Bruns, C.J. and Stoddart, J.F. (2016). The Nature of the Mechanical Bond. Hoboken, NJ: Wiley.
De Bo, G. (2018). Mechanochemistry of the mechanical bond. Chem. Sci. 9 (1): 15–21.
Hinterdorfer, P. and Dufrêne, Y.F. (2006). Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3 (5): 347–355.
Neuman, K.C. and Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods (6): 491–505.
Mora, M., Stannard, A., and Garcia-Manyes, S. (2020). The nanomechanics of individual proteins. Chem. Soc. Rev. 49 (19): 6816–6832.
Bustamante, C., Chemla, Y.R., Forde, N.R., and Izhaky, D. (2004). Mechanical Processes in Biochemistry. Annu. Rev. Biochem. 73 (1): 705–748.
Bustamante, C. et al. (2008). Single-molecule theme. Annu. Rev. Biochem. 77 (1): 45–228.
Müller, D.J. and Dufrêne, Y.F. (2008). Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3 (5): 261–269.
Puchner, E.M. and Gaub, H.E. (2009). Force and function: probing proteins with AFM-based force spectroscopy. Curr. Opin. Struct. Biol. 19 (5): 605–614.
Liang, J. and Fernández, J.M. (2009). Mechanochemistry: one bond at a time. ACS Nano 3 (7): 1628–1645.
Duwez, A.-S. and Willet, N. (ed.) (2011). Molecular Manipulation with Atomic Force Microscopy. CRC Press.
Marszalek, P.E. and Dufrêne, Y.F. (2012). Stretching single polysaccharides and proteins using atomic force microscopy. Chem. Soc. Rev. 41 (9): 3523.
Žoldák, G. and Rief, M. (2013). Force as a single molecule probe of multidimensional protein energy landscapes. Curr. Opin. Struct. Biol. 23 (1): 48–57.
Hughes, M.L. and Dougan, L. (2016). The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. Rep. Prog. Phys. 79 (7): 076601.
Nathwani, B., Shih, W.M., and Wong, W.P. (2018). Force spectroscopy and beyond: innovations and opportunities. Biophys. J. 115 (12): 2279–2285.
Bao, Y., Luo, Z., and Cui, S. (2020). Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem. Soc. Rev. 49 (9): 2799–2827.
Brown, C.L. and Craig, S.L. (2015). Molecular engineering of mechanophore activity for stress-responsive polymeric materials. Chem. Sci. 6 (4): 2158–2165.
Ghanem, M.A., Basu, A., Behrou, R. et al. (2021). The role of polymer mechanochemistry in responsive materials and additive manufacturing. Nat. Rev. Mater. 6 (1): 84–98.
Bowser, B.H., Wang, S., Kouznetsova, T.B. et al. (2021). Single-event spectroscopy and unravelling kinetics of covalent domains based on cyclobutane mechanophores. J. Am. Chem. Soc. 143 (13): 5269–5276.
Zhang, Y., Wang, Z., Kouznetsova, T.B. et al. (2021). Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 13 (1): 56–62.
Janke, M., Rudzevich, Y., Molokanova, O. et al. (2009). Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force. Nat. Nanotechnol. 4 (4): 225–229.
Xing, H., Li, Z., Wang, W. et al. (2020). Mechanochemistry of an interlocked poly[2]catenane: from single molecule to bulk gel. CCS Chem. 2 (1): 513–523.
Sluysmans, D., Zhang, L., Li, X. et al. (2020). Viologen tweezers to probe the force of individual donor–acceptor π-interactions. J. Am. Chem. Soc. 142 (50): 21153–21159.
Devaux, F., Li, X., Sluysmans, D. et al. (2021). Single-molecule mechanics of synthetic aromatic amide helices: ultrafast and robust non-dissipative winding. Chem 7 (5): 1333–1346.
Lussis, P., Svaldo-Lanero, T., Bertocco, A. et al. (2011). A single synthetic small molecule that generates force against a load. Nat. Nanotechnol. 6 (9): 553–557.
Van Quaethem, A., Lussis, P., Leigh, D.A. et al. (2014). Probing the mobility of catenane rings in single molecules. Chem. Sci. 5 (4): 1449.
Naranjo, T., Lemishko, K.M., de Lorenzo, S. et al. (2018). Dynamics of individual molecular shuttles under mechanical force. Nat. Commun. 9 (1): 4512.
Sluysmans, D., Hubert, S., Bruns, C.J. et al. (2018). Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 13 (3): 209–213.
Sluysmans, D., Devaux, F., Bruns, C.J. et al. (2018). Dynamic force spectroscopy of synthetic oligorotaxane foldamers. Proc. Natl. Acad. Sci. 115 (38): 9362–9366.
Sluysmans, D., Lussis, P., Fustin, C.-A. et al. (2021). Real-time fluctuations in single-molecule rotaxane experiments reveal an intermediate weak binding state during shuttling. J. Am. Chem. Soc. 143 (5): 2348–2352.
Brough, B., Northrop, B.H., Schmidt, J.J. et al. (2006). Evaluation of synthetic linear motor-molecule actuation energetics. Proc. Natl. Acad. Sci. 103 (23): 8583–8588.
Altieri, A., Bottari, G., Dehez, F. et al. (2003). Remarkable positional discrimination in bistable light-and heat-switchable hydrogen-bonded molecular shuttles. Angew. Chem. Int. Ed. 42 (20): 2296–2300.
Ashton, P.R., Baxter, I., Fyfe, M.C.T. et al. (1998). Rotaxane or pseudorotaxane? That is the question! J. Am. Chem. Soc. 120 (10): 2297–2307.
Affeld, A., Hübner, G.M., Seel, C., and Schalley, C.A. (2001). Rotaxane or pseudorotaxane? Effects of small structural variations on the deslipping kinetics of rotaxanes with stopper groups of intermediate size. Eur. J. Org. Chem. 2001 (15): 2877.
McGonigal, P.R., Li, H., Cheng, C. et al. (2015). Controlling association kinetics in the formation of donor–acceptor pseudorotaxanes. Tetrahedron Lett. 56 (23): 3591–3594.
Gómez-Durán, C.F.A., Liu, W., de Lourdes Betancourt-Mendiola, M., and Smith, B.D. (2017). Structural control of kinetics for macrocycle threading by fluorescent squaraine dye in water. J. Org. Chem. 82 (16): 8334–8341.
Martinez-Cuezva, A., Rodrigues, L.V., Navarro, C. et al. (2015). Dethreading of tetraalkylsuccinamide-based [2]rotaxanes for preparing benzylic amide macrocycles. J. Org. Chem. 80 (20): 10049–10059.
Saito, S., Takahashi, E., Wakatsuki, K. et al. (2013). Synthesis of large [2]rotaxanes. The relationship between the size of the blocking group and the stability of the rotaxane. J. Org. Chem. 78 (8): 3553–3560.
Clifford, T., Abushamleh, A., and Busch, D.H. (2002). Factors affecting the threading of axle molecules through macrocycles: binding constants for semirotaxane formation. Proc. Natl. Acad. Sci. 99 (8): 4830–4836.
Heim, C., Affeld, A., Nieger, M., and Vögtle, F. (1999). Size complementarity of macrocyclic cavities and stoppers in amide-rotaxanes. Helv. Chim. Acta 82 (5): 746–759.
Raymo, F.M., Houk, K.N., and Stoddart, J.F. (1998). The mechanism of the slippage approach to rotaxanes. Origin of the “all-or-nothing” substituent effect. J. Am. Chem. Soc. 120 (36): 9318–9322.
Wenz, G., Han, B.-H., and Müller, A. (2006). Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106 (3): 782–817.
Dunlop, A., Wattoom, J., Hasan, E.A. et al. (2008). Mapping the positions of beads on a string: dethreading rotaxanes by molecular force spectroscopy. Nanotechnology 19 (34): 345706.
Bowman, K.A., Aarstad, O.A., Stokke, B.T. et al. (2016). Sliding contact dynamic force spectroscopy method for interrogating slowly forming polymer cross-links. Langmuir 32 (48): 12814–12822.
Dunlop, A., Bowman, K., Aarstad, O. et al. (2017). Polymer sequencing by molecular machines: a framework for predicting the resolving power of a sliding contact force spectroscopy sequencing method. Nanoscale 9 (39): 15089–15097.
Evans, E. and Ritchie, K. (1997). Dynamic strength of molecular adhesion bonds. Biophys. J. 72 (4): 1541–1555.
Friddle, R.W., Noy, A., and De Yoreo, J.J. (2012). Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl. Acad. Sci. 109 (34): 13573–13578.
Li, J., Nagamani, C., and Moore, J.S. (2015). Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 48 (8): 2181–2190.
Klein, I.M., Husic, C.C., Kovács, D.P. et al. (2020). Validation of the CoGEF method as a predictive tool for polymer mechanochemistry. J. Am. Chem. Soc. 142 (38): 16364–16381.
Nixon, R. and De Bo, G. (2020). Three concomitant C–C dissociation pathways during the mechanical activation of an N-heterocyclic carbene precursor. Nat. Chem. 12 (9): 826–831.
Liu, Y., Holm, S., Meisner, J. et al. (2021). Flyby reaction trajectories: chemical dynamics under extrinsic force. Science 373 (6551): 208–212.
Lenhardt, J.M., Ong, M.T., Choe, R. et al. (2010). Trapping a diradical transition state by mechanochemical polymer extension. Science 329 (5995): 1057–1060.
Chen, Z., Mercer, J.A.M., Zhu, X. et al. (2017). Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357 (6350): 475–479.
Piermattei, A., Karthikeyan, S., and Sijbesma, R.P. (2009). Activating catalysts with mechanical force. Nat. Chem. 1 (2): 133–137.
Michael, P. and Binder, W.H. (2015). A mechanochemically triggered “click” catalyst. Angew. Chem. Int. Ed. 54 (47): 13918–13922.
Küng, R., Göstl, R., and Schmidt, B.M. (2022). Release of molecular cargo from polymer systems by mechanochemistry. Chem. Eur. J. 28 (17): e202103860.
Stoll, R.S., Friedman, D.C., and Stoddart, J.F. (2011). Mechanically interlocked mechanophores by living-radical polymerization from rotaxane initiators. Org. Lett. 13 (10): 2706–2709.
May, P.A. and Moore, J.S. (2013). Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem. Soc. Rev. 42 (18): 7497.
De Bo, G. (2022). Mechanochemical dethreading of a cyclobis(paraquat-p-phenylene)-derived [2]rotaxane. figshare. Figure. https://doi.org/10.6084/m9.figshare.20153708.v1.
Zhang, M. and De Bo, G. (2018). Impact of a mechanical bond on the activation of a mechanophore. J. Am. Chem. Soc. 140 (40): 12724–12727.
Stevenson, R. and De Bo, G. (2017). Controlling reactivity by geometry in retro-Diels–Alder reactions under tension. J. Am. Chem. Soc. 139 (46): 16768–16771.
Zhang, M. and De Bo, G. (2019). Mechanical susceptibility of a rotaxane. J. Am. Chem. Soc. 141 (40): 15879–15883.
Mayumi, K., Ito, K., and Kato, K. (2015). Polyrotaxane and Slide-Ring Materials. Cambridge: Royal Society of Chemistry.
Lee, B., Niu, Z., and Craig, S.L. (2016). The mechanical strength of a mechanical bond: sonochemical polymer mechanochemistry of poly(catenane) copolymers. Angew. Chem. Int. Ed. 55 (42): 13086–13089.
Zhang, M. and De Bo, G. (2020). A catenane as a mechanical protecting group. J. Am. Chem. Soc. 142 (11): 5029–5033.
Davis, D.A., Hamilton, A., Yang, J. et al. (2009). Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459 (7243): 68–72.
Imato, K., Irie, A., Kosuge, T. et al. (2015). Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew. Chem. Int. Ed. 54 (21): 6168–6172.
Lu, Y., Aoki, D., Sawada, J. et al. (2020). Visualization of the slide-ring effect: a study on movable cross-linking points using mechanochromism. Chem. Commun. 56 (23): 3361–3364.
De Bo, G. (2022). Mechanochemical dethreading of a dibenzo-24-crown-8 (DB24C8) macrocycle connected to a diarylbibenzofuranone (DABBF) mechanochromophore. figshare. Figure. https://doi.org/10.6084/m9.figshare.20340873.v1.
Chen, Y., Mellot, G., van Luijk, D. et al. (2021). Mechanochemical tools for polymer materials. Chem. Soc. Rev. 50 (6): 4100–4140.
Roca-Cusachs, P., Conte, V., and Trepat, X. (2017). Quantifying forces in cell biology. Nat. Cell Biol. 19 (7): 742–751.
Sagara, Y., Karman, M., Verde-Sesto, E. et al. (2018). Rotaxanes as mechanochromic fluorescent force transducers in polymers. J. Am. Chem. Soc. 140 (5): 1584–1587.
Sagara, Y., Karman, M., Seki, A. et al. (2019). Rotaxane-based mechanophores enable polymers with mechanically switchable white photoluminescence. ACS Cent. Sci. 5 (5): 874–881.
Muramatsu, T., Okado, Y., Traeger, H. et al. (2021). Rotaxane-based dual function mechanophores exhibiting reversible and irreversible responses. J. Am. Chem. Soc. 143 (26): 9884–9892.
Sandoval-Torrientes, R., Carr, T., and De Bo, G. (2021). A mechanochromic hydrogen-bonded rotaxane. Macromol. Rapid Commun. 42 (1): 2000447.
Robin, M.P., Wilson, P., Mabire, A.B. et al. (2013). Conjugation-induced fluorescent labeling of proteins and polymers using dithiomaleimides. J. Am. Chem. Soc. 135 (8): 2875–2878.
Mabire, A.B., Robin, M.P., Quan, W.-D. et al. (2015). Aminomaleimide fluorophores: a simple functional group with bright, solvent dependent emission. Chem. Commun. 51 (47): 9733–9736.
Xie, Y., Husband, J.T., Torrent-Sucarrat, M. et al. (2018). Rational design of substituted maleimide dyes with tunable fluorescence and solvafluorochromism. Chem. Commun. 54 (27): 3339–3342.