Article (Scientific journals)
Cubically convergent iterations for invariant subspace computation
Absil, P.-A.; Sepulchre, Rodolphe; Van Dooren, P. et al.
2004In SIAM Journal on Matrix Analysis and Applications, 26 (1), p. 70-96
Peer Reviewed verified by ORBi
 

Files


Full Text
AbsilSVM03a.pdf
Publisher postprint (569.69 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
invariant subspace; Grassmann manifold; cubic convergence; symmetric eigenproblem; inverse iteration; Rayleigh quotient; Newton method; global convergence
Abstract :
[en] We propose a Newton-like iteration that evolves on the set of fixed dimensional subspaces of R-n and converges locally cubically to the invariant subspaces of a symmetric matrix. This iteration is compared in terms of numerical cost and global behavior with three other methods that display the same property of cubic convergence. Moreover, we consider heuristics that greatly improve the global behavior of the iterations.
Disciplines :
Mathematics
Author, co-author :
Absil, P.-A.
Sepulchre, Rodolphe ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Van Dooren, P.
Mahony, R.
Language :
English
Title :
Cubically convergent iterations for invariant subspace computation
Publication date :
2004
Journal title :
SIAM Journal on Matrix Analysis and Applications
ISSN :
0895-4798
eISSN :
1095-7162
Publisher :
Siam Publications, Philadelphia, United States - Pennsylvania
Volume :
26
Issue :
1
Pages :
70-96
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 22 December 2009

Statistics


Number of views
93 (2 by ULiège)
Number of downloads
370 (0 by ULiège)

Scopus citations®
 
23
Scopus citations®
without self-citations
15
OpenCitations
 
18
OpenAlex citations
 
42

Bibliography


Similar publications



Contact ORBi