Bandgaps; Bloch–Floquet analysis; Multi-material additive manufacturing; Periodic media; Transfer matrix formalism; Viscoelasticity; Bloch–floquet analyse; Floquet analysis; Matrix formalism; Mechanical modeling; Multi materials; Transfer matrixes; Viscoelastics; Acoustics and Ultrasonics
Abstract :
[en] Multi-material additive manufacturing is receiving increasing attention in the field of acoustics, in particular towards the design of micro-architectured periodic media used to achieve programmable ultrasonic responses. To unravel the effect of the material properties and spatial arrangement of the printed constituents, there is an unmet need in developing wave propagation models for prediction and optimization purposes. In this study, we propose to investigate the transmission of longitudinal ultrasound waves through 1D-periodic biphasic media, whose constituent materials are viscoelastic. To this end, Bloch-Floquet analysis is applied in the frame of viscoelasticity, with the aim of disentangling the relative contributions of viscoelasticity and periodicity on ultrasound signatures, such as dispersion, attenuation, and bandgaps localization. The impact of the finite size nature of these structures is then assessed by using a modeling approach based on the transfer matrix formalism. Finally, the modeling outcomes, i.e., frequency-dependent phase velocity and attenuation, are confronted with experiments conducted on 3D-printed samples, which exhibit a 1D periodicity at length-scales of a few hundreds of micrometers. Altogether, the obtained results shed light on the modeling characteristics to be considered when predicting the complex acoustic behavior of periodic media in the ultrasonic regime.
Disciplines :
Physics
Author, co-author :
Gattin, Max; Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010, Créteil, France
Bochud, Nicolas; Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010, Créteil, France. Electronic address: nicolas.bochud@u-pec.fr
Rosi, Giuseppe; Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010, Créteil, France
Grossman, Quentin ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Ruffoni, Davide ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Naili, Salah; Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010, Créteil, France
Language :
English
Title :
Ultrasonic bandgaps in viscoelastic 1D-periodic media: Mechanical modeling and experimental validation.
This work was partially supported by the “Bonus Qualité Recherche” for young researchers ( Faculté des Sciences et Technologie, Université Paris-Est Créteil, France ).
Naify, C.J., Matlack, K.H., Haberman, M.R., Introduction to the special issue on additive manufacturing and acoustics. J. Acoust. Soc. Am. 151:1 (2022), 387–389.
Cloonan, A.J., Shahmirzadi, D., Li, R.X., Doyle, B.J., Konofagou, E.E., McGloughlin, T.M., 3D-printed tissue-mimicking phantoms for medical imaging and computational validation applications. 3D Print. Addit. Manuf. 1:1 (2014), 14–23.
Jacquet, J.-R., Ossant, F., Levassort, F., Grégoire, J.-M., 3-D-printed phantom fabricated by photopolymer jetting technology for high-frequency ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65:6 (2018), 1048–1055.
Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., Aubry, J.-F., 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Phys. Med. Biol., 63(2), 2018, 025026.
Ferri, M., Bravo, J.M., Redondo, J., Jiménez-Gambín, S., Jiménez, N., Camarena, F., Sánchez-Pérez, J.V., On the evaluation of the suitability of the materials used to 3D print holographic acoustic lenses to correct transcranial focused ultrasound aberrations. Polymers, 11(9), 2019, 1521.
Askari, M., Hutchins, D.A., Thomas, P.J., Astolfi, L., Watson, R.L., Abdi, M., Ricci, M., Laureti, S., Nie, L., Freear, S., et al. Additive manufacturing of metamaterials: A review. Addit. Manuf., 36, 2020, 101562.
D'Alessandro, L., Belloni, E., Ardito, R., Corigliano, A., Braghin, F., Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal. Appl. Phys. Lett., 109(22), 2016, 221907.
Matlack, K.H., Bauhofer, A., Krödel, S., Palermo, A., Daraio, C., Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl. Acad. Sci. 113:30 (2016), 8386–8390.
Cushing, C.W., Kelsten, M.J., Su, X., Wilson, P.S., Haberman, M.R., Norris, A.N., Design and characterization of a three-dimensional anisotropic additively manufactured pentamode material. J. Acoust. Soc. Am. 151:1 (2022), 168–179.
Ribeiro, L., Dal Poggetto, V., Huallpa, B., Arruda, J., Bloch wavenumber identification of periodic structures using Prony's method. Mech. Syst. Signal Process., 178, 2022, 109242.
M. Oudich, N.J. Gerard, Y. Deng, Y. Jing, Bandgap engineering in phononic crystals and elastic metamaterials, arXiv preprint https://arxiv.org/abs/2207.05234.
Seidel, R., Roschger, A., Li, L., Bizzarro, J.J., Zhang, Q., Yin, J., Yang, T., Weaver, J.C., Fratzl, P., Roschger, P., et al. Mechanical properties of stingray tesserae: high-resolution correlative analysis of mineral density and indentation moduli in tessellated cartilage. Acta Biomater. 96 (2019), 421–435.
Aliabouzar, M., Zhang, G.L., Sarkar, K., Acoustic and mechanical characterization of 3D-printed scaffolds for tissue engineering applications. Biomed. Mater., 13(5), 2018, 055013.
Sun, C., Dong, E., Chen, J., Zheng, J., Kang, J., Jin, Z., Liu, C., Wang, L., Li, D., The promotion of mechanical properties by bone ingrowth in additive-manufactured titanium scaffolds. J. Funct. Biomater., 13(3), 2022, 127.
Torres, M., de Espinosa, F.M., Ultrasonic band gaps and negative refraction. Ultrasonics 42:1–9 (2004), 787–790.
O. Lenoir, P. Maréchal, Study of plane periodic multilayered viscoelastic media: Experiment and simulation, in: IEEE Int. Ultrason. Symp., 2009, pp. 1028–1031.
Maréchal, P., Lenoir, O., Khaled, A., Ech Cherif El Kettani, M., Chenouni, D., Viscoelasticity effect on a periodic plane medium immersed in water. Acta Acust. United Ac. 100:6 (2014), 1036–1043.
Smith, E.J., Matlack, K.H., Metal additively manufactured phononic materials as ultrasonic filters in nonlinear ultrasound measurements. J. Acoust. Soc. Am. 149:6 (2021), 3739–3750.
Kruisová, A., Sěvčík, M., Seiner, H., Sedlák, P., Román-Manso, B., Miranzo, P., Belmonte, M., Landa, M., Ultrasonic bandgaps in 3D-printed periodic ceramic microlattices. Ultrasonics 82 (2018), 91–100.
Lucklum, F., Vellekoop, M., Rapid prototyping of 3D phononic crystals using high-resolution stereolithography fabrication. Proc. Eng. 120 (2015), 1095–1098.
Iglesias Martínez, J.A., Moughames, J., Ulliac, G., Kadic, M., Laude, V., Three-dimensional phononic crystal with ultra-wide bandgap at megahertz frequencies. Appl. Phys. Lett., 118(6), 2021, 063507.
Zorzetto, L., Ruffoni, D., Wood-inspired 3D-printed helical composites with tunable and enhanced mechanical performance. Adv. Funct. Mater., 29(1), 2019, 1805888.
Mirzaali, M.J., Cruz Saldívar, M., Herranz de la Nava, A., Gunashekar, D., Nouri-Goushki, M., Doubrovski, E.L., Zadpoor, A.A., Multi-material 3D printing of functionally graded hierarchical soft–hard composites. Adv. Eng. Mater., 22(7), 2020, 1901142.
Mirzaali, M., De La Nava, A.H., Gunashekar, D., Nouri-Goushki, M., Veeger, R., Grossman, Q., Angeloni, L., Ghatkesar, M., Fratila-Apachitei, L., Ruffoni, D., Doubrovski, E.L., Zadpoor, A.A., Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing. Compos. Struct., 237, 2020, 111867.
Aghaei, A., Bochud, N., Rosi, G., Grossman, Q., Ruffoni, D., Naili, S., Ultrasound characterization of bioinspired functionally graded soft-to-hard composites: Experiment and modeling. J. Acoust. Soc. Am. 151:3 (2022), 1490–1501.
Gattin, M., Bochud, N., Rosi, G., Grossman, Q., Ruffoni, D., Naili, S., Ultrasound characterization of the viscoelastic properties of additively manufactured photopolymer materials. J. Acoust. Soc. Am. 152:3 (2022), 1901–1912.
Rousseau, M., Floquet wave properties in a periodically layered medium. J. Acoust. Soc. Am. 86:6 (1989), 2369–2376.
Khaled, A., Maréchal, P., Lenoir, O., El-Kettani, M.E.-C., Chenouni, D., Study of the resonances of periodic plane media immersed in water: Theory and experiment. Ultrasonics 53:3 (2013), 642–647.
Szabo, T.L., Causal theories and data for acoustic attenuation obeying a frequency power law. J. Acoust. Soc. Am. 97:1 (1995), 14–24.
Szabo, T.L., Wu, J., A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107:5 (2000), 2437–2446.
O'Donnell, M., Jaynes, E., Miller, J., Kramers–Kronig relationship between ultrasonic attenuation and phase velocity. J. Acoust. Soc. Am. 69:3 (1981), 696–701.
Hollkamp, J.P., Sen, M., Semperlotti, F., Analysis of dispersion and propagation properties in a periodic rod using a space-fractional wave equation. J. Sound Vib. 441 (2019), 204–220.
White, J., Angona, F., Elastic wave velocities in laminated media. J. Acoust. Soc. Am. 27:2 (1955), 310–317.
Bochud, N., Gomez, A., Rus, G., Peinado, A., A sparse digital signal model for ultrasonic nondestructive evaluation of layered materials. Ultrasonics 62 (2015), 160–173.
Dell, A., Krynkin, A., Horoshenkov, K., The use of the transfer matrix method to predict the effective fluid properties of acoustical systems. Appl. Acoust., 182, 2021, 108259.
Kaufman, J.J., Xu, W., Chiabrera, A.E., Siffert, R.S., Diffraction effects in insertion mode estimation of ultrasonic group velocity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42:2 (1995), 232–242.
Bustillo, J., Fortineau, J., Gautier, G., Lethiecq, M., Ultrasonic characterization of porous silicon using a genetic algorithm to solve the inverse problem. NDT & E Int. 62 (2014), 93–98.
He, P., Zheng, J., Acoustic dispersion and attenuation measurement using both transmitted and reflected pulses. Ultrasonics 39:1 (2001), 27–32.
Marczak, W., Water as a standard in the measurements of speed of sound in liquids. J. Acoust. Soc. Am. 102:5 (1997), 2776–2779.
J. Niemi, Y. Aitomäki, T. Löfqvist, Ultrasonic measurements and modelling of attenuation and phase velocity in pulp suspensions, in: IEEE Int. Ultrason. Symp. 2, 2005, pp. 775–779.
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. Evaluation of measurement data – guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology, JCGM, Vol. 100, 2008, 1–116.
Nelder, J.A., Mead, R., A simplex method for function minimization. Comput. J. 7:4 (1965), 308–313.
M.D. Farinas, T. Álvarez-Arenas, G. Cummins, M.P.Y. Desmulliez, V. Seetohul, S. Cochran, Assessment of the ultrasonic properties of additive manufactured materials for passive components of piezoelectric transducers, in: IEEE Int. Ultrason. Symp., 2016, pp. 1–4.
Bakaric, M., Miloro, P., Javaherian, A., Cox, B.T., Treeby, B.E., Brown, M.D., Measurement of the ultrasound attenuation and dispersion in 3D-printed photopolymer materials from 1 to 3.5 MHz. J. Acoust. Soc. Am. 150:4 (2021), 2798–2805.
Zorzetto, L., Andena, L., Briatico-Vangosa, F., De Noni, L., Thomassin, J.-M., Jérôme, C., Grossman, Q., Mertens, A., Weinkamer, R., Rink, M., et al. Properties and role of interfaces in multimaterial 3D printed composites. Sci. Rep. 10:1 (2020), 1–17.
Hussein, M.I., Theory of damped Bloch waves in elastic media. Phys. Rev. B, 80(21), 2009, 212301.
Collet, M., Ouisse, M., Ruzzene, M., Ichchou, M., Floquet–Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems. Int. J. Solids Struct. 48:20 (2011), 2837–2848.
Faraci, D., Comi, C., Marigo, J.-J., Band gaps in metamaterial plates: Asymptotic homogenization and Bloch-Floquet Approaches. J. Elasticity 148:1 (2022), 55–79.
Lowe, M.J., Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42:4 (1995), 525–542.
Aguzzi, G., Kanellopoulos, C., Wiltshaw, R., Craster, R.V., Chatzi, E.N., Colombi, A., Octet lattice-based plate for elastic wave control. Sci. Rep. 12:1 (2022), 1–14.