Paper published on a website (Scientific congresses and symposiums)
Positionality of Dumont-Thomas numeration systems
Kreczman, Savinien
2025One World Numeration Seminar
 

Files


Full Text
Slides_OWNS_27_May_2025_Dumont_Thomas.pdf
Author postprint (280.07 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
morphism; substitution; periodic points; numeration system; positionality; Bertrand property; Fabre substitution
Abstract :
[en] Dumont-Thomas numeration systems are a subclass of abstract numeration systems where the factorisation of the fixed point of a substitution is used to represent numbers. A positional numeration system is one where a weight can be assigned to each position so that the evaluation map is an inner product with the weights. For general abstract numeration systems, deciding positionality is an open problem. In this talk, we define an extension of Dumont-Thomas numeration systems to all integers. We then offer a criterion for deciding the positionality of such a system. If time permits, we show a link to Bertrand numeration systems, another familiar class of numeration systems.
Disciplines :
Mathematics
Author, co-author :
Kreczman, Savinien  ;  Université de Liège - ULiège > Mathematics
Language :
English
Title :
Positionality of Dumont-Thomas numeration systems
Alternative titles :
[fr] Positionnalité de systèmes de numération de Dumont-Thomas
Publication date :
27 May 2025
Event name :
One World Numeration Seminar
Event organizer :
Shigeki Akiyama, Ayreena Bakhtawar, Karma Dajani, Kevin Hare, Hajime Kaneko, Niels Langeveld, Lingmin Liao, Wolfgang Steiner
Event date :
le 27 mai 2025
By request :
Yes
Audience :
International
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
ANR - Agence Nationale de la Recherche
Funding number :
1.A.789.23F; 1.C.104.24F; ANR-22-CE40-0011
Funding text :
Savinien Kreczman : soutenu par le FNRS Research Fellow Grant 1.A.789.23F. Manon Stipulanti : soutenue par le FNRS Research Grant 1.C.104.24F. Sébastien Labbé : soutenu par l'ANR, projet IZES (ANR-22-CE40-0011).
Commentary :
Joint work with Sébastien Labbé and Manon Stipulanti
Available on ORBi :
since 28 May 2025

Statistics


Number of views
69 (6 by ULiège)
Number of downloads
15 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi