Unpublished conference/Abstract (Scientific congresses and symposiums)
Hölder Regularity and Fractal Aspects of the Thomae Function
Lamby, Thomas
2025Deuxièmes journées de l’axe Analyse Multifractale et Applications
 

Files


Full Text
Talk_Thomae_s_function_Agay (3).pdf
Author postprint (2.32 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Regularity; Multifractal; Diophantine Approximation; Thomas function; Irrationality Exponent; Hölder Exponent; Hölder Spectrum; Hausdorff dimension; Blumberg Theorem; Dirichlet function
Abstract :
[en] Voici le titre : Hölder Regularity and Fractal Aspects of the Thomae Function. Voici le résumé : The Thomae function has long served as a striking example in real analysis, showcasing the interplay between continuity and discontinuity. Introduced by Thomae in 1875 as a refinement of the Dirichlet function, it is defined as follows. Unless explicitly stated otherwise, any rational number $x$ expressed as $x=p/q$ ($p\in \Z$, $q\in \N$) with $p$ and $q$ coprime. The Thomae function is then given by \[ T_\theta (x) = \left\{\begin{tabular}{ll} $1$ & if $x=0,$ \\ $q^{-\theta}$ & if $x$ is rational with $x=p/q,$ \\ $0$ & if $x$ is irrational, \end{tabular}\right. \] with $\theta=1$. The limiting case $\theta=0$ corresponds to the Dirichlet function. This talk focuses on the H\"older regularity of the Thomae function, a key aspect of its behaviour. First, we review its fundamental properties, offering a detailed account of its defining characteristics and self-similar nature. Then, we analyze the function's H\"older regularity, uncovering insights into its fractal-like properties through contemporary mathematical tools. By bridging its classical foundations with these contemporary perspectives, we aim to highlight both the theoretical elegance and the deeper structural nuances of this remarkable function. We also consider properties of functions that are positive on rationals and 0 on irrationals.
Disciplines :
Mathematics
Author, co-author :
Lamby, Thomas  ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Hölder Regularity and Fractal Aspects of the Thomae Function
Alternative titles :
[fr] Régularité Höldérienne et aspects fractals de la fonction de Thomae
Publication date :
24 June 2025
Event name :
Deuxièmes journées de l’axe Analyse Multifractale et Applications
Event place :
Agay, France
Event date :
Du 23 au 26 juin 2025
Audience :
International
Available on ORBi :
since 25 June 2025

Statistics


Number of views
88 (6 by ULiège)
Number of downloads
54 (1 by ULiège)

Bibliography


Similar publications



Contact ORBi