Composite materials; Double–double laminates; Multi-material topology optimization; The uniform multiple laminates interpolation; Composites material; Composites structures; Design method; Double–double laminate; Model method; Multi materials; Optimization design; The uniform multiple laminate interpolation; Topology optimisation; Computational Mechanics; Mechanics of Materials; Mechanical Engineering; Physics and Astronomy (all); Computer Science Applications
Abstract :
[en] Double–Double (DD) laminates, incorporating a repetition of sub-plies featuring two groups of balanced angles, offer broad design flexibility together with the ease of design and manufacturing. In this work, a novel optimization design method is proposed for DD composite laminates based on multi-material topology optimization. First, the uniform multiple laminates interpolation (UMLI) model is proposed to describe the certainty of the stacking direction in multi-layer composite structures, inspired by the interpolation model in multi-material topology optimization. Specifically, the stiffness matrices of all alternative angle combinations of laminates are interpolated to form virtual laminates. The UMLI model eliminates the need for adding interlayer constraints during the optimization process. Then, the optimization problem is defined to minimize the compliance of the composite structures and is solved using the gradient-based optimization algorithm. Finally, the proposed method is applied to the design of the composite stiffened panel, the composite Unmanned Aerial Vehicle (UAV) wing, and the rear fuselage. The results demonstrate that the UMLI model and proposed optimization method have considerable potential in the angle optimization design of multi-layer structures.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Fang, Pingchu; State IJR Center of Aerospace Design and Additive Manufacturing, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
Gao, Tong; State IJR Center of Aerospace Design and Additive Manufacturing, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
Huang, Yongbin ; State IJR Center of Aerospace Design and Additive Manufacturing, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
Song, Longlong; State IJR Center of Aerospace Design and Additive Manufacturing, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
Liu, Hongquan; AVIC the First Aircraft Institute, Xi'an, China
Duysinx, Pierre ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Ingénierie des véhicules terrestres
Zhang, Wei Hong ; Université de Liège - ULiège > Département d'aérospatiale, mécanique et matériaux (ASMA) > LTAS - Optimisation multidisciplinaire ; State IJR Center of Aerospace Design and Additive Manufacturing, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
Language :
English
Title :
Uniform multiple laminates interpolation model and design method for double–double laminates based on multi-material topology optimization
Alternative titles :
[fr] Modèle d'interpolation uniforme de stratifiés multiples et méthode de conception de laminés doubles doubles basés sur l'optimisation topologique de structures multi-matériaux
Publication date :
01 January 2025
Journal title :
Computer Methods in Applied Mechanics and Engineering
This work is supported by the National Key Research and Development Program of China ( 2022YFB4602001 ) and National Natural Science Foundation Youth Fund ( 12102351 ).
Tiwary, A., Kumar, R., Chohan, J.S., A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc. 51 (2022), 865–870, 10.1016/j.matpr.2021.06.276.
Xu, Y., Zhu, J., Wu, Z., Cao, Y., Zhao, Y., Zhang, W., A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization. Adv. Compos. Hybrid Mater. 1 (2018), 460–477, 10.1007/s42114-018-0032-7.
Potgieter, E., Stander, N., The genetic algorithm applied to stiffness maximization of laminated plates: review and comparison. Struct. Optim. 15 (1998), 221–229, 10.1007/BF01203535.
Chang, L., Nie, X., Luo, L., The isogenic sequence double random genetic algorithm used in composite ply optimizations. Adv. Aeronaut. Sci. Eng. 14:5 (2023), 70–77, 10.16615/j.cnki.1674-8190.2023.05.09.
Erdal, O., Sonmez, F.O., Optimum design of composite laminates for maximum buckling load capacity using simulated annealing. Compos. Struct. 71 (2005), 45–52, 10.1016/j.compstruct.2004.09.008.
Hasançebi, O., Çarbaş, S., Saka, M.P., Improving the performance of simulated annealing in structural optimization. Struct. Multidiscip. Optim. 41 (2010), 189–203, 10.1007/s00158-009-0418-9.
Wang, W., Guo, S., Chang, N., Yang, W., Optimum buckling design of composite stiffened panels using ant colony algorithm. Compos. Struct. 92 (2010), 712–719, 10.1016/j.compstruct.2009.09.018.
Aymerich, F., Serra, M., Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO) metaheuristic. Compos. Part A 39 (2008), 262–272.
Almeida, F.S.D., Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm. Compos. Struct. 143 (2016), 287–299, 10.1016/j.compstruct.2016.02.034.
Wang, W., Wang, Q., Zhong, R., Chen, L., Shi, X., Stacking sequence optimization of arbitrary quadrilateral laminated plates for maximum fundamental frequency by hybrid whale optimization algorithm. Compos. Struct., 310, 2023, 116764, 10.1016/j.compstruct.2023.116764.
Walker, M., Smith, R.E., A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis. Compos. Struct. 62 (2003), 123–128, 10.1016/S0263-8223(03)00098-9.
Beylergil, B., Multi-objective optimal design of hybrid composite laminates under eccentric loading. Alex. Eng. J. 59 (2020), 4969–4983, 10.1016/j.aej.2020.09.015.
Deveci, H.A., Aydin, L., Seçil Artem, H., Buckling optimization of composite laminates using a hybrid algorithm under Puck failure criterion constraint. J. Reinf. Plast. Compos. 35 (2016), 1233–1247, 10.1177/0731684416646860.
Aydin, L., Artem, H.S., Comparison of stochastic search optimization algorithms for the laminated composites under mechanical and hygrothermal loadings. J. Reinf. Plast. Compos. 30 (2011), 1197–1212, 10.1177/0731684411415138.
Kemal Apalak, M., Yildirim, M., Ekici, R., Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions. Compos. Sci. Technol. 68 (2008), 537–550, 10.1016/j.compscitech.2007.06.031.
Jing, Z., Fan, X., Sun, Q., Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm. Compos. Struct. 121 (2015), 225–236, 10.1016/j.compstruct.2014.10.031.
Liu, X., Featherston, C.A., Kennedy, D., Two-level layup optimization of composite laminate using lamination parameters. Compos. Struct. 211 (2019), 337–350, 10.1016/j.compstruct.2018.12.054.
Franco Correia, V.M., Mota Soares, C.M., Mota Soares, C.A., Design sensitivity analysis and optimal design of composite structures using higher order discrete models. Eng. Optim. 29 (1997), 85–111, 10.1080/03052159708940988.
Tian, Y., Shi, T., Xia, Q., A parametric level set method for the optimization of composite structures with curvilinear fibers. Comput. Methods Appl. Mech. Eng., 388, 2022, 114236, 10.1016/j.cma.2021.114236.
Zhang, X., Evolutionary topology optimization of fiber reinforced composite laminates for maximum stiffness. Compos. Struct., 346, 2024, 118453.
Dutra, T.A., De Almeida, S.F.M., Composite plate stiffness multicriteria optimization using lamination parameters. Compos. Struct. 133 (2015), 166–177, 10.1016/j.compstruct.2015.07.029.
Montemurro, M., Mas, A., Zerrouq, S., Topology and anisotropy optimisation of continua using non-uniform rational basis spline entities. Comput. Methods Appl. Mech. Eng., 420, 2024, 116714, 10.1016/j.cma.2023.116714.
Khot, N.S., Venkayya, V.B., Berke, L., Optimum design of composite structures with stress and displacement constraints. AIAA J. 14 (1976), 131–132, 10.2514/3.61345.
Bruyneel, M., Fleury, C., Composite structures optimization using sequential convex programming. Adv. Eng. Softw. 33 (2002), 697–711.
Harte, A.M., McNamara, J.F., Roddy, I., Evaluation of optimisation techniques in the design of composite pipelines. J. Mater. Process. Technol. 118 (2001), 478–484, 10.1016/S0924-0136(01)00989-X.
Bohrer, R.Z.G., Kim, I.Y., Concurrent topology and stacking sequence optimization of composite laminate plates using lamination parameters. Compos. Struct., 276, 2021, 114556, 10.1016/j.compstruct.2021.114556.
Salas, R.A., Silva, A.L.F.D., Silva, E.C.N., HYIMFO: hybrid method for optimizing fiber orientation angles in laminated piezocomposite actuators. Comput. Methods Appl. Mech. Eng., 385, 2021, 114010, 10.1016/j.cma.2021.114010.
Honda, S., Narita, Y., Sasaki, K., Discrete optimization for vibration design of composite plates by using lamination parameters. Adv. Compos. Mater. 18 (2009), 297–314, 10.1163/156855109x434739.
Topal, U., Uzman, Ü., Maximization of buckling load of laminated composite plates with central circular holes using MFD method. Struct. Multidiscip. Optim. 35 (2008), 131–139, 10.1007/s00158-007-0119-1.
Henrichsen, S.R., Weaver, P.M., Lindgaard, E., Lund, E., Post-buckling optimization of composite structures using Koiter's method: post-buckling optimization of composite structures using Koiter's method. Int. J. Numer. Methods Eng. 108 (2016), 902–940, 10.1002/nme.5239.
Sørensen, R., Lund, E., Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures. Struct. Multidiscip. Optim. 52 (2015), 227–250, 10.1007/s00158-015-1230-3.
Gao, T., Zhang, W., A mass constraint formulation for structural topology optimization with multiphase materials. Int. J. Numer. Methods Eng. 88 (2011), 774–796, 10.1002/nme.3197.
Stegmann, J., Lund, E., Discrete material optimization of general composite shell structures: discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 62 (2005), 2009–2027, 10.1002/nme.1259.
Duan, Z., Yan, J., Zhao, G., Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct. Multidiscip. Optim. 51 (2015), 721–732, 10.1007/s00158-014-1168-x.
Pedersen, N.L., On design of fiber-nets and orientation for eigenfrequency optimization of plates. Comput. Mech. 39 (2006), 1–13, 10.1007/s00466-005-0002-0.
Niu, B., Shan, Y., Lund, E., Discrete material optimization of vibrating composite plate and attached piezoelectric fiber composite patch. Struct. Multidiscip. Optim. 60 (2019), 1759–1782, 10.1007/s00158-019-02359-8.
Bruyneel, M., SFP—A new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct. Multidiscip. Optim. 43 (2011), 17–27, 10.1007/s00158-010-0548-0.
Gao, T., Zhang, W., Duysinx, P., A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate: BCP scheme for the discrete optimal orientation design of the laminate. Int. J. Numer. Methods Eng. 91 (2012), 98–114, 10.1002/nme.4270.
Zhang, L., Guo, L., Sun, P., Yan, J., Long, K., A generalized discrete fiber angle optimization method for composite structures: bipartite interpolation optimization. Int. J. Numer. Methods Eng., 2022, 10.1002/nme.7160 nme.7160.
Luo, Y., Chen, W., Liu, S., Li, Q., Ma, Y., A discrete-continuous parameterization (DCP) for concurrent optimization of structural topologies and continuous material orientations. Compos. Struct., 236, 2020, 111900, 10.1016/j.compstruct.2020.111900.
Smith, H., Norato, J., Simultaneous material and topology optimization of composite laminates. Comput. Methods Appl. Mech. Eng., 404, 2023, 115781, 10.1016/j.cma.2022.115781.
Bruyneel, M., Beghin, C., Craveur, G., Grihon, S., Sosonkina, M., Stacking sequence optimization for constant stiffness laminates based on a continuous optimization approach. Struct. Multidiscip. Optim. 46 (2012), 783–794, 10.1007/s00158-012-0806-4.
Niu, M.C.-Y., Airframe Structural design: Practical Design Information and Data on Aircraft structures, 2. ed., 3. publ. With Minor Corr. 2006, Conmilit Press Ltd, Hong Kong.
Herencia, J.E., Weaver, P.M., Friswell, M.I., Optimization of long anisotropic laminated fiber composite panels with T-shaped stiffeners. AIAA J. 45 (2007), 2497–2509, 10.2514/1.26321.
Fedon, N., Weaver, P.M., Pirrera, A., Macquart, T., A repair algorithm for composite laminates to satisfy lay-up design guidelines. Compos. Struct., 259, 2021, 113448, 10.1016/j.compstruct.2020.113448.
Liu, D., Toroporov, V.V., Querin, O.M., Barton, D.C., Bilevel optimization of blended composite wing panels. J. Aircr. 48 (2011), 107–118, 10.2514/1.C000261.
Yan, J., Duan, Z., Lund, E., Wang, J., Concurrent multi-scale design optimization of composite frames with manufacturing constraints. Struct. Multidiscip. Optim. 56 (2017), 519–533, 10.1007/s00158-017-1750-0.
Tsai, S.W., Double–double: new family of composite laminates. AIAA J. 59 (2021), 4293–4305, 10.2514/1.J060659.
Vermes, B., Tsai, S.W., Massard, T., Springer, G.S., Czigany, T., Design of laminates by a novel “double–double” layup. Thin-Walled Struct., 165, 2021, 107954, 10.1016/j.tws.2021.107954.
Zhao, K., Kennedy, D., Miravete, A., Tsai, S.W., Featherston, C.A., Liu, X., Defining the design space for double–double laminates by considering homogenization criterion. AIAA J., 2023, 1–14, 10.2514/1.J062639.
Zhao, M., Zhao, Y., Wang, A., Chang, Z., Zhang, J., Wang, Z., Investigation of the mode-I delamination behavior of Double-Double laminate carbon fiber reinforced composite. Compos. Sci. Technol., 248, 2024, 110463, 10.1016/j.compscitech.2024.110463.
Shrivastava, S., Sharma, N., Tsai, S.W., Mohite, P.M., D and DD-drop layup optimization of aircraft wing panels under multi-load case design environment. Compos. Struct., 248, 2020, 112518, 10.1016/j.compstruct.2020.112518.
Kappel, E., Double–Double laminates for aerospace applications — Finding best laminates for given load sets. Compos. Part C Open Access, 8, 2022, 100244, 10.1016/j.jcomc.2022.100244.
Tsai, S.W., Expectation of the next generation research in composite materials. Mater. syst. 40 (2023), 55–59.
Riccio, A., Caprio, F.D., Tsai, S.W., Russo, A., Sellitto, A., Optimization of composite aeronautical components by Re-designing with double-double laminates. Aerosp. Sci. Technol., 151, 2024, 109304, 10.1016/j.ast.2024.109304.