Article (Scientific journals)
Understanding the structure and mechanics of the sheep calcaneal enthesis: a relevant animal model to design scaffolds for tissue engineering applications.
Sensini, Alberto; Raimondi, Luca; Malerba, Albano et al.
2025In Biomaterials advances, 175, p. 214320
Peer Reviewed verified by ORBi
 

Files


Full Text
Sensini et al_BiomatAdvances_2025.pdf
Author postprint (8.88 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Digital image correlation; Enthesis tissue; Histology; Mechanical tensile and cyclic tests; Nanoindentation; Scanning electron microscopy; Tendon tissue
Abstract :
[en] Tendon or enthesis injuries are a worldwide clinical problem. Along the enthesis, collagen fibrils show a progressive loss of anisotropy and an increase in mineralization reaching the bone. This causes gradients of mechanical properties. The design of scaffolds to regenerate these load-bearing tissues requires validation in vivo in relevant large animal models. The sheep tendon of triceps surae muscle is an optimal animal model for this scope with limited knowledge about its structure and mechanics. We decided to investigate in-depth its structure and full-field mechanics. Collagen fibrils morphology was investigated via scanning electron microscopy revealing a marked change in orientation/dimensions passing from the tendon to the enthesis. Backscatter electron images and nanoindentation at the enthesis/bone marked small gradients of mineralization at the mineralized fibrocartilage reaching 27%wt and indentation modulus around 17-30 GPa. The trabecular bone instead had indentation modulus around 15-22 GPa. Mechanical tensile tests with digital image correlation confirmed the typical non-linear behavior of tendons (failure strain = 8.2 ± 1.0 %; failure force = 1369 ± 187 N) with maximum principal strains reaching mean values of εp1 ∼ 7 %. The typical auxetic behavior of tendon was highlighted by the minimum principal strains (εp2 ∼ 5 %), progressively dampened at the enthesis. Histology revealed that this behavior was caused by a local thickening of the epitenon. Cyclic tests showed a force loss of 21 ± 7 % at the last cycle. These findings will be fundamental for biofabrication and clinicians interested in designing the new generation of scaffolds for enthesis regeneration.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Sensini, Alberto;  Department of Complex Tissue Regeneration (CTR), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands, Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands. Electronic address: alberto.sensini@maastrichtuniversity.nl
Raimondi, Luca;  Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy, Advanced Mechanics and Materials - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum - Università di Bologna, Bologna, Italy
Malerba, Albano  ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Silva, Carlos Peniche;  Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
Zucchelli, Andrea;  Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy, Advanced Mechanics and Materials - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum - Università di Bologna, Bologna, Italy
Tits, Alexandra ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Ruffoni, Davide  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Blouin, Stéphane;  Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
Hartmann, Markus A;  Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
van Griensven, Martijn;  Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands. Electronic address: m.vangriensven@maastrichtuniversity.nl
Moroni, Lorenzo;  Department of Complex Tissue Regeneration (CTR), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands. Electronic address: l.moroni@maastrichtuniversity.nl
Language :
English
Title :
Understanding the structure and mechanics of the sheep calcaneal enthesis: a relevant animal model to design scaffolds for tissue engineering applications.
Publication date :
17 April 2025
Journal title :
Biomaterials advances
ISSN :
2772-9516
eISSN :
2772-9508
Publisher :
Elsevier, Netherlands
Volume :
175
Pages :
214320
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
EU - European Union
Funding text :
Horizon 2020 Framework Programme
Available on ORBi :
since 23 May 2025

Statistics


Number of views
83 (3 by ULiège)
Number of downloads
27 (1 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
3
OpenCitations
 
0
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBi