Article (Scientific journals)
Ultrasonic bandgaps in viscoelastic 1D-periodic media: Mechanical modeling and experimental validation.
Gattin, Max; Bochud, Nicolas; Rosi, Giuseppe et al.
2023In Ultrasonics, 131, p. 106951
Peer Reviewed verified by ORBi
 

Files


Full Text
Ultrasonic bandgaps in viscoelastic 1D-periodic media Mechanical modeling.pdf
Author postprint (1.93 MB)
Download
Annexes
MMC S1.pdf
(276.68 kB)
Download
MMC S2.pdf
(615.06 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Bandgaps; Bloch–Floquet analysis; Multi-material additive manufacturing; Periodic media; Transfer matrix formalism; Viscoelasticity; Bloch–floquet analyse; Floquet analysis; Matrix formalism; Mechanical modeling; Multi materials; Transfer matrixes; Viscoelastics; Acoustics and Ultrasonics
Abstract :
[en] Multi-material additive manufacturing is receiving increasing attention in the field of acoustics, in particular towards the design of micro-architectured periodic media used to achieve programmable ultrasonic responses. To unravel the effect of the material properties and spatial arrangement of the printed constituents, there is an unmet need in developing wave propagation models for prediction and optimization purposes. In this study, we propose to investigate the transmission of longitudinal ultrasound waves through 1D-periodic biphasic media, whose constituent materials are viscoelastic. To this end, Bloch-Floquet analysis is applied in the frame of viscoelasticity, with the aim of disentangling the relative contributions of viscoelasticity and periodicity on ultrasound signatures, such as dispersion, attenuation, and bandgaps localization. The impact of the finite size nature of these structures is then assessed by using a modeling approach based on the transfer matrix formalism. Finally, the modeling outcomes, i.e., frequency-dependent phase velocity and attenuation, are confronted with experiments conducted on 3D-printed samples, which exhibit a 1D periodicity at length-scales of a few hundreds of micrometers. Altogether, the obtained results shed light on the modeling characteristics to be considered when predicting the complex acoustic behavior of periodic media in the ultrasonic regime.
Disciplines :
Physics
Author, co-author :
Gattin, Max;  Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010, Créteil, France
Bochud, Nicolas;  Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010, Créteil, France. Electronic address: nicolas.bochud@u-pec.fr
Rosi, Giuseppe;  Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010, Créteil, France
Grossman, Quentin ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Ruffoni, Davide  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Naili, Salah;  Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010, Créteil, France
Language :
English
Title :
Ultrasonic bandgaps in viscoelastic 1D-periodic media: Mechanical modeling and experimental validation.
Publication date :
May 2023
Journal title :
Ultrasonics
ISSN :
0041-624X
eISSN :
1874-9968
Publisher :
Elsevier, Netherlands
Volume :
131
Pages :
106951
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This work was partially supported by the “Bonus Qualité Recherche” for young researchers ( Faculté des Sciences et Technologie, Université Paris-Est Créteil, France ).
Available on ORBi :
since 12 June 2025

Statistics


Number of views
44 (0 by ULiège)
Number of downloads
85 (0 by ULiège)

Scopus citations®
 
6
Scopus citations®
without self-citations
3
OpenCitations
 
3
OpenAlex citations
 
5

Bibliography


Similar publications



Contact ORBi