Assimilating Sentinel-2 data in a modified vegetation photosynthesis and respiration model (VPRM) to improve the simulation of croplands CO2 fluxes in Europe
Carbon Cycle; Crop Types; Data-driven Modelling; Eddy covariance; MODIS; Sentinel-2; Global and Planetary Change; Earth-Surface Processes; Computers in Earth Sciences; Management, Monitoring, Policy and Law
Abstract :
[en] In Europe, the heterogeneous features of crop systems with majority of small to medium sized agricultural holdings, and diversity of crop rotations, require high-resolution information to estimate cropland Net Ecosystem Exchange (NEE) and its two main components of Gross Ecosystem Exchange (GEE) and the Ecosystem Respiration (RECO). In this context, this paper presents an assimilation of high-resolution Sentinel-2 indices with eddy covariance measurements at selected European cropland flux sites in a new modified version of Vegetation Photosynthesis Respiration Model (VPRM). VRPM is a data-driven model simulating CO2 fluxes previously applied using satellite-derived vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study proposes a modification of the VPRM by including an explicit soil moisture stress function to the GEE and changing the equation of RECO. It also compares the model results driven by S2 indices instead of MODIS. The parameters of the VPRM model are calibrated using eddy-covariance data. All possible parameters optimization scenarios include the use of the initial version vs. the proposed modified VPRM, S2, or MODIS vegetation indices, and finally the choice of calibrating a single set of parameters against observations from all crop types, a set of parameters per crop type, or one set of parameters per site. Then, we focus the analysis on the improvement of the model with distinct parameters for different crop types vs. parameters optimized without distinction of crop types. Our main findings are: (1) the superiority of S2 vegetation indices over MODIS for cropland CO2 fluxes simulations, leading to a root mean squared error (RMSE) for NEE of less than 3.5 μmolm-2s-1 with S2 compared to 5 μmolm-2s-1 with MODIS (2) better performances of the modified VPRM version leading to a significant improvement of RECO, and (3) better performances when the parameters are optimized per crop-type instead of for all crop types lumped together, with lower RMSE and Akaike information criterion (AIC), despite a larger number of parameters. Associated with the availability of crop-type land cover maps, the use of S2 data and crop-type modified VPRM parameterization presented in this study, provide a step forward for upscaling cropland carbon fluxes at European scale.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Bazzi, Hassan; Université Paris-Saclay, AgroParisTech, INRAE, UMR 518, MIA Paris-Saclay, Palaiseau, France ; Atos France, Technical Services, Bezons, France
Ciais, Philippe; Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
Abbessi, Ezzeddine ; Université Paris-Saclay, AgroParisTech, INRAE, UMR 518, MIA Paris-Saclay, Palaiseau, France ; Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
Makowski, David ; Université Paris-Saclay, AgroParisTech, INRAE, UMR 518, MIA Paris-Saclay, Palaiseau, France
Santaren, Diego; Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
Ceschia, Eric; CESBIO, Université de Toulouse, CNES/CNRS/INRAE/IRD/UPS, Toulouse, France
Brut, Aurore; CESBIO, Université de Toulouse, CNES/CNRS/INRAE/IRD/UPS, Toulouse, France
Tallec, Tiphaine ; CESBIO, Université de Toulouse, CNES/CNRS/INRAE/IRD/UPS, Toulouse, France
Buchmann, Nina ; ETH Zurich, Department of Environmental Systems Science, Institute of Agricultural Sciences, Zurich, Switzerland
Maier, Regine; ETH Zurich, Department of Environmental Systems Science, Institute of Agricultural Sciences, Zurich, Switzerland
Acosta, Manuel; Global Change Research Institute, Czech Academy of Sciences, Czech Republic
Loubet, Benjamin; UMR ECOSYS, INRAE-AgroParisTech, Université Paris-Saclay, Palaiseau, France
Buysse, Pauline ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Echanges Ecosystèmes - Atmosphère ; UMR ECOSYS, INRAE-AgroParisTech, Université Paris-Saclay, Palaiseau, France
Léonard, Joël; BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules, Verne, 02000 Barenton-Bugny, France
Bornet, Frédéric; BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules, Verne, 02000 Barenton-Bugny, France
Fayad, Ibrahim; Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
Lian, Jinghui ; Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
Baghdadi, Nicolas; INRAE, UMR TETIS, University of Montpellier, AgroParisTech, Montpellier, France
Segura Barrero, Ricard; Sostenipra Research Group (SGR 01412), Institute of Environmental Sciences and Technology (MDM-2015-0552), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, Barcelona, Spain
Brümmer, Christian ; Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
Schmidt, Marius; Agrosphere Institute, IBG-3, Forschungszentrum Jülich GmbH, Germany
Heinesch, Bernard ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges (BIODYNE)
Mauder, Matthias; TU Dresden, Institut für Hydrologie und Meteorologie, Professur für Meteorologie, Dresden, Germany
Gruenwald, Thomas; TU Dresden, Institut für Hydrologie und Meteorologie, Professur für Meteorologie, Dresden, Germany
Assimilating Sentinel-2 data in a modified vegetation photosynthesis and respiration model (VPRM) to improve the simulation of croplands CO2 fluxes in Europe
Publication date :
March 2024
Journal title :
International Journal of Applied Earth Observation and Geoinformation
The authors would like to thank the CLAND convergence institute and the French National Research Agency (ANR) for supporting this work. Authors would like also to thank the Integrated Carbon Observation System (ICOS) and FLUXNET for providing eddy covariance data. The Czech site would like to thank the Ministry of Education, Youth and Sports of Czech Republic within the CzeCOS program for the funding support, grant number LM2023048.This work has benefited from the French State aid managed by the National Research Agency (ANR) under the Program of \u201CInvestments of the Future\u201D with the reference ANR-16-CONV-0003. The work received support of ATOS France and ANR, via the contract S40072 under the \u201CPlan France Relance\u201D.
Akaike, H., A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19 (1974), 716–723, 10.1109/TAC.1974.1100705.
Banks, H.T., Joyner, M.L., AIC under the framework of least squares estimation. Applied Mathematics Letters 74 (2017), 33–45, 10.1016/j.aml.2017.05.005.
Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Marais Sicre, C., Le Dantec, V., Demarez, V., Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sensing of Environment 184 (2016), 668–681, 10.1016/j.rse.2016.07.030.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329 (2010), 834–838, 10.1126/science.1184984.
Brown, C.F., Brumby, S.P., Guzder-Williams, B., Birch, T., Hyde, S.B., Mazzariello, J., Czerwinski, W., Pasquarella, V.J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., Tait, A.M., Dynamic World, Near real-time global 10 m land use land cover mapping. Sci Data, 9, 2022, 251, 10.1038/s41597-022-01307-4.
Bunnell, F.L., Tait, D.E.N., Flanagan, P.W., Van Clever, K., Microbial respiration and substrate weight loss—I. Soil Biology and Biochemistry 9 (1977), 33–40, 10.1016/0038-0717(77)90058-X.
Byrd, R.H., Lu, P., Nocedal, J., Zhu, C., A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J. Sci. Comput. 16 (1995), 1190–1208, 10.1137/0916069.
Chen, M., Griffis, T.J., Baker, J., Wood, J.D., Xiao, K., Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes: Evaluation of CLM crop simulations. J. Geophys. Res. Biogeosci. 120 (2015), 310–325, 10.1002/2014JG002780.
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437 (2005), 529–533.
Ciais, P., Wattenbach, M., Vuichard, N., Smith, P., Piao, S.L., Don, A., Luyssaert, S., Janssens, I.A., Bondeau, A., Dechow, R., Leip, A., Smith, P.c., Beer, C., Van Der Werf, G.R., Gervois, S., Van Oost, K., Tomelleri, E., Freibauer, A., Schulze, E.D., Carboeurope synthesis team, The European carbon balance. Part 2: croplands. Global Change Biology 16 (2010), 1409–1428, 10.1111/j.1365-2486.2009.02055.x.
d'Andrimont, R., Verhegghen, A., Lemoine, G., Kempeneers, P., Meroni, M., van der Velde, M., From parcel to continental scale – A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sensing of Environment, 266, 2021, 112708, 10.1016/j.rse.2021.112708.
Das, N.N., Entekhabi, D., Dunbar, R.S., Chaubell, M.J., Colliander, A., Yueh, S., Jagdhuber, T., Chen, F., Crow, W., O'Neill, P.E., Walker, J.P., Berg, A., Bosch, D.D., Caldwell, T., Cosh, M.H., Collins, C.H., Lopez-Baeza, E., Thibeault, M., The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sensing of Environment, 233, 2019, 111380, 10.1016/j.rse.2019.111380.
Desai, A.R., Richardson, A.D., Moffat, A.M., Kattge, J., Hollinger, D.Y., Barr, A., Falge, E., Noormets, A., Papale, D., Reichstein, M., Stauch, V.J., Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agricultural and Forest Meteorology 148 (2008), 821–838, 10.1016/j.agrformet.2007.11.012.
Di Paola, A., Valentini, R., Santini, M., An overview of available crop growth and yield models for studies and assessments in agriculture: Overview of crop models for agriculture. J. Sci. Food Agric. 96 (2016), 709–714, 10.1002/jsfa.7359.
Entekhabi, D., Njoku, E.G., O'Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., Entin, J.K., Goodman, S.D., Jackson, T.J., Johnson, J., Kimball, J., Piepmeier, J.R., Koster, R.D., Martin, N., McDonald, K.C., Moghaddam, M., Moran, S., Reichle, R., Shi, J.C., Spencer, M.W., Thurman, S.W., Tsang, L., Van Zyl, J., The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 98 (2010), 704–716, 10.1109/JPROC.2010.2043918.
Farms and farmland in the European Union - statistics [WWW Document], n.d. URL https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Farms_and_farmland_in_the_European_Union_-_statistics (accessed 3.14.23).
I. Fayad P. Ciais M. Schwartz J.-P. Wigneron N. Baghdadi A. de Truchis A. d'Aspremont F. Frappart S. Saatchi A. Pellissier-Tanon H. Bazzi Vision Transformers, a new approach for high-resolution and large-scale mapping of canopy heights 2023 https://doi.org/10.48550/ARXIV.2304.11487.
C. Gerbig F.-T. Koch Biosphere-atmosphere exchange fluxes for CO2 from the Vegetation Photosynthesis and Respiration Model VPRM for 2006–2021 2021 https://doi.org/10.18160/VX78-HVA1.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J., The ERA5 global reanalysis. Q.J.R. Meteorol. Soc. 146 (2020), 1999–2049, 10.1002/qj.3803.
Hicke, J.A., Lobell, D.B., Asner, G.P., Cropland Area and Net Primary Production Computed from 30 Years of USDA Agricultural Harvest Data. Earth Interact. 8 (2004), 1–20, 10.1175/1087-3562(2004)008<0001:CAANPP>2.0.CO;2.
Hollinger, D.Y., Richardson, A.D., Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiology 25 (2005), 873–885.
D. Hong B. Zhang X. Li Y. Li C. Li J. Yao N. Yokoya H. Li P. Ghamisi X. Jia A. Plaza G. Paolo J.A. Benediktsson J. Chanussot SpectralGPT: Spectral Foundation Model 2023 https://doi.org/10.48550/ARXIV.2311.07113.
Hong, D., Zhang, B., Li, H., Li, Y., Yao, J., Li, C., Werner, M., Chanussot, J., Zipf, A., Zhu, X.X., Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks. Remote Sensing of Environment, 299, 2023, 113856, 10.1016/j.rse.2023.113856.
Howell, T.A., Meek, D.W., Hatfield, J.L., Relationship of photosynthetically active radiation to shortwave radiation in the San Joaquin Valley. Agricultural Meteorology 28 (1983), 157–175, 10.1016/0002-1571(83)90005-5.
Ienco, D., Interdonato, R., Gaetano, R., Minh, D.H.T., Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS Journal of Photogrammetry and Remote Sensing 158 (2019), 11–22.
Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., Rodes, I., Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sensing, 9, 2017, 95, 10.3390/rs9010095.
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D.S., Haverd, V., Köhler, P., Ichii, K., Jain, A.K., Liu, J., Lombardozzi, D., Nabel, J.E.M.S., Nelson, J.A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., Reichstein, M., Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17 (2020), 1343–1365, 10.5194/bg-17-1343-2020.
Keenan, T.F., Prentice, I.C., Canadell, J.G., Williams, C.A., Wang, H., Raupach, M., Collatz, G.J., Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 7, 2016, 13428.
Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Martinuzzi, J., Font, J., Berger, M., Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sensing 39 (2001), 1729–1735, 10.1109/36.942551.
Kobayashi, K., Salam, M.U., Comparing Simulated and Measured Values Using Mean Squared Deviation and its Components. Agron. J., 92, 2000, 345, 10.1007/s100870050043.
Kountouris, P., Gerbig, C., Rödenbeck, C., Karstens, U., Koch, T.F., Heimann, M., Technical Note: Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: methodology and system evaluation. Atmos. Chem. Phys. 18 (2018), 3027–3045, 10.5194/acp-18-3027-2018.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., Prentice, I.C., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system: DVGM FOR COUPLED CLIMATE STUDIES. Global Biogeochem. Cycles, 19, 2005, 10.1029/2003GB002199.
Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., Richardson, A.D., Constraining a global ecosystem model with multi-site eddy-covariance data. Biogeosciences 9 (2012), 3757–3776, 10.5194/bg-9-3757-2012.
Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A., Stoy, P., Wohlfahrt, G., Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation: SEPARATION OF NEE INTO GPP AND RECO. Global Change Biology 16 (2010), 187–208, 10.1111/j.1365-2486.2009.02041.x.
Lawrence, P.J., Chase, T.N., Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res., 112, 2007, G01023, 10.1029/2006JG000168.
Lesiv, M., Laso Bayas, J.C., See, L., Duerauer, M., Dahlia, D., Durando, N., Hazarika, R., Kumar Sahariah, P., Vakolyuk, M., Blyshchyk, V., Bilous, A., Perez-Hoyos, A., Gengler, S., Prestele, R., Bilous, S., Akhtar, I., ul H., Singha, K., Choudhury, S.B., Chetri, T., Malek, Ž., Bungnamei, K., Saikia, A., Sahariah, D., Narzary, W., Danylo, O., Sturn, T., Karner, M., McCallum, I., Schepaschenko, D., Moltchanova, E., Fraisl, D., Moorthy, I., Fritz, S., Estimating the global distribution of field size using crowdsourcing. Glob Change Biol 25 (2019), 174–186, 10.1111/gcb.14492.
Levis, S., Bonan, G.B., Kluzek, E., Thornton, P.E., Jones, A., Sacks, W.J., Kucharik, C.J., Interactive Crop Management in the Community Earth System Model (CESM1): Seasonal Influences on Land-Atmosphere Fluxes. Journal of Climate 25 (2012), 4839–4859, 10.1175/JCLI-D-11-00446.1.
Mahadevan, P., Wofsy, S.C., Matross, D.M., Xiao, X., Dunn, A.L., Lin, J.C., Gerbig, C., Munger, J.W., Chow, V.Y., Gottlieb, E.W., A satellite-based biosphere parameterization for net ecosystem CO 2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM): NET ECOSYSTEM EXCHANGE MODEL. Global Biogeochem. Cycles, 22, 2008, n/a-n/a, 10.1029/2006GB002735.
Marshall, M., Tu, K., Brown, J., Optimizing a remote sensing production efficiency model for macro-scale GPP and yield estimation in agroecosystems. Remote Sensing of Environment 217 (2018), 258–271, 10.1016/j.rse.2018.08.001.
Migliavacca, M., Reichstein, M., Richardson, A.D., Colombo, R., Sutton, M.A., Lasslop, G., Tomelleri, E., Wohlfahrt, G., Carvalhais, N., Cescatti, A., Mahecha, M.D., Montagnani, L., Papale, D., Zaehle, S., Arain, A., Arneth, A., Black, T.A., Carrara, A., Dore, S., Gianelle, D., Helfter, C., Hollinger, D., Kutsch, W.L., Lafleur, P.M., Nouvellon, Y., Rebmann, C., Da, R.O.C.H.A., H.R., Rodeghiero, M., Roupsard, O., Sebastià, M.-T., Seufert, G., Soussana, J.-F., Van Der MOLEN, M.K., Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites: SEMIEMPIRICAL MODELING OF ECOSYSTEM RESPIRATION. Global Change Biology 17 (2011), 390–409, 10.1111/j.1365-2486.2010.02243.x.
Moffat, A.M., Papale, D., Reichstein, M., Hollinger, D.Y., Richardson, A.D., Barr, A.G., Beckstein, C., Braswell, B.H., Churkina, G., Desai, A.R., Falge, E., Gove, J.H., Heimann, M., Hui, D., Jarvis, A.J., Kattge, J., Noormets, A., Stauch, V.J., Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology 147 (2007), 209–232, 10.1016/j.agrformet.2007.08.011.
Pabon-Moreno, D.E., Migliavacca, M., Reichstein, M., Mahecha, M.D., On the Potential of Sentinel-2 for Estimating Gross Primary Production. IEEE Trans. Geosci. Remote Sensing 60 (2022), 1–12, 10.1109/TGRS.2022.3152272.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M.A., Ardö, J., Arkebauer, T., Arndt, S.K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L.B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T.A., Blanken, P.D., Bohrer, G., Boike, J., Bolstad, P.V., Bonal, D., Bonnefond, J.-M., Bowling, D.R., Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns, S.P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I., Christensen, T.R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B.D., Cook, D., Coursolle, C., Cremonese, E., Curtis, P.S., D'Andrea, E., da Rocha, H., Dai, X., Davis, K.J., Cinti, B.D., de Grandcourt, A., Ligne, A.D., De Oliveira, R.C., Delpierre, N., Desai, A.R., Di Bella, C.M., di Tommasi, P., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufrêne, E., Dunn, A., Dušek, J., Eamus, D., Eichelmann, U., ElKhidir, H.A.M., Eugster, W., Ewenz, C.M., Ewers, B., Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gitelson, A., Goded, I., Goeckede, M., Goldstein, A.H., Gough, C.M., Goulden, M.L., Graf, A., Griebel, A., Gruening, C., Grünwald, T., Hammerle, A., Han, S., Han, X., Hansen, B.U., Hanson, C., Hatakka, J., He, Y., Hehn, M., Heinesch, B., Hinko-Najera, N., Hörtnagl, L., Hutley, L., Ibrom, A., Ikawa, H., Jackowicz-Korczynski, M., Janouš, D., Jans, W., Jassal, R., Jiang, S., Kato, T., Khomik, M., Klatt, J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G., Kolle, O., Kosugi, Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J., Kutsch, W.L., Kwon, H., Launiainen, S., Laurila, T., Law, B., Leuning, R., Li, Y., Liddell, M., Limousin, J.-M., Lion, M., Liska, A.J., Lohila, A., López-Ballesteros, A., López-Blanco, E., Loubet, B., Loustau, D., Lucas-Moffat, A., Lüers, J., Ma, S., Macfarlane, C., Magliulo, V., Maier, R., Mammarella, I., Manca, G., Marcolla, B., Margolis, H.A., Marras, S., Massman, W., Mastepanov, M., Matamala, R., Matthes, J.H., Mazzenga, F., McCaughey, H., McHugh, I., McMillan, A.M.S., Merbold, L., Meyer, W., Meyers, T., Miller, S.D., Minerbi, S., Moderow, U., Monson, R.K., Montagnani, L., Moore, C.E., Moors, E., Moreaux, V., Moureaux, C., Munger, J.W., Nakai, T., Neirynck, J., Nesic, Z., Nicolini, G., Noormets, A., Northwood, M., Nosetto, M., Nouvellon, Y., Novick, K., Oechel, W., Olesen, J.E., Ourcival, J.-M., Papuga, S.A., Parmentier, F.-J., Paul-Limoges, E., Pavelka, M., Peichl, M., Pendall, E., Phillips, R.P., Pilegaard, K., Pirk, N., Posse, G., Powell, T., Prasse, H., Prober, S.M., Rambal, S., Rannik, Ü., Raz-Yaseef, N., Rebmann, C., Reed, D., de Dios, V.R., Restrepo-Coupe, N., Reverter, B.R., Roland, M., Sabbatini, S., Sachs, T., Saleska, S.R., Sánchez-Cañete, E.P., Sanchez-Mejia, Z.M., Schmid, H.P., Schmidt, M., Schneider, K., Schrader, F., Schroder, I., Scott, R.L., Sedlák, P., Serrano-Ortíz, P., Shao, C., Shi, P., Shironya, I., Siebicke, L., Šigut, L., Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R.M., Sturtevant, C., Suyker, A., Tagesson, T., Takanashi, S., Tang, Y., Tapper, N., Thom, J., Tomassucci, M., Tuovinen, J.-P., Urbanski, S., Valentini, R., van der Molen, M., van Gorsel, E., van Huissteden, K., Varlagin, A., Verfaillie, J., Vesala, T., Vincke, C., Vitale, D., Vygodskaya, N., Walker, J.P., Walter-Shea, E., Wang, H., Weber, R., Westermann, S., Wille, C., Wofsy, S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y., Zampedri, R., Zhang, J., Zhou, G., Zona, D., Agarwal, D., Biraud, S., Torn, M., Papale, D., The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci Data, 7, 2020, 225, 10.1038/s41597-020-0534-3.
Pique, G., Fieuzal, R., Al Bitar, A., Veloso, A., Tallec, T., Brut, A., Ferlicoq, M., Zawilski, B., Dejoux, J.-F., Gibrin, H., Ceschia, E., Estimation of daily CO2 fluxes and of the components of the carbon budget for winter wheat by the assimilation of Sentinel 2-like remote sensing data into a crop model. Geoderma, 376, 2020, 114428, 10.1016/j.geoderma.2020.114428.
Potapov, P., Turubanova, S., Hansen, M.C., Tyukavina, A., Zalles, V., Khan, A., Song, X.-P., Pickens, A., Shen, Q., Cortez, J., Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat Food 3 (2021), 19–28, 10.1038/s43016-021-00429-z.
Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., Klooster, S.A., Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochem. Cycles 7 (1993), 811–841, 10.1029/93GB02725.
Reeves, M.C., Zhao, M., Running, S.W., Usefulness and limits of MODIS GPP for estimating wheat yield. International Journal of Remote Sensing 26 (2005), 1403–1421, 10.1080/01431160512331326567.
Reichstein, M., Inverse modeling of seasonal drought effects on canopy CO 2 /H 2 O exchange in three Mediterranean ecosystems. J. Geophys. Res., 108, 2003, 4726, 10.1029/2003JD003430.
Reichstein, M., Tenhunen, J.D., Roupsard, O., Ourcival, J.-M., Rambal, S., Dore, S., Valentini, R., Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics: Analysis of ecosystem respiration. Functional Ecology 16 (2002), 27–39, 10.1046/j.0269-8463.2001.00597.x.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D.C., Climate extremes and the carbon cycle. Nature 500 (2013), 287–295.
Revill, A., Sus, O., Barrett, B., Williams, M., Carbon cycling of European croplands: A framework for the assimilation of optical and microwave Earth observation data. Remote Sensing of Environment 137 (2013), 84–93, 10.1016/j.rse.2013.06.002.
Roy, D.P., Li, J., Zhang, H.K., Yan, L., Huang, H., Li, Z., Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sensing of Environment 199 (2017), 25–38, 10.1016/j.rse.2017.06.019.
Santaren, D., Peylin, P., Viovy, N., Ciais, P., Optimizing a process-based ecosystem model with eddy-covariance flux measurements: A pine forest in southern France: MODEL OPTIMIZATION USING FLUX DATA. Global Biogeochem. Cycles, 21, 2007, n/a-n/a, 10.1029/2006GB002834.
Santaren, D., Peylin, P., Bacour, C., Ciais, P., Longdoz, B., Ecosystem model optimization using in situ flux observations: benefit of Monte Carlo versus variational schemes and analyses of the year-to-year model performances. Biogeosciences 11 (2014), 7137–7158, 10.5194/bg-11-7137-2014.
Schaefer, K., Schwalm, C.R., Williams, C., Arain, M.A., Barr, A., Chen, J.M., Davis, K.J., Dimitrov, D., Hilton, T.W., Hollinger, D.Y., Humphreys, E., Poulter, B., Raczka, B.M., Richardson, A.D., Sahoo, A., Thornton, P., Vargas, R., Verbeeck, H., Anderson, R., Baker, I., Black, T.A., Bolstad, P., Chen, J., Curtis, P.S., Desai, A.R., Dietze, M., Dragoni, D., Gough, C., Grant, R.F., Gu, L., Jain, A., Kucharik, C., Law, B., Liu, S., Lokipitiya, E., Margolis, H.A., Matamala, R., McCaughey, J.H., Monson, R., Munger, J.W., Oechel, W., Peng, C., Price, D.T., Ricciuto, D., Riley, W.J., Roulet, N., Tian, H., Tonitto, C., Torn, M., Weng, E., Zhou, X., A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis: A MODEL-DATA COMPARISON OF GPP. J. Geophys. Res., 117, 2012, n/a-n/a, 10.1029/2012JG001960.
Sellers, P.J., Mintz, Y., Sud, Y.C., Dalcher, A., A Simple Biosphere Model (SIB) for Use within General Circulation Models. J. Atmos. Sci. 43 (1986), 505–531, 10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.
Smith, B., Prentice, I.C., Sykes, M.T., Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space: Vegetation dynamics in ecosystem models. Global Ecology and Biogeography 10 (2001), 621–637, 10.1046/j.1466-822X.2001.t01-1-00256.x.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., Zaehle, S., Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11 (2014), 2027–2054, 10.5194/bg-11-2027-2014.
Tarantola, A., 1987. Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier; Distributors for the United States and Canada, Elsevier Science Pub. Co, Amsterdam; New York : New York, NY, U.S.A.
Taylor, K.E., Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106 (2001), 7183–7192.
Xiao, X., Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment 91 (2004), 256–270, 10.1016/j.rse.2004.03.010.
Xiao, X., Hollinger, D., Aber, J., Goltz, M., Davidson, E.A., Zhang, Q., Moore, B., Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment 89 (2004), 519–534, 10.1016/j.rse.2003.11.008.
Zeng, N., Zhao, F., Collatz, G.J., Kalnay, E., Salawitch, R.J., West, T.O., Guanter, L., Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature 515 (2014), 394–397, 10.1038/nature13893.
Zhang, Y., Bastos, A., Maignan, F., Goll, D., Boucher, O., Li, L., Cescatti, A., Vuichard, N., Chen, X., Ammann, C., Arain, M.A., Black, T.A., Chojnicki, B., Kato, T., Mammarella, I., Montagnani, L., Roupsard, O., Sanz, M.J., Siebicke, L., Urbaniak, M., Vaccari, F.P., Wohlfahrt, G., Woodgate, W., Ciais, P., Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model. Geosci. Model Dev. 13 (2020), 5401–5423, 10.5194/gmd-13-5401-2020.