[en] To grow at distant sites, metastatic cells must overcome major challenges posed by the unique cellular and metabolic composition of secondary organs1. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease that metastasizes to the liver and lungs. Despite evidence of metabolic reprogramming away from the primary site, the key drivers that dictate the ability of PDAC cells to colonize the liver or lungs and survive there remain undefined. Here we identified PCSK9 as predictive of liver versus lung colonization by integrating metastatic tropism data of human PDAC cell lines2, in vivo metastasis modelling in mice and gene expression correlation analysis. PCSK9 negatively regulates low density lipoprotein (LDL)-cholesterol import and, accordingly, PCSK9-low PDAC cells preferentially colonize LDL-rich liver tissue. LDL-cholesterol taken up by liver-avid PCSK9-low cells supports activation of pro-growth mTORC1 activation at the lysosome, and through conversion into the signalling oxysterol, 24(S)-hydroxycholesterol, reprogrammes the microenvironment to release nutrients from neighbouring hepatocytes. Conversely, PCSK9-high, lung-avid PDAC cells rely on transcriptional upregulation of the distal cholesterol synthesis pathway to generate intermediates-7-dehydrocholesterol and 7-dehydrodesmosterol-with protective action against ferroptosis, a vulnerability in the oxygen-rich microenvironment of the lung. Increasing the amount of PCSK9 redirected liver-avid cells to the lung whereas ablating PCSK9 drove lung-avid cells to the liver, thereby establishing PCSK9 as necessary and sufficient for secondary organ site preference. Our studies reveal PCSK9-driven differential utilization of the distal cholesterol synthesis pathway as a key and potentially actionable driver of metastatic growth in PDAC.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Rademaker, Gilles ; Université de Liège - ULiège > GIGA > GIGA Cancer - Metastases Research Laboratory ; Department of Anatomy, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
Hernandez, Grace A; Department of Anatomy, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
Seo, Yurim ; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
Dahal, Sumena; Department of Anatomy, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
Miller-Phillips, Lisa; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA ; Department of Hematology/Oncology, LMU Klinikum, University of Munich Comprehensive Cancer Center, Munich, Germany
Li, Alexander L ; Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
Peng, Xianlu Laura; Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Luan, Changfei; Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Qiu, Longhui; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
Liégeois, Maude ; Université de Liège - ULiège > Département des sciences fonctionnelles (DSF) > Physiologie générale et des systèmes ; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
Wang, Bruce ; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA ; Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
Wen, Kwun W; Department of Pathology, University of California San Francisco, San Francisco, CA, USA
Kim, Grace E ; Department of Pathology, University of California San Francisco, San Francisco, CA, USA
Collisson, Eric A ; Fred Hutchinson Cancer Research Center, Seattle, WA, USA
Kruger, Stephan F; Department of Hematology/Oncology, LMU Klinikum, University of Munich Comprehensive Cancer Center, Munich, Germany
Boeck, Stefan ; Department of Hematology/Oncology, LMU Klinikum, University of Munich Comprehensive Cancer Center, Munich, Germany ; Department of Hematology and Oncology, München Klinik Neuperlach, Munich, Germany ; German Cancer Consortium (DKTK), Munich, Germany
Ormanns, Steffen; Institute of General Pathology, Medical University Innsbruck, Innsbruck, Austria ; Innpath Institute for Pathology, Tirol Kliniken, Innsbruck, Austria
Guenther, Michael; Institute of General Pathology, Medical University Innsbruck, Innsbruck, Austria ; Innpath Institute for Pathology, Tirol Kliniken, Innsbruck, Austria
Heinemann, Volker; Department of Hematology/Oncology, LMU Klinikum, University of Munich Comprehensive Cancer Center, Munich, Germany
Haas, Michael; Department of Hematology/Oncology, LMU Klinikum, University of Munich Comprehensive Cancer Center, Munich, Germany ; Department of Hematology and Oncology, München Klinik Neuperlach, Munich, Germany
Looney, Mark R ; Department of Medicine, University of California San Francisco, San Francisco, CA, USA
Yeh, Jen Jen; Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA ; Departments of Surgery and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Zoncu, Roberto ; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
Perera, Rushika M ; Department of Anatomy, University of California San Francisco, San Francisco, CA, USA. rushika.perera@ucsf.edu ; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA. rushika.perera@ucsf.edu ; Department of Pathology, University of California San Francisco, San Francisco, CA, USA. rushika.perera@ucsf.edu
This work was supported by a BAEF (Belgian American Education Foundation) fellowship, Fonds L\u00E9on Fredericq, Rotary and Wallonie Bruxelles International grants (G.R.); a National Science Foundation Graduate Research Fellowship (NSF2034836) (G.A.H.); NHLBI R35 HL161241 and the Nina Ireland Program for Lung Heath (M.R.L.); National Cancer Institute R01CA260205 (R.Z.); National Cancer Institute R01CA240603 and R01CA260249, the Ed Marra Passion to Win Fund, the Weston Havens Fund and the AACR-MPM Transformative Cancer Research Award (R.M.P.); National Cancer Institute R01CA199064 (J.J.Y.), U01CA274298, P50CA257911 and U24CA211000 (X.L.P. and J.J.Y.); 7R01CA260860 and 7R01CA256969 (E.A.C.); Sky Foundation fellowship (L.M.P.); and National Institute of Diabetes and Digestive and Kidney Diseases R01DK131227 and P30DK026743 (B.W.). The authors thank the UCSF Parnassus Flow CoLab, RRID:SCR_018206 for assistance with flow cytometry and the UCSF Liver Center, supported by P30DK026743, for assistance with hepatocyte isolation.
S. Gerstberger Q. Jiang K. Ganesh Metastasis Cell 186 1564 1579 1:CAS:528:DC%2BB3sXnvVCnu74%3D 37059065 10511214 10.1016/j.cell.2023.03.003
X. Jin et al. A metastasis map of human cancer cell lines Nature 588 331 336 2020Natur.588.331J 1:CAS:528:DC%2BB3cXisFCgtLbM 33299191 8439149 10.1038/s41586-020-2969-2
J. Massague A.C. Obenauf Metastatic colonization by circulating tumour cells Nature 529 298 306 2016Natur.529.298M 1:CAS:528:DC%2BC28Xht1Ois70%3D 26791720 5029466 10.1038/nature17038
I. Elia M.C. Haigis Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism Nat. Metab. 3 21 32 33398194 8097259 10.1038/s42255-020-00317-z
K.H. Liu et al. Lung metastases in patients with stage IV pancreatic cancer: prevalence, risk factors, and survival impact J. Clin. Med. 8 1402 1:CAS:528:DC%2BB3cXmsFaqsro%3D 31500146 6780197 10.3390/jcm8091402
A. Deeb S.U. Haque O. Olowokure Pulmonary metastases in pancreatic cancer, is there a survival influence? J. Gastrointest. Oncol. 6 E48 E51 26029466 4397254
S. Downs-Canner et al. The indolent nature of pulmonary metastases from ductal adenocarcinoma of the pancreas J. Surg. Oncol. 112 80 85 26153355 4509861 10.1002/jso.23943
M. Yasukawa T. Kawaguchi N. Kawai T. Tojo S. Taniguchi Surgical treatment for pulmonary metastasis of pancreatic ductal adenocarcinoma: study of 12 cases Anticancer Res. 37 5573 5576 28982872
J.M. Link et al. Ongoing replication stress tolerance and clonal T cell responses distinguish liver and lung recurrence and outcomes in pancreatic cancer Nat. Cancer 6 123 144 1:CAS:528:DC%2BB2MXhvFajsL8%3D 39789181 11779630 10.1038/s43018-024-00881-3
E.C. Cheung et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer Cancer Cell 37 168 182.e164 1:CAS:528:DC%2BB3cXhvVShsLw%3D 31983610 7008247 10.1016/j.ccell.2019.12.012
R. Maddipati et al. MYC levels regulate metastatic heterogeneity in pancreatic adenocarcinoma Cancer Discov. 12 542 561 1:CAS:528:DC%2BB38XhtVSrsbfK 34551968 10.1158/2159-8290.CD-20-1826
G. Mucciolo et al. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer Cancer Cell 42 101 118.e111 1:CAS:528:DC%2BB2cXkslem 38157863 10.1016/j.ccell.2023.12.002
A. Pommier et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases Science 360 29773669 6547380 10.1126/science.aao4908 eaao4908
S. Raghavan et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer Cell 184 6119 6137.e6126 1:CAS:528:DC%2BB3MXislajt7%2FF 34890551 8822455 10.1016/j.cell.2021.11.017
Tsanov, K. M. et al. Metastatic site influences driver gene function in pancreatic cancer. Preprint at bioRxivhttps://doi.org/10.1101/2024.03.17.585402 (2024).
X. Wang et al. Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis Nat. Commun. 12 2021NatCo.12.194W 1:CAS:528:DC%2BB3MXht1Slsrw%3D 33420030 7794439 10.1038/s41467-020-20447-y 174
P. Bailey et al. Genomic analyses identify molecular subtypes of pancreatic cancer Nature 531 47 52 2016Natur.531..53B 1:CAS:528:DC%2BC28XjtFOisr0%3D 26909576 10.1038/nature16965
Cancer Genome Atlas Research Network Integrated genomic characterization of pancreatic ductal adenocarcinoma Cancer Cell 32 185 203.e13 10.1016/j.ccell.2017.07.007
E.A. Collisson et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy Nat. Med. 17 500 503 1:CAS:528:DC%2BC3MXktFahtrY%3D 21460848 3755490 10.1038/nm.2344
A.A. Connor et al. Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases Cancer Cell 35 267 282.e267 1:CAS:528:DC%2BC1MXhvFSlt70%3D 30686769 6398439 10.1016/j.ccell.2018.12.010
R.A. Moffitt et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma Nat. Genet. 47 1168 1178 1:CAS:528:DC%2BC2MXhsV2lt7%2FK 26343385 4912058 10.1038/ng.3398
G.M. O’Kane et al. GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic cancer Clin. Cancer Res. 26 4901 4910 32156747 10.1158/1078-0432.CCR-19-3724
K.L. Aung et al. Genomics-driven precision medicine for advanced pancreatic cancer: early results from the COMPASS trial Clin. Cancer Res. 24 1344 1354 1:CAS:528:DC%2BC1cXks1ymu7g%3D 29288237 10.1158/1078-0432.CCR-17-2994
Link, J. M. et al. Tumor-infiltrating leukocyte phenotypes distinguish outcomes in related patients with pancreatic adenocarcinoma. JCO Precis. Oncol.https://doi.org/10.1200/PO.20.00287 (2021).
S.F. Boj et al. Organoid models of human and mouse ductal pancreatic cancer Cell 160 324 338 1:CAS:528:DC%2BC2MXnslKitg%3D%3D 25557080 10.1016/j.cell.2014.12.021
S. Kruger et al. Isolated pulmonary metastases define a favorable subgroup in metastatic pancreatic cancer Pancreatology 16 593 598 27067420 10.1016/j.pan.2016.03.016
S. Zhang et al. Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis Nat. Commun. 14 2023NatCo.14.5123Z 1:CAS:528:DC%2BB3sXhslOnsb7N 37612267 10447466 10.1038/s41467-023-40727-7 5123
M.S. Brown J.L. Goldstein Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL J. Lipid Res. 50 S15 S27 18974038 2674699 10.1194/jlr.R800054-JLR200
M.S. Brown A. Radhakrishnan J.L. Goldstein Retrospective on cholesterol homeostasis: the central role of Scap Annu. Rev. Biochem. 87 783 807 1:CAS:528:DC%2BC2sXhtlylsLfE 28841344 10.1146/annurev-biochem-062917-011852
C.T. Ishida et al. SREBP-dependent regulation of lipid homeostasis is required for progression and growth of pancreatic ductal adenocarcinoma Cancer Res. Commun. 4 2539 2552 1:CAS:528:DC%2BB2cXisVWlt7nJ 39240063 11444119 10.1158/2767-9764.CRC-24-0120
I.K. Kotowski et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol Am. J. Hum. Genet. 78 410 422 1:CAS:528:DC%2BD28XitVWqtL8%3D 16465619 1380285 10.1086/500615
S.K. Sarkar et al. A transient amphipathic helix in the prodomain of PCSK9 facilitates binding to low-density lipoprotein particles J. Biol. Chem. 295 2285 2298 1:CAS:528:DC%2BB3cXosFChsLc%3D 31949048 7039556 10.1074/jbc.RA119.010221
B.M. Castellano et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann-Pick C1 signaling complex Science 355 1306 1311 2017Sci..355.1306C 1:CAS:528:DC%2BC2sXksFaksLw%3D 28336668 5823611 10.1126/science.aag1417
H.R. Shin et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1 Science 377 1290 1298 2022Sci..377.1290S 1:CAS:528:DC%2BB38XisFOrtbvM 36007018 10023259 10.1126/science.abg6621
E.R. Nelson et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology Science 342 1094 1098 2013Sci..342.1094N 1:CAS:528:DC%2BC3sXhvVartr3J 24288332 3899689 10.1126/science.1241908
R. Courtney G.E. Landreth LXR regulation of brain cholesterol: from development to disease Trends Endocrinol. Metab. 27 404 414 1:CAS:528:DC%2BC28XmslSjtrc%3D 27113081 4986614 10.1016/j.tem.2016.03.018
B. Wang P. Tontonoz Liver X receptors in lipid signalling and membrane homeostasis Nat. Rev. Endocrinol. 14 452 463 1:CAS:528:DC%2BC1cXhtFCjsLnP 29904174 6433546 10.1038/s41574-018-0037-x
S.J. Dixon J.A. Olzmann The cell biology of ferroptosis Nat. Rev. Mol. Cell Biol. 25 424 442 1:CAS:528:DC%2BB2cXjvVamsrk%3D 38366038 10.1038/s41580-024-00703-5
J. Garcia-Bermudez et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death Nature 567 118 122 2019Natur.567.118G 1:CAS:528:DC%2BC1MXmt1ymt7c%3D 30760928 6405297 10.1038/s41586-019-0945-5
F.P. Freitas et al. 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis Nature 626 401 410 2024Natur.626.401F 1:CAS:528:DC%2BB2cXisFWrtrY%3D 38297129 10.1038/s41586-023-06878-9
Y. Li et al. 7-Dehydrocholesterol dictates ferroptosis sensitivity Nature 626 411 418 2024Natur.626.411L 1:CAS:528:DC%2BB2cXisFWqs70%3D 38297130 11298758 10.1038/s41586-023-06983-9
N. Yamada et al. Inhibition of 7-dehydrocholesterol reductase prevents hepatic ferroptosis under an active state of sterol synthesis Nat. Commun. 15 2024NatCo.15.2195Y 1:CAS:528:DC%2BB2cXntFeqtbc%3D 38472233 10933264 10.1038/s41467-024-46386-6 2195
P.J. Mullen R. Yu J. Longo M.C. Archer L.Z. Penn The interplay between cell signalling and the mevalonate pathway in cancer Nat. Rev. Cancer 16 718 731 1:CAS:528:DC%2BC28XhsVSrur%2FN 27562463 10.1038/nrc.2016.76
R. Riscal N. Skuli M.C. Simon Even cancer cells watch their cholesterol! Mol. Cell 76 220 231 1:CAS:528:DC%2BC1MXhvFWktrfE 31586545 7225778 10.1016/j.molcel.2019.09.008
M.T. Snaebjornsson S. Janaki-Raman A. Schulze Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer Cell Metab. 31 62 76 1:CAS:528:DC%2BC1MXitlGhsL%2FE 31813823 10.1016/j.cmet.2019.11.010
S. Vasseur F. Guillaumond Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance Oncogenesis 11 1:CAS:528:DC%2BB38Xitlektb%2FM 35945203 9363460 10.1038/s41389-022-00420-8 46
J. Ye R.A. DeBose-Boyd Regulation of cholesterol and fatty acid synthesis Cold Spring Harb. Perspect. Biol. 3 21504873 3119913 10.1101/cshperspect.a004754 a004754
K. Mahboobnia et al. PCSK9 and cancer: rethinking the link Biomed. Pharmacother. 140 1:CAS:528:DC%2BB3MXhsVahtb7I 34058443 10.1016/j.biopha.2021.111758 111758
T. Kietzmann Metabolic zonation of the liver: the oxygen gradient revisited Redox Biol. 11 622 630 1:CAS:528:DC%2BC2sXhsFeju7g%3D 28126520 5257182 10.1016/j.redox.2017.01.012
A. Daemen et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors Proc. Natl Acad. Sci. USA 112 E4410 E4417 1:CAS:528:DC%2BC2MXht1Crt7jL 26216984 4538616 10.1073/pnas.1501605112
L. Gabitova-Cornell et al. Cholesterol pathway inhibition induces TGF-β signaling to promote basal differentiation in pancreatic cancer Cancer Cell 38 567 583.e511 1:CAS:528:DC%2BB3cXhvFGqsLzL 32976774 7572882 10.1016/j.ccell.2020.08.015
J.M. Karasinska et al. Altered gene expression along the glycolysis–cholesterol synthesis axis is associated with outcome in pancreatic cancer Clin. Cancer Res. 26 135 146 1:CAS:528:DC%2BB3cXhslGnsrjP 31481506 10.1158/1078-0432.CCR-19-1543
F. Guillaumond et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma Proc. Natl Acad. Sci. USA 112 2473 2478 2015PNAS.112.2473G 1:CAS:528:DC%2BC2MXitlagsbY%3D 25675507 4345573 10.1073/pnas.1421601112
E.J. Jacobs C.C. Newton M.J. Thun S.M. Gapstur Long-term use of cholesterol-lowering drugs and cancer incidence in a large United States cohort Cancer Res. 71 1763 1771 1:CAS:528:DC%2BC3MXisFCns7k%3D 21343395 10.1158/0008-5472.CAN-10-2953
S.F. Nielsen B.G. Nordestgaard S.E. Bojesen Statin use and reduced cancer-related mortality N. Engl. J. Med. 367 1792 1802 1:CAS:528:DC%2BC38Xhs1ekt73N 23134381 10.1056/NEJMoa1201735
A.L. Hillis et al. Targeting cholesterol biosynthesis with statins synergizes with AKT inhibitors in triple-negative breast cancer Cancer Res. 84 3250 3266 1:CAS:528:DC%2BB2cXis1Sis7bM 39024548 11443248 10.1158/0008-5472.CAN-24-0970
Q. Zhou Z. Jiao Y. Liu P.N. Devreotes Z. Zhang The effects of statins in patients with advanced-stage cancers - a systematic review and meta-analysis Front. Oncol. 13 1234713 37664034 10473877 10.3389/fonc.2023.1234713
W. Mei et al. A commonly inherited human PCSK9 germline variant drives breast cancer metastasis via LRP1 receptor Cell 188 371 389.e28 1:CAS:528:DC%2BB2cXislWks7zK 39657676 10.1016/j.cell.2024.11.009
X. Liang et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection J. Biotechnol. 208 44 53 1:CAS:528:DC%2BC2MXptVSms7w%3D 26003884 10.1016/j.jbiotec.2015.04.024
E.A. Susaki et al. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging Nat. Protoc. 10 1709 1727 1:CAS:528:DC%2BC2MXhs1Sit73I 26448360 10.1038/nprot.2015.085
K. Tainaka et al. Whole-body imaging with single-cell resolution by tissue decolorization Cell 159 911 924 1:CAS:528:DC%2BC2cXhvV2msrbP 25417165 10.1016/j.cell.2014.10.034
M. Charni-Natan I. Goldstein Protocol for primary mouse hepatocyte isolation STAR Protoc. 1 100086 33111119 7580103 10.1016/j.xpro.2020.100086
M. Guenther et al. The impact of adjuvant therapy on outcome in UICC stage I pancreatic cancer Int. J. Cancer 151 914 919 1:CAS:528:DC%2BB38Xht12gsLrM 35467760 10.1002/ijc.34044
C.R. Adams et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer eLife 8 31134896 6538376 10.7554/eLife.45313 e45313
C.S. McGinnis L.M. Murrow Z.J. Gartner DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors Cell Syst. 8 329 337 e324 1:CAS:528:DC%2BC1MXosVyhtbk%3D 30954475 6853612 10.1016/j.cels.2019.03.003
D. Aran et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage Nat. Immunol. 20 163 172 1:CAS:528:DC%2BC1MXlvFSgu7k%3D 30643263 6340744 10.1038/s41590-018-0276-y
I. Tirosh et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq Science 352 189 196 2016Sci..352.189T 1:CAS:528:DC%2BC28XlsFSmurk%3D 27124452 4944528 10.1126/science.aad0501
L. Zhang et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer Cell 181 442 459.e429 1:CAS:528:DC%2BB3cXnsV2nsbo%3D 32302573 10.1016/j.cell.2020.03.048
J.R. Leary et al. Sub-cluster identification through semi-supervised optimization of rare-cell silhouettes (SCISSORS) in single-cell RNA-sequencing Bioinformatics 39 1:CAS:528:DC%2BB3sXis1ektbzL 37498558 10412410 10.1093/bioinformatics/btad449 btad449
Rademaker, G. Summary of project PR002405. Metabolomics Workbenchhttp://dx.doi.org/10.21228/M8RV70 (2025).