, Deleo FR. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629-641. https://doi.org/10.1038/nrmicro2200
Hiramatsu K, Kihara H, Yokota T. 1992. Analysis of borderline-resistant strains of methicillin-resistant Staphylococcus aureus using polymerase chain reaction. Microbiol Immunol 36:445-453. https://doi.org/10.1111/j.1348-0421.1992.tb02043.x
Boonsiri T, Watanabe S, Tan X-E, Thitiananpakorn K, Narimatsu R, Sasaki K, Takenouchi R, Sato'o Y, Aiba Y, Kiga K, Sasahara T, Taki Y, Li F-Y, Zhang Y, Azam AH, Kawaguchi T, Cui L. 2020. Identificationand characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Sci Rep 10:16907. https://doi.org/10.1038/s41598-020-73796-5
Hososaka Y, Hanaki H, Endo H, Suzuki Y, Nagasawa Z, Otsuka Y, Nakae T, Sunakawa K. 2007. Characterization of oxacillin-susceptible mecA-positive Staphylococcus aureus: a new type of MRSA. J Infect Chemother 13:79-86. https://doi.org/10.1007/s10156-006-0502-7
Gargis AS, Yoo BB, Lonsway DR, Anderson K, Campbell D, Ewing TO, Lawsin A, Machado MJ, Yamamoto N, Halpin AL, Lutgring JD, Karlsson M, Rasheed JK, Elkins CA. 2020. Difficult-to-detectStaphylococcus aureus: mecA-positive isolates associated with Oxacillin and Cefoxitin false-susceptible results. J Clin Microbiol 58:10-1128. https://doi.org/10.1128/JCM.02038-19
Panchal VV, GriffithsC, Mosaei H, Bilyk B, Sutton JAF, Carnell OT, Hornby DP, Green J, Hobbs JK, Kelley WL, Zenkin N, Foster SJ. 2020. Evolving MRSA: high-level β-lactam resistance in Staphylococcus aureus is associated with RNA polymerase alterations and finetuning of gene expression. PLoS Pathog 16:e1008672. https://doi.org/10.1371/journal.ppat.1008672
Bilyk BL, Panchal VV, Tinajero-Trejo M, Hobbs JK, Foster SJ. 2022. An interplay of multiple positive and negative factors governs methicillin resistance in Staphylococcus aureus. Microbiol Mol Biol Rev 86:e0015921. https://doi.org/10.1128/mmbr.00159-21
Bæk KT, Gründling A, Mogensen RG, Thøgersen L, Petersen A, Paulander W, Frees D. 2014. β-lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrob Agents Chemother 58:4593-4603. https://doi.org/10.1128/AAC.02802-14
Tipper DJ, Strominger JL. 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A 54:1133-1141. https://doi.org/10.1073/pnas.54.4.1133
Reed P, Atilano ML, Alves R, Hoiczyk E, Sher X, Reichmann NT, Pereira PM, Roemer T, Filipe SR, Pereira-Leal JB, Ligoxygakis P, Pinho MG. 2015. Staphylococcus aureus survives with a minimal peptidoglycan synthesis machine but sacrificesvirulence and antibiotic resistance. PLoS Pathog 11:e1004891. https://doi.org/10.1371/journal.ppat.1004891
Tomasz A, Nachman S, Leaf H. 1991. Stable classes of phenotypic expression in methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother 35:124-129. https://doi.org/10.1128/AAC.35.1.124
Peacock SJ, Paterson GK. 2015. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 84:577-601. https://doi.org/10.1146/annurev-biochem-060614-034516
Dordel J, Kim C, Chung M, Pardos de la Gándara M, Holden MTJ, Parkhill J, de Lencastre H, Bentley SD, Tomasz A. 2014. Novel determinants of antibiotic resistance: identificationof mutated loci in highly methicillin-resistant subpopulations of methicillin-resistant Staphylococcus aureus. mBio 5:e01000. https://doi.org/10.1128/mBio.01000-13
Kim C, Mwangi M, Chung M, Milheiriço C, de Lencastre H, Tomasz A. 2013. The mechanism of heterogeneous beta-lactam resistance in MRSA: key role of the stringent stress response. PLoS One 8:e82814. https://doi.org/10.1371/journal.pone.0082814
Mwangi MM, Kim C, Chung M, Tsai J, Vijayadamodar G, Benitez M, Jarvie TP, Du L, Tomasz A. 2013. Whole-genome sequencing reveals a link between beta-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb Drug Resist 19:153-159. https://doi.org/10.1089/mdr.2013.0053
Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A. 2011. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7:e1002217. https://doi.org/10.1371/journal.ppat.1002217
Jensen C, Bæk KT, Gallay C, Thalsø-Madsen I, Xu L, Jousselin A, Ruiz Torrubia F, Paulander W, Pereira AR, Veening J-W, Pinho MG, Frees D. 2019. The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is bypassed by beta-lactam antibiotics or inhibitors of WTA biosynthesis. PLoS Pathog 15:e1008044. https://doi.org/10.1371/journal.ppat.1008044
Nolan AC, Zeden MS, Kviatkovski I, Campbell C, Urwin L, Corrigan RM, Gründling A, O'Gara JP. 2023. Purine nucleosides interfere with c-di-AMP levels and act as adjuvants to re-sensitize MRSA To β-lactam antibiotics. mBio 14:e0247822. https://doi.org/10.1128/mbio.02478-22
Zuber P. 2009. Management of oxidative stress in Bacillus. Annu Rev Microbiol 63:575-597. https://doi.org/10.1146/annurev.micro.091208.073241
Pamp SJ, Frees D, Engelmann S, Hecker M, Ingmer H. 2006. Spx is a global effectorimpacting stress tolerance and biofilmformation in Staphylococcus aureus. J Bacteriol 188:4861-4870. https://doi.org/10.1128/JB.00194-06
Rojas-Tapias DF, Helmann JD. 2019. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species. Adv Microb Physiol 75:279-323. https://doi.org/10.1016/bs.ampbs.2019.05.003
Engman J, Rogstam A, Frees D, Ingmer H, von Wachenfeldt C. 2012. The YjbH adaptor protein enhances proteolysis of the transcriptional regulator Spx in Staphylococcus aureus. J Bacteriol 194:1186-1194. https://doi.org/10.1128/JB.06414-11
Giulieri SG, Guérillot R, Duchene S, Hachani A, Daniel D, Seemann T, Davis JS, Tong SYC, Young BC, Wilson DJ, Stinear TP, Howden BP. 2022. Niche-specificgenome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. Elife 11:e77195. https://doi.org/10.7554/eLife.77195
Göhring N, Fedtke I, Xia G, Jorge AM, Pinho MG, Bertsche U, Peschel A. 2011. New role of the disulfidestress effectorYjbH in β-lactam susceptibility of Staphylococcus aureus. Antimicrob Agents Chemother 55:5452-5458. https://doi.org/10.1128/AAC.00286-11
Ba X, Harrison EM, Edwards GF, Holden MTG, Larsen AR, Petersen A, Skov RL, Peacock SJ, Parkhill J, Paterson GK, Holmes MA. 2014. Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. J Antimicrob Chemother 69:594-597. https://doi.org/10.1093/jac/dkt418
Ba X, Kalmar L, Hadjirin NF, Kerschner H, Apfalter P, Morgan FJ, Paterson GK, Girvan SL, Zhou R, Harrison EM, Holmes MA. 2019. Truncation of GdpP mediates β-lactam resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 74:1182-1191. https://doi.org/10.1093/jac/dkz013
Argudín MA, Roisin S, Nienhaus L, Dodémont M, de Mendonça R, NonhoffC, Deplano A, Denis O. 2018. Genetic diversity among Staphylococcus aureus isolates showing oxacillin and/or cefoxitin resistance not linked to the presence of mec genes. Antimicrob Agents Chemother 62:e00091-18. https://doi.org/10.1128/AAC.00091-18
Memmi G, Filipe SR, Pinho MG, Fu Z, Cheung A. 2008. Staphylococcus aureus PBP4 is essential for beta-lactam resistance in community-acquired methicillin-resistant strains. Antimicrob Agents Chemother 52:3955-3966. https://doi.org/10.1128/AAC.00049-08
Hamilton SM, Alexander JAN, Choo EJ, Basuino L, da Costa TM, Severin A, Chung M, Aedo S, Strynadka NCJ, Tomasz A, Chatterjee SS, Chambers HF. 2017. High-level resistance of Staphylococcus aureus to β-lactam antibiotics mediated by penicillin-binding protein 4 (PBP4). Antimicrob Agents Chemother 61:e02727-16. https://doi.org/10.1128/AAC.02727-16
Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, Bayles KW. 2013. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 4:e00537-12. https://doi.org/10.1128/mBio.00537-12
Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F. 2006. Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet 367:731-739. https://doi.org/10.1016/S0140-6736(06)68231-7
Kennedy AD, Porcella SF, Martens C, Whitney AR, Braughton KR, Chen L, Craig CT, Tenover FC, Kreiswirth BN, Musser JM, DeLeo FR. 2010. Complete nucleotide sequence analysis of plasmids in strains of Staphylococcus aureus clone USA300 reveals a high level of identity among isolates with closely related core genome sequences. J Clin Microbiol 48:4504-4511. https://doi.org/10.1128/JCM.01050-10
Stamsås GA, Myrbråten IS, Straume D, Salehian Z, Veening JW, Håvarstein LS, Kjos M. 2018. CozEa and CozEb play overlapping and essential roles in controlling cell division in Staphylococcus aureus. Mol Microbiol 109:615-632. https://doi.org/10.1111/mmi.13999
Villanueva M, Jousselin A, Baek KT, Prados J, Andrey DO, Renzoni A, Ingmer H, Frees D, Kelley WL. 2016. Rifampin resistance rpoB alleles or multicopy thioredoxin/thioredoxin reductase suppresses the lethality of disruption of the global stress regulator spx in Staphylococcus aureus. J Bacteriol 198:2719-2731. https://doi.org/10.1128/JB.00261-16
Donegan NP, Manna AC, Tseng CW, Liu GY, Cheung AL. 2019. CspA regulation of Staphylococcus aureus carotenoid levels and σB activity is controlled by YjbH and Spx. Mol Microbiol 112:532-551. https://doi.org/10.1111/mmi.14273
Renzoni A, Andrey DO, Jousselin A, Barras C, Monod A, Vaudaux P, Lew D, Kelley WL. 2011. Whole genome sequencing and complete genetic analysis reveals novel pathways to glycopeptide resistance in Staphylococcus aureus. PLoS One 6:e21577. https://doi.org/10.1371/journal.pone.0021577
Shoji M, Cui L, Iizuka R, Komoto A, Neoh H, Watanabe Y, Hishinuma T, Hiramatsu K. 2011. walK and clpP mutations confer reduced vancomycin susceptibility in Staphylococcus aureus. Antimicrob Agents Chemother 55:3870-3881. https://doi.org/10.1128/AAC.01563-10
Peleg AY, Miyakis S, Ward DV, Earl AM, Rubio A, Cameron DR, Pillai S, Moellering RC, Eliopoulos GM. 2012. Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS One 7:e28316. https://doi.org/10.1371/journal.pone.0028316
Xu L, Henriksen C, Mebus V, Guérillot R, Petersen A, Jacques N, Jiang JH, Derks RJE, Sánchez-López E, Giera M, Leeten K, Stinear TP, Oury C, Howden BP, Peleg AY, Frees D. 2023. A clinically selected Staphylococcus aureus clpP mutant survives daptomycin treatment by reducing binding of the antibiotic and adapting a rod-shaped morphology. Antimicrob Agents Chemother 67:e0032823. https://doi.org/10.1128/aac.00328-23
Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797-810. https://doi.org/10.1016/j.cell.2007.06.049
Van Acker H, Coenye T. 2017. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol 25:456-466. https://doi.org/10.1016/j.tim.2016.12.008
Nakano S, Erwin KN, Ralle M, Zuber P. 2005. Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. Mol Microbiol 55:498-510. https://doi.org/10.1111/j.1365-2958.2004.04395.x
Antimicrobial consumption in the EU/EEA annual epidemiological report for 2019.
Bæk KT, Thøgersen L, Mogenssen RG, Mellergaard M, Thomsen LE, Petersen A, Skov S, Cameron DR, Peleg AY, Frees D. 2015. Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene. Antimicrob Agents Chemother 59:6983-6991. https://doi.org/10.1128/AAC.01303-15
Giulieri SG, Guérillot R, Kwong JC, Monk IR, Hayes AS, Daniel D, Baines S, Sherry NL, Holmes NE, Ward P, Gao W, Seemann T, Stinear TP, Howden BP. 2020. Comprehensive genomic investigation of adaptive mutations driving the low-level oxacillin resistance phenotype in Staphylococcus aureus. mBio 11:e02882-20. https://doi.org/10.1128/mBio.02882-20
Hryniewicz MM, Garbacz K. 2017. Borderline oxacillin-resistant Staphylococcus aureus (BORSA) - a more common problem than expected? J Med Microbiol 66:1367-1373. https://doi.org/10.1099/jmm.0.000585
Tomasz A, Drugeon HB, de Lencastre HM, Jabes D, McDougall L, Bille J. 1989. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modifiedpenicillin-binding capacity. Antimicrob Agents Chemother 33:1869-1874. https://doi.org/10.1128/AAC.33.11.1869
Banerjee R, Gretes M, Harlem C, Basuino L, Chambers HF. 2010. A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes. Antimicrob Agents Chemother 54:4900-4902. https://doi.org/10.1128/AAC.00594-10
Rojas-Tapias DF, Helmann JD. 2018. Induction of the Spx regulon by cell wall stress reveals novel regulatory mechanisms in Bacillus subtilis. Mol Microbiol 107:659-674. https://doi.org/10.1111/mmi.13906
Rojas-Tapias DF, Helmann JD. 2018. Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB. PLoS Genet 14:e1007531. https://doi.org/10.1371/journal.pgen.1007531
Panasenko OO, Bezrukov F, Komarynets O, Renzoni A. 2020. YjbH solubility controls Spx in Staphylococcus aureus: implication for MazEf toxin-antitoxin system regulation. Front Microbiol 11:113. https://doi.org/10.3389/fmicb.2020.00113
Paudel A, Panthee S, Hamamoto H, Grunert T, Sekimizu K. 2021. YjbH regulates virulence genes expression and oxidative stress resistance in Staphylococcus aureus. Virulence 12:470-480. https://doi.org/10.1080/21505594.2021.1875683
Stahlhut SG, Alqarzaee AA, Jensen C, Fisker NS, Pereira AR, Pinho MG, Thomas VC, Frees D. 2017. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Sci Rep 7:11739. https://doi.org/10.1038/s41598-017-12122-y
Mellergaard M, Skovbakke SL, Jepsen SD, Panagiotopoulou N, Hansen ABR, Tian W, Lund A, Høgh RI, Møller SH, Guérillot R, Hayes AS, Erikstrup LT, Andresen L, Peleg AY, Larsen AR, Stinear TP, Handberg A, Erikstrup C, Howden BP, Goletz S, Frees D, Skov S. 2023. Clinical Staphylococcus aureus inhibits human T-cell activity through interaction with the PD-1 receptor. mBio PMCID:e0134923. https://doi.org/10.1128/mbio.01349-23
Mellergaard M, Høgh RI, Lund A, Aldana BI, Guérillot R, Møller SH, Hayes AS, Panagiotopoulou N, Frimand Z, Jepsen SD, Hansen CHF, Andresen L, Larsen AR, Peleg AY, Stinear TP, Howden BP, Waagepetersen HS, Frees D, Skov S. 2020. Staphylococcus aureus induces cell-surface expression of immune stimulatory Nkg2D ligands on human monocytes. J Biol Chem PMCID:11803-11821. https://doi.org/10.1074/jbc.RA120.012673
Singh RM, Chaudhari SS, Panda S, HutflessEH, Heim CE, Shinde D, Alqarzaee AA, Sladek M, Kumar V, Zimmerman MC, Fey PD, Kielian T, Thomas VC. 2023. A critical role for staphylococcal nitric oxide synthase in controlling flavohemoglobintoxicity. Redox Biol 67:102935. https://doi.org/10.1016/j.redox.2023.102935
Thalsø-Madsen I, Torrubia FR, Xu L, Petersen A, Jensen C, Frees D. 2019. The Sle1 cell wall amidase is essential for β-lactam resistance in community-acquired methicillin-resistant Staphylococcus aureus USA300. Antimicrob Agents Chemother 64:1. https://doi.org/10.1128/AAC.01931-19
Monk IR, Tree JJ, Howden BP, Stinear TP, Foster TJ. 2015. Complete bypass of restriction systems for major Staphylococcus aureus lineages. mBio 6:e00308-15. https://doi.org/10.1128/mBio.00308-15
Liu X. Bakker VD, Heggenhougen MV, Mårli MT, Frøynes AH, Salehian Z, Porcellato D, Angeles DM, Veening JW, Kjos M. 2023 Genome-wide crispri screens reveal the essentialome and determinants for susceptibility to dalbavancin in Staphylococcus aureus. bioRxiv. https://www.biorxiv.org/content/10.1101/2023.08.30.555613v1.
Chen J, Yoong P, Ram G, Torres VJ, Novick RP. 2014. Single-copy vectors for integration at the SaPI1 attachment site for Staphylococcus aureus. Plasmid 76:1-7. https://doi.org/10.1016/j.plasmid.2014.08.001
Krute CN, Krausz KL, Markiewicz MA, Joyner JA, Pokhrel S, Hall PR, Bose JL. 2016. Generation of a stable plasmid for in vitro and in vivo studies of Staphylococcus species. Appl Environ Microbiol 82:6859-6869. https://doi.org/10.1128/AEM.02370-16
Yajjala VK, Thomas VC, Bauer C, Scherr TD, Fischer KJ, Fey PD, Bayles KW, Kielian T, Sun K. 2016. Resistance to acute macrophage killing promotes airway fitnessof prevalent community-acquired Staphylococcus aureus strains. J Immunol 196:4196-4203. https://doi.org/10.4049/jimmunol.1600081