Understanding the structure and mechanics of the sheep calcaneal enthesis: a relevant animal model to design scaffolds for tissue engineering applications.
Digital image correlation; Enthesis tissue; Histology; Mechanical tensile and cyclic tests; Nanoindentation; Scanning electron microscopy; Tendon tissue
Abstract :
[en] Tendon or enthesis injuries are a worldwide clinical problem. Along the enthesis, collagen fibrils show a progressive loss of anisotropy and an increase in mineralization reaching the bone. This causes gradients of mechanical properties. The design of scaffolds to regenerate these load-bearing tissues requires validation in vivo in relevant large animal models. The sheep tendon of triceps surae muscle is an optimal animal model for this scope with limited knowledge about its structure and mechanics. We decided to investigate in-depth its structure and full-field mechanics. Collagen fibrils morphology was investigated via scanning electron microscopy revealing a marked change in orientation/dimensions passing from the tendon to the enthesis. Backscatter electron images and nanoindentation at the enthesis/bone marked small gradients of mineralization at the mineralized fibrocartilage reaching 27%wt and indentation modulus around 17-30 GPa. The trabecular bone instead had indentation modulus around 15-22 GPa. Mechanical tensile tests with digital image correlation confirmed the typical non-linear behavior of tendons (failure strain = 8.2 ± 1.0 %; failure force = 1369 ± 187 N) with maximum principal strains reaching mean values of εp1 ∼ 7 %. The typical auxetic behavior of tendon was highlighted by the minimum principal strains (εp2 ∼ 5 %), progressively dampened at the enthesis. Histology revealed that this behavior was caused by a local thickening of the epitenon. Cyclic tests showed a force loss of 21 ± 7 % at the last cycle. These findings will be fundamental for biofabrication and clinicians interested in designing the new generation of scaffolds for enthesis regeneration.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Sensini, Alberto; Department of Complex Tissue Regeneration (CTR), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands, Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands. Electronic address: alberto.sensini@maastrichtuniversity.nl
Raimondi, Luca; Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy, Advanced Mechanics and Materials - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum - Università di Bologna, Bologna, Italy
Malerba, Albano ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Silva, Carlos Peniche; Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
Zucchelli, Andrea; Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy, Advanced Mechanics and Materials - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum - Università di Bologna, Bologna, Italy
Tits, Alexandra ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Ruffoni, Davide ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Blouin, Stéphane; Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
Hartmann, Markus A; Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
van Griensven, Martijn; Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands. Electronic address: m.vangriensven@maastrichtuniversity.nl
Moroni, Lorenzo; Department of Complex Tissue Regeneration (CTR), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands. Electronic address: l.moroni@maastrichtuniversity.nl
Language :
English
Title :
Understanding the structure and mechanics of the sheep calcaneal enthesis: a relevant animal model to design scaffolds for tissue engineering applications.
Abbah, S.A., Spanoudes, K., O'Brien, T., Pandit, A., Zeugolis, D., Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models. Stem Cell Res Ther 5 (2014), 1–9, 10.1186/scrt426.
Derwin, K.A., Galatz, L.M., Ratcliffe, A., Thomopoulos, S., Enthesis repair: challenges and opportunities for effective tendon-to-bone healing. J. Bone Jt. Surg., 100, 2018, 109, 10.2106/jbjs.18.00200.
Maquirriain, J., Achilles tendon rupture: avoiding tendon lengthening during surgical repair and rehabilitation. Yale J. Biol. Med. 84 (2011), 289–300.
Brooks, P., Inflammation as an important feature of osteoarthritis. Bull. World Health Organ. 81 (2003), 689–690.
Lui, P.P.Y., Zhang, P., Chan, K.M., Qin, L., Biology and augmentation of tendon-bone insertion repair. J. Orthop. Surg. Res. 5 (2010), 1–14, 10.1186/1749-799X-5-59.
Kannus, P., Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 10 (2000), 312–320, 10.1034/j.1600-0838.2000.010006312.x.
Kastelic, J., Galeski, A., Baer, E., The multicomposite structure of tendon. Connect. Tissue Res. 6 (1978), 11–23, 10.3109/03008207809152283.
Shaw, H.M., Benjamin, M., Structure-function relationships of entheses in relation to mechanical load and exercise: review. Scand. J. Med. Sci. Sports 17 (2007), 303–315, 10.1111/j.1600-0838.2007.00689.x.
Sartori, J., Stark, H., Tracking tendon fibers to their insertion – a 3D analysis of the Achilles tendon enthesis in mice. Acta Biomater. 120 (2021), 146–155, 10.1016/j.actbio.2020.05.001.
Tits, A., Blouin, S., Rummler, M., Kaux, J.F., Drion, P., van Lenthe, G.H., Weinkamer, R., Hartmann, M.A., Ruffoni, D., Structural and functional heterogeneity of mineralized fibrocartilage at the Achilles tendon-bone insertion. Acta Biomater. 166 (2023), 409–418, 10.1016/j.actbio.2023.04.018.
Lu, H.H., Thomopoulos, S., Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 15 (2013), 201–226, 10.1146/annurev-bioeng-071910-124656.
Thomopoulos, S., Williams, G.R., Gimbel, J.A., Favata, M., Soslowsky, L.J., Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21 (2003), 413–419, 10.1016/S0736-0266(03)0057-3.
Rossetti, L., Kuntz, L.A., Kunold, E., Schock, J., Müller, K.W., Grabmayr, H., Stolberg-Stolberg, J., Pfeiffer, F., Sieber, S.A., Burgkart, R., Bausch, A.R., The microstructure and micromechanics of the tendon-bone insertion. Nat. Mater. 16 (2017), 664–670, 10.1038/nmat4863.
Tits, A., Ruffoni, D., Joining soft tissues to bone: insights from modeling and simulations. Bone Reports., 14, 2021, 100742, 10.1016/j.bonr.2020.100742.
Golman, M., Abraham, A.C., Kurtaliaj, I., Marshall, B.P., Hu, Y.J., Schwartz, A.G., Edward Guo, X., Birman, V., Thurner, P.J., Genin, G.M., Thomopoulos, S., Toughening mechanisms for the attachment of architectured materials: the mechanics of the tendon enthesis. Sci. Adv. 7 (2021), 1–13, 10.1126/sciadv.abi5584.
Deymier, A.C., An, Y., Boyle, J.J., Schwartz, A.G., Birman, V., Genin, G.M., Thomopoulos, S., Barber, A.H., Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomater. 56 (2017), 25–35, 10.1016/j.actbio.2017.01.037.
Murphy, W., Black, J., Hastings, G., Handbook of Biomaterial Properties. second, 2016, Springer, 10.1007/978-1-4939-3305-1.
Firminger, C.R., Edwards, W.B., Effects of cyclic loading on the mechanical properties and failure of human patellar tendon. J. Biomech., 120, 2021, 110345, 10.1016/j.jbiomech.2021.110345.
Firminger, C.R., Edwards, W.B., A biomechanical study of clamping technique on patellar tendon surface strain and material properties using digital image correlation. J. Mech. Behav. Biomed. Mater., 113, 2021, 104156, 10.1016/j.jmbbm.2020.104156.
Mallett, K.F., Arruda, E.M., Digital image correlation-aided mechanical characterization of the anteromedial and posterolateral bundles of the anterior cruciate ligament. Acta Biomater. 56 (2017), 44–57, 10.1016/j.actbio.2017.03.045.
Nagelli, C.V., Hooke, A., Quirk, N., De Padilla, C.L., Hewett, T.E., van Griensven, M., Coenen, M., Berglund, L., Evans, C.H., Müller, S.A., Mechanical and strain behaviour of human Achilles tendon during in vitro testing to failure. Eur. Cells Mater. 43 (2022), 153–161, 10.22203/eCM.v043a12.
Sartori, J., Köhring, S., Bruns, S., Moosmann, J., Hammel, J.U., Gaining insight into the deformation of Achilles tendon entheses in mice. Adv. Eng. Mater. 23 (2021), 1–11, 10.1002/adem.202100085.
Dall'Ara, E., Tozzi, G., Digital volume correlation for the characterization of musculoskeletal tissues: current challenges and future developments. Front. Bioeng. Biotechnol. 10 (2022), 1–13, 10.3389/fbioe.2022.1010056.
Sensini, A., Massafra, G., Gotti, C., Zucchelli, A., Cristofolini, L., Tissue engineering for the insertions of tendons and ligaments: an overview of electrospun biomaterials and structures. Front. Bioeng. Biotechnol. 9 (2021), 1–23, 10.3389/fbioe.2021.645544.
Font Tellado, S., Balmayor, E.R., Van Griensven, M., Strategies to engineer tendon/ligament-to-bone interface: biomaterials, cells and growth factors. Adv. Drug Deliv. Rev. 94 (2015), 126–140, 10.1016/j.addr.2015.03.004.
Calejo, I., Costa-Almeida, R., Reis, R.L., Gomes, M.E., Enthesis tissue engineering: biological requirements meet at the interface. Tissue Eng. - Part B Rev. 25 (2019), 330–356, 10.1089/ten.teb.2018.0383.
Zhang, G., Zhou, X., Hu, S., Jin, Y., Qiu, Z., Large animal models for the study of tendinopathy. Front. Cell Dev. Biol. 10 (2022), 1–12, 10.3389/fcell.2022.1031638.
Li, D., Wang, G., Li, J., Yan, L., Liu, H., Jiu, J., Li, X., Li, J.J., Wang, B., Biomaterials for tissue-engineered treatment of tendinopathy in animal models: a systematic review. Tissue Eng. - Part B Rev. 29 (2023), 387–413, 10.1089/ten.teb.2022.0178.
Baawad, A., Jacho, D., Hamil, T., Yildirim-Ayan, E., Kim, D.S., Polysaccharide-based composite scaffolds for osteochondral and enthesis regeneration. Tissue Eng. - Part B Rev. 29 (2023), 123–140, 10.1089/ten.teb.2022.0114.
Peniche Silva, C.J., Müller, S.A., Quirk, N., De la Vega, R.E., Coenen, M.J., Evans, C.H., Balmayor, E.R., van Griensven, M., Enthesis: not the same in each localisation – a molecular, histological and biomechanical study. Eur. Cells Mater. 44 (2022), 43–55, 10.22203/eCM.v044a03.
Ribitsch, I., Baptista, P.M., Lange-Consiglio, A., Melotti, L., Patruno, M., Jenner, F., Schnabl-Feichter, E., Dutton, L.C., Connolly, D.J., van Steenbeek, F.G., Dudhia, J., Penning, L.C., Large animal models in regenerative medicine and tissue engineering: to do or not to do. Front. Bioeng. Biotechnol. 8 (2020), 1–28, 10.3389/fbioe.2020.00972.
Burgio, V., Civera, M., Rodriguez Reinoso, M., Pizzolante, E., Prezioso, S., Bertuglia, A., Surace, C., Mechanical properties of animal tendons: a review and comparative study for the identification of the most suitable human tendon surrogates. Processes 10 (2022), 1–20, 10.1007/s10237-023-01718-1.
Song, L., Olsen, R.E., Spalazzi, J.P., Davisson, T., Biomechanical evaluation of acellular collagen matrix augmented achilles tendon repair in sheep. J. Foot Ankle Surg. 49 (2010), 438–441, 10.1053/j.jfas.2010.06.009.
Huri, G., Biçer, Ö.S., Özgözen, L., Uçar, Y., Garbis, N.G., Hyun, Y.S., A novel repair method for the treatment of acute Achilles tendon rupture with minimally invasive approach using button implant: a biomechanical study. Foot Ankle Surg. 19 (2013), 261–266, 10.1016/j.fas.2013.06.012.
Leung, K.S., Chong, W.S., Chow, D.H.K., Zhang, P., Cheung, W.H., Wong, M.W.N., Qin, L., A comparative study on the biomechanical and histological properties of bone-to-bone, bone-to-tendon, and tendon-to-tendon healing: an Achilles tendon-calcaneus model in goats. Am. J. Sports Med. 43 (2015), 1413–1421, 10.1177/0363546515576904.
Popesko, P., Atlas of Topographical Anatomy of the Domestic Animals. 6th ed, 1978, Sunders, 10.1515/9781474433044-007.
Stephenson, M.K., Lenihan, S., Covarrubias, R., Huttinger, R.M., Gumina, R.J., Sawyer, D.B., Galindo, C.L., Scanning electron microscopy of macerated tissue to visualize the extracellular matrix. J. Vis. Exp. 2016 (2016), 1–8, 10.3791/54005.
Sensini, A., Cristofolini, L., Focarete, M.L., Belcari, J., Zucchelli, A., Kao, A., Tozzi, G., High-resolution x-ray tomographic morphological characterisation of electrospun nanofibrous bundles for tendon and ligament regeneration and replacement. J. Microsc. 272 (2018), 196–206, 10.1111/jmi.12720.
Hartmann, M.A., Blouin, S., Misof, B.M., Fratzl-Zelman, N., Roschger, P., Berzlanovich, A., Gruber, G.M., Brugger, P.C., Zwerina, J., Fratzl, P., Quantitative backscattered electron imaging of bone using a thermionic or a field emission electron source. Calcif. Tissue Int. 109 (2021), 190–202, 10.1007/s00223-021-00832-5.
Roschger, P., Fratzl, P., Eschberger, J., Klaushofer, K., Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23 (1998), 319–326, 10.1016/S8756-3282(98)00112-4.
Oliver, W.C., Pharr, G.M., An improved technique for determining hardness and elastic madulus using load and displacement. J. Mater. Res. 7 (1992), 1564–1583.
Sensini, A., Santare, M.H., Eichenlaub, E., Bloom, E., Gotti, C., Zucchelli, A., Cristofolini, L., Tuning the structure of nylon 6,6 electrospun bundles to mimic the mechanical performance of tendon fascicles. Front. Bioeng. Biotechnol. 9 (2021), 1–12, 10.3389/fbioe.2021.626433.
Lionello, G., Sirieix, C., Baleani, M., An effective procedure to create a speckle pattern on biological soft tissue for digital image correlation measurements. J. Mech. Behav. Biomed. Mater. 39 (2014), 1–8, 10.1016/j.jmbbm.2014.07.007.
Sutton, M.A., Orteu, J.-J., Schreier, H.W., Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applicationse. 1st ed, 2009, Springer, New York, NY, 10.1007/978-0-387-78747-3.
Palanca, M., Marco, M., Ruspi, M.L., Cristofolini, L., Full-field strain distribution in multi-vertebra spine segments: an in vitro application of digital image correlation. Med. Eng. Phys. 52 (2018), 76–83, 10.1016/j.medengphy.2017.11.003.
Raimondi, L., Brugo, T.M., Zucchelli, A., Fiber misalignment analysis in PCM-UD composite materials by Full Field Nodal Method. Compos. Part C Open Access., 5, 2021, 100151, 10.1016/j.jcomc.2021.100151.
Raimondi, L., Brugo, T.M., Zucchelli, A., Donati, L., Effects of UD and twill reinforcements in hybrid sheet molding compound laminates. Mater. Res. Proc. 41 (2024), 523–529, 10.21741/9781644903131-58.
Bosworth, L.A., Rathbone, S.R., Bradley, R.S., Cartmell, S.H., Dynamic loading of electrospun yarns guides mesenchymal stem cells towards a tendon lineage. J. Mech. Behav. Biomed. Mater. 39 (2014), 175–183, 10.1016/j.jmbbm.2014.07.009.
Sensini, A., Cristofolini, L., Zucchelli, A., Focarete, M.L., Gualandi, C., de Mori, A., Kao, A.P., Roldo, M., Blunn, G., Tozzi, G., Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions. J. Microsc. 277 (2020), 160–169, 10.1111/jmi.12827.
Wren, T.A., Yerby, S.A., Beaupré, G.S., Carter, D.R., Mechanical properties of the human Achilles tendon. Clin. Biomech. 16 (2001), 245–251, 10.1016/S0268-0033(00)00089-9.
Hashemi, J., Chandrashekar, N., Slauterbeck, J., The mechanical properties of the human patellar tendon are correlated to its mass density and are independent of sex. Clin. Biomech. 20 (2005), 645–652, 10.1016/j.clinbiomech.2005.02.008.
Johnson, G.A., Tramaglini, D.M., Levine, R.E., Ohno, K., Choi, N.-Y., Woo, S.L.-Y., Tensile and viscoelastic properties of human patellar tendon. J. Orthop. Res. 12 (1994), 796–803, 10.1002/jor.1100120607.
Little, D., Amadio, P.C., Awad, H.A., Cone, S.G., Dyment, N.A., Fisher, M.B., Huang, A.H., Koch, D.W., Kuntz, A.F., Madi, R., McGilvray, K., Schnabel, L.V., Shetye, S.S., Thomopoulos, S., Zhao, C., Soslowsky, L.J., Preclinical tendon and ligament models: beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J. Orthop. Res. 41 (2023), 2133–2162, 10.1002/jor.25678.
Luo, J., Wang, Z., Tang, C., Yin, Z., Huang, J., Ruan, D., Fei, Y., Wang, C., Mo, X., Li, J., Zhang, J., Fang, C., Li, J., Chen, X., Shen, W., Animal model for tendinopathy. J. Orthop. Transl. 42 (2023), 43–56, 10.1016/j.jot.2023.06.005.
Goh, K.L., Listrat, A., Béchet, D., Hierarchical mechanics of connective tissues: integrating insights from nano to macroscopic studies. J. Biomed. Nanotechnol. 10 (2014), 2464–2507, 10.1166/jbn.2014.1960.
Broom, N.D., Thambyah, A., The enthesis: composition, structure and function. The Soft–Hard Tissue Junction, 2018, 304–322, 10.1017/9781316481042.015.
Shea, J.E., Hallows, R.K., Bloebaum, R.D., Experimental confirmation of the sheep model for studying the role of calcified fibrocartilage in hip fractures and tendon attachments. Anat. Rec. 266 (2002), 177–183, 10.1002/ar.10051.
Tits, A., Plougonven, E., Blouin, S., Hartmann, M.A., Kaux, J.F., Drion, P., Fernandez, J., van Lenthe, G.H., Ruffoni, D., Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface. Sci. Rep., 11, 2021, 10.1038/s41598-021-95917-4.
Gupta, H.S., Schratter, S., Tesch, W., Roschger, P., Berzlanovich, A., Schoeberl, T., Klaushofer, K., Fratzl, P., Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface. J. Struct. Biol. 149 (2005), 138–148, 10.1016/j.jsb.2004.10.010.
Sensini, A., Cristofolini, L., Biofabrication of electrospun scaffolds for the regeneration of tendons and ligaments. Materials (Basel)., 11, 2018, 1963, 10.3390/ma11101963.
Sensini, A., Giacomini, F., Stamati, O., Lukic, B., Villanova, J., Proudhon, H., Gille, M., Tahmasebi Birgani, Z., Truckenmuller, R., Tozzi, G., Van Griensven, M., Moroni, L., Revealing the auxetic behavior of biomimetic multi-material and region-specific nanofibrous scaffolds via synchrotron multiscale digital volume correlation: innovative building blocks for the enthesis regeneration. BioRxiv, 2024, 10.1101/2024.08.12.607645.
Laranjeira, M., Domingues, R.M.A., Costa-Almeida, R., Reis, R.L., Gomes, M.E., 3D mimicry of native-tissue-fiber architecture guides tendon-derived cells and adipose stem cells into artificial tendon constructs. Small 13 (2017), 1–13, 10.1002/smll.201700689.
Sensini, A., Gualandi, C., Focarete, M.L., Belcari, J., Zucchelli, A., Boyle, L., Reilly, G.C., Kao, A.P., Tozzi, G., Cristofolini, L., Multiscale hierarchical bioresorbable scaffolds for the regeneration of tendons and ligaments. Biofabrication, 11, 2019, 10.1088/1758-5090/ab20ad.
Sensini, A., Stamati, O., Marchiori, G., Sancisi, N., Gotti, C., Giavaresi, G., Cristofolini, L., Focarete, M.L., Zucchelli, A., Tozzi, G., Full-field strain distribution in hierarchical electrospun nanofibrous poly-L(lactic) acid/collagen scaffolds for tendon and ligament regeneration: a multiscale study. Heliyon, 10, 2024, e26796, 10.1016/j.heliyon.2024.e26796.
Criscenti, G., Longoni, A., Di Luca, A., De Maria, C., van Blitterswijk, C.A., Vozzi, G., Moroni, L., Triphasic scaffolds for the regeneration of the bone-ligament interface. Biofabrication, 8, 2016, 015009, 10.1088/1758-5090/8/1/015009.
Micalizzi, S., Russo, L., Giacomelli, C., Montemurro, F., de Maria, C., Nencioni, M., Marchetti, L., Trincavelli, M.L., Vozzi, G., Multimaterial and multiscale scaffold for engineering enthesis organ. Int. J. Bioprinting., 9, 2023, 10.18063/ijb.763.
Alkaissy, R., Richard, M., Morris, H., Snelling, S., Pinchbeck, H., Carr, A., Mouthuy, P.A., Manufacture of soft-hard implants from electrospun filaments embedded in 3D printed structures. Macromol. Biosci. 22 (2022), 1–15, 10.1002/mabi.202200156.