[en] Burst firing in substantia nigra pars compacta dopamine neurons is a critical biomarker temporally associated to movement initiation. This phasic change is generated by the tonic activation of NMDARs but the respective role of synaptic versus extrasynaptic NMDARs in the ignition of a burst and what is their level of activation remains unknown. Using ex vivo electrophysiological recordings from adolescent rats, we demonstrate that extrasynaptic NMDARs are the primary driver of burst firing. This pool of receptors is recruited during intense synaptic activity via spillover of glutamate and require the binding of NMDAR co-agonist glycine for full activation. Basal synaptic transmission activating only synaptic NMDARs with the support of D-serine is insufficient to generate a burst. Notably, both synaptic and extrasynaptic NMDARs share the same subunit composition but are regulated by distinct co-agonists. Location of NMDARs and regionalization of co-agonists but not NMDAR subunit composition underly burst generation and may serve as a guideline in understanding the physiological role of dopamine in signaling movement.
Motta, Zoraide; The Protein Factory 2.0 Lab, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via Dunant, Varese 3-21100, Italy
Vandries, Laura ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Seutin, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Jehasse, Kevin ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Caldinelli, Laura; The Protein Factory 2.0 Lab, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via Dunant, Varese 3-21100, Italy
Pollegioni, Loredano; The Protein Factory 2.0 Lab, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via Dunant, Varese 3-21100, Italy
Engel, Dominique ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Language :
English
Title :
Glycine-gated extrasynaptic NMDARs activated during glutamate spillover drive burst firing in nigral dopamine neurons.
We thank Dr. Jean-Marc Goaillard for helpful comments on the manuscript, Sandy El Sayed and Laurent Massotte for technical assistance and the GIGA-imaging platform for using the confocal microscope and Imaris. We also thank particularly Alexandre Hego for his excellent help with analysis using Imaris and Aurore Beuchet for analyzing data. This work was supported by the Belgian FNRS (FRIA), the Fondation Leon Fredericq, Prix de l\u2019espoir from Marie-Jos\u00E9 De Ridder (to S. R.) and Fonds facultaires de l\u2019ULi\u00E8ge (to D.E). Z.M. is a PhD student of the Life Sciences and Biotechnology course at the University of Insubria. L.P. thanks the support from FAR Fondo di Ateneo per la Ricerca. D.E. thanks Dr. Laurent Nguyen for his support and for integrating D.E. in his (L.N.) Group and Dr. Sophie Laguesse for sharing data.We thank Dr. Jean-Marc Goaillard for helpful comments on the manuscript, Sandy El Sayed and Laurent Massotte for technical assistance and the GIGA-imaging platform for using the confocal microscope and Imaris. We also thank particularly Alexandre Hego for his excellent help with analysis using Imaris and Aurore Beuchet for analyzing data. This work was supported by the Belgian FNRS (FRIA), the Fondation Leon Fredericq, Prix de l'espoir from Marie-Jos\u00E9 De Ridder (to S. R.) and Fonds facultaires de l'ULi\u00E8ge (to D.E). Z.M. is a PhD student of the Life Sciences and Biotechnology course at the University of Insubria. L.P. thanks the support from FAR Fondo di Ateneo per la Ricerca. D.E. thanks Dr. Laurent Nguyen for his support and for integrating D.E. in his (L.N.) Group and Dr. Sophie Laguesse for sharing data.
Ammari, R., Lopez, C., Fiorentino, H., Gonon, F., Hammond, C., A mouse juvenile or adult slice with preserved functional nigro-striatal dopaminergic neurons. Neuroscience 159 (2009), 3–6, 10.1016/j.neuroscience.2008.10.051.
Arnth-Jensen, N., Jabaudon, D., Scanziani, M., Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nat. Neurosci. 5 (2002), 325–331, 10.1038/nn825.
Asztely, F., Erdemli, G., Kullmann, D.M., Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18 (1997), 281–293, 10.1016/S0896-6273(00)80268-8.
Balsara, R.D., Ferreira, A.N., Donahue, D.L., Castellino, F.J., Sheets, P.L., Probing NMDA receptor GluN2A and GluN2B subunit expression and distribution in cortical neurons. Neuropharmacology 79 (2014), 542–549, 10.1016/j.neuropharm.2014.01.005.
Beaudoin, G., Gomez, J., Perkins, J., Bland, J., Petko, A., Paladini, C., Cocaine selectively reorganizes excitatory inputs to substantia Nigra pars compacta dopamine neurons. J. Neurosci. 38 (2018), 1151–1159, 10.1523/JNEUROSCI.1975-17.2017.
Berger, A.J., Dieudonné, S., Ascher, P., Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J. Neurophysiol. 80 (1998), 3336–3340, 10.1152/jn.1998.80.6.3336.
Blythe, S.N., Atherton, J.F., Bevan, M.D., Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro. J. Neurophysiol. 97 (2007), 2837–2850, 10.1152/jn.01157.2006.
Brickley, S.G., Misra, C., Mok, M.H.S., Mishina, M., Cull-Candy, S.G., NR2B and NR2D subunits coassemble in cerebellar golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J. Neurosci. 23 (2003), 4958–4966, 10.1523/JNEUROSCI.23-12-04958.2003.
Brothwell, S.L.C., Barber, J.L., Monaghan, D.T., Jane, D.E., Gibb, A.J., Jones, S., NR2B- and NR2D-containing synaptic NMDA receptors in developing rat substantia nigra pars compacta dopaminergic neurones. J. Physiol. 586 (2008), 739–750, 10.1113/jphysiol.2007.144618.
Chergui, K., Charléty, P.J., Akaoka, H., Saunier, C.F., Brunet, J. -L., Buda, M., Svensson, T.H., Chouvet, G., Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur. J. Neurosci. 5 (1993), 137–144, 10.1111/j.1460-9568.1993.tb00479.x.
Chergui, K., Akaoka, H., Charléty, P.J., Saunier, C.F., Buda, M., Chouvet, G., Subthalamic nucleus modulates burst firing of nigral dopamine neurones via NMDA receptors. Neuroreport 5 (1994), 1185–1188, 10.1097/00001756-199406020-00006.
Cubelos, B., Giménez, C., Zafra, F., Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb. Cortex 15 (2005), 448–459, 10.1093/cercor/bhh147.
Curcio, L., Podda, M.V., Leone, L., Piacentini, R., Mastrodonato, A., Cappelletti, P., Sacchi, S., Pollegioni, L., Grassi, C., D'Ascenzo, M., Reduced D-serine levels in the nucleus accumbens of cocaine-treated rats hinder the induction of NMDA receptor-dependent synaptic plasticity. Brain 136 (2013), 1216–1230, 10.1093/brain/awt036.
Currás, M.C., Pallotta, B.S., Single-channel evidence for glycine and NMDA requirement in NMDA receptor activation. Brain Res 740 (1996), 27–40, 10.1016/S0006-8993(96)00845-1.
Destreel, G., Seutin, V., Engel, D., Subsaturation of the N-methyl-D-aspartate receptor glycine site allows the regulation of bursting activity in juvenile rat nigral dopamine neurons. Eur. J. Neurosci. 50 (2019), 3454–3471, 10.1111/ejn.14491.
Dopico, J.G., González-Hernández, T., Pérez, I.M., García, I.G., Abril, A.M., Inchausti, J.O., Rodríguez Díaz, M., Glycine release in the substantia nigra: interaction with glutamate and GABA. Neuropharmacology 50 (2006), 548–557, 10.1016/j.neuropharm.2005.10.014.
Drotos, A.C., Zarb, R.L., Booth, V., and Roberts, M.T. (2023). GluN2C/D-containing NMDA receptors enhance temporal summation and increase sound-evoked and spontaneous firing in the inferior colliculus. bioRxiv preprint. https://doi.org/10.1101/2023.04.27.538607.
Ferreira, J.S., Papouin, T., Ladépêche, L., Yao, A., Langlais, V.C., Bouchet, D., Dulong, J., Mothet, J.P., Sacchi, S., Pollegioni, L., et al. Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses. Elife 6 (2017), 1–22, 10.7554/eLife.25492.
Frattini, L., Rosini, E., Pollegioni, L., Pilone, M.S., Analyzing the d-amino acid content in biological samples by engineered enzymes. J. Chromatogr. B 879 (2011), 3235–3239, 10.1016/j.jchromb.2011.02.036.
Frouni, I., Kim, E., Shaqfah, J., Bédard, D., Kwan, C., Belliveau, S., Huot, P., [3H]-NFPS binding to the glycine transporter 1 in the hemi-parkinsonian rat brain. Exp. Brain Res 242 (2024), 1203–1214, 10.1007/s00221-024-06815-w.
Gonon, F.G., Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24 (1988), 19–28, 10.1016/0306-4522(88)90307-7.
Grace, A.A., Bunney, B.S., The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4 (1984), 2877–2890, 10.1523/JNEUROSCI.04-11-02877.1984.
Hage, T.A., Khaliq, Z.M., Tonic firing rate controls dendritic Ca2+ signaling and synaptic gain in substantia nigra dopamine neurons. J. Neurosci. 35 (2015), 5823–5836, 10.1523/JNEUROSCI.3904-14.2015.
Hansen, K.B., Wollmuth, L.P., Bowie, D., Furukawa, H., Menniti, F.S., Sobolevsky, A.I., Swanson, G.T., Swanger, S.A., Greger, I.H., Nakagawa, T., et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharm. Rev. 73 (2021), 1469–1658, 10.1124/pharmrev.120.000131.
Harney, S.C., Jane, D.E., Anwyl, R., Extrasynaptic NR2D-containing NMDARs are recruited to the synapse during LTP of NMDAR-EPSCs. J. Neurosci. 28 (2008), 11685–11694, 10.1523/JNEUROSCI.3035-08.2008.
Harris, A.Z., Pettit, D.L., Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. J. Physiol. 584 (2007), 509–519, 10.1113/jphysiol.2007.137679.
Heresco-Levy, U., Shoham, S., Javitt, D.C., Glycine site agonists of the N-methyl-d-aspartate receptor and Parkinson's disease: a hypothesis. Mov. Disord. 28 (2013), 419–424, 10.1002/mds.25306.
Hornykiewicz, O., The discovery of dopamine deficiency in the parkinsonian brain. Parkinson's Disease and Related Disorders, 2006, Springer Vienna, 9–15, 10.1007/978-3-211-45295-0_3.
Howe, M.W., Dombeck, D.A., Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535 (2016), 505–510, 10.1038/nature18942.
Huettner, J.E., Bean, B.P., Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc. Natl. Acad. Sci. 85 (1988), 1307–1311, 10.1073/pnas.85.4.1307.
Jang, M., Um, K.B., Jang, J., Kim, H.J., Cho, H., Chung, S., Park, M.K., Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons. Sci. Rep., 5, 2015, 14773, 10.1038/srep14773.
Job, V., Molla, G., Pilone, M.S., Pollegioni, L., Overexpression of a recombinant wild-type and His-tagged Bacillus subtilis glycine oxidase in Escherichia coli. Eur. J. Biochem 269 (2002), 1456–1463, 10.1046/j.1432-1033.2002.02790.x.
Johnson, J.W., and Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Preprint, https://doi.org/10.1038/325529a0 https://doi.org/10.1038/325529a0.
Jones, S., Gibb, A.J., Functional NR2B- and NR2D-containing NMDA receptor channels in rat substantia nigra dopaminergic neurones. J. Physiol. 569 (2005), 209–221, 10.1113/jphysiol.2005.095554.
Kleckner, N.W., Dingledine, R., Requirement for glycine in activation of NMDA-receptors expressed in xenopus oocytes. Science 241 (1988), 835–837, 10.1126/science.2841759.
Koh, W., Park, M., Chun, Y.E., Lee, J., Shim, H.S., Park, M.G., Kim, S., Sa, M., Joo, J., Kang, H., et al. Astrocytes render memory flexible by releasing D-serine and regulating NMDA receptor tone in the hippocampus. Biol. Psychiatry 91 (2022), 740–752, 10.1016/j.biopsych.2021.10.012.
Kumar, A., Schiff, O., Barkai, E., Mel, B.W., Poleg-Polsky, A., Schiller, J., NMDA spikes mediate amplification of inputs in the rat piriform cortex. Elife, 7, 2018, 10.7554/eLife.38446.
Le Bail, M., Martineau, M., Sacchi, S., Yatsenko, N., Radzishevsky, I., Conrod, S., Ait Ouares, K., Wolosker, H., Pollegioni, L., Billard, J.-M., et al. Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus. Proc. Natl. Acad. Sci. USA 112 (2015), E204–E213, 10.1073/pnas.1416668112.
Le Meur, K., Galante, M., Angulo, M.C., Audinat, E., Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. J. Physiol. 580 (2007), 373–383, 10.1113/jphysiol.2006.123570.
Li, Y., Sacchi, S., Pollegioni, L., Basu, A.C., Coyle, J.T., Bolshakov, V.Y., Identity of endogenous NMDAR glycine site agonist in amygdala is determined by synaptic activity level. Nat. Commun., 4, 2013, 1760, 10.1038/ncomms2779.
Liu, D., Yang, Q., Li, S., Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull. 93 (2013), 10–16, 10.1016/j.brainresbull.2012.12.003.
Lozovaya, N.A., Grebenyuk, S.E., Tsintsadze, T.Sh, Feng, B., Monaghan, D.T., Krishtal, O.A., Extrasynaptic NR2B and NR2D subunits of NMDA receptors shape ‘superslow’ afterburst EPSC in rat hippocampus. J. Physiol. 558 (2004), 451–463, 10.1113/jphysiol.2004.063792.
Momiyama, A., Distinct synaptic and extrasynaptic NMDA receptors identified in dorsal horn neurones of the adult rat spinal cord. J. Physiol. 523 (2000), 621–628, 10.1111/j.1469-7793.2000.t01-1-00621.x.
Morabito, A., Zerlaut, Y., Serraz, B., Sala, R., Paoletti, P., Rebola, N., Activity-dependent modulation of NMDA receptors by endogenous zinc shapes dendritic function in cortical neurons. Cell Rep., 38, 2022, 110415, 10.1016/j.celrep.2022.110415.
Nozaki, C., Vergnano, A.M., Filliol, D., Ouagazzal, A.-M., Le Goff, A., Carvalho, S., Reiss, D., Gaveriaux-Ruff, C., Neyton, J., Paoletti, P., et al. Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit. Nat. Neurosci. 14 (2011), 1017–1022, 10.1038/nn.2844.
Oikonomou, K.D., Short, S.M., Rich, M.T., Antic, S.D., Extrasynaptic glutamate receptor activation as cellular bases for dynamic range compression in pyramidal neurons. Front Physiol., 2012, 1–22, 10.3389/fphys.2012.00334.
Otomo, K., Perkins, J., Kulkarni, A., Stojanovic, S., Roeper, J., Paladini, C.A., In vivo patch-clamp recordings reveal distinct subthreshold signatures and threshold dynamics of midbrain dopamine neurons. Nat. Commun. 11 (2020), 1–15, 10.1038/s41467-020-20041-2.
Petralia, R.S., Wang, Y.X., Hua, F., Yi, Z., Zhou, A., Ge, L., Stephenson, F.A., Wenthold, R.J., Organization of NMDA receptors at extrasynaptic locations. Neuroscience 167 (2010), 68–87, 10.1016/j.neuroscience.2010.01.022.
Punzo, D., Errico, F., Cristino, L., Sacchi, S., Keller, S., Belardo, C., Luongo, L., Nuzzo, T., Imperatore, R., Florio, E., et al. Age-related changes in d-aspartate oxidase promoter methylation control extracellular d-aspartate levels and prevent precocious cell death during brain aging. J. Neurosci. 36 (2016), 3064–3078, 10.1523/JNEUROSCI.3881-15.2016.
Rauner, C., Köhr, G., Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem. 286 (2011), 7558–7566, 10.1074/jbc.M110.182600.
Riebe, I., Seth, H., Culley, G., Dósa, Z., Radi, S., Strand, K., Fröjd, V., Hanse, E., Tonically active NMDA receptors - a signalling mechanism critical for interneuronal excitability in the CA1 stratum radiatum. Eur. J. Neurosci. 43 (2016), 169–178, 10.1111/ejn.13128.
da Silva, J.A., Tecuapetla, F., Paixão, V., Costa, R.M., Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554 (2018), 244–248, 10.1038/nature25457.
Soden, M.E., Jones, G.L., Sanford, C.A., Chung, A.S., Güler, A.D., Chavkin, C., Luján, R., Zweifel, L.S., Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation. Neuron 80 (2013), 997–1009, 10.1016/j.neuron.2013.07.044.
Sonia, F., Loredano, P., Mirella, P.S., Engineering, expression and purification of a His-tagged chimeric D-amino acid oxidase from Rhodotorula gracilis. Enzym. Micro Technol. 29 (2001), 407–412, 10.1016/S0141-0229(01)00400-8.
Stroebel, D., Casado, M., Paoletti, P., Triheteromeric NMDA receptors: from structure to synaptic physiology. Curr. Opin. Physiol. 2 (2018), 1–12, 10.1016/j.cophys.2017.12.004.
Suzuki, T., Kodama, S., Hoshino, C., Izumi, T., Miyakawa, H., A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons. Eur. J. Neurosci. 28 (2008), 521–534, 10.1111/j.1460-9568.2008.06324.x.
Swanger, S.A., Vance, K.M., Pare, J.F., Sotty, F., Fog, K., Smith, Y., Traynelis, S.F., NMDA receptors containing the GluN2D subunit control neuronal function in the subthalamic nucleus. J. Neurosci. 35 (2015), 15971–15983, 10.1523/JNEUROSCI.1702-15.2015.
Tsai, C.H., Huang, H.C., Liu, B.L., Li, C.I., Lu, M.K., Chen, X., Tsai, M.C., Yang, Y.W., Lane, H.Y., Activation of N-methyl-D-aspartate receptor glycine site temporally ameliorates neuropsychiatric symptoms of Parkinson's disease with dementia. Psychiatry Clin. Neurosci. 68 (2014), 692–700, 10.1111/pcn.12175.
Vergnano, A.M., Rebola, N., Savtchenko, L.P., Pinheiro, P.S., Casado, M., Kieffer, B.L., Rusakov, D.A., Mulle, C., Paoletti, P., Zinc dynamics and action at excitatory synapses. Neuron 82 (2014), 1101–1114, 10.1016/j.neuron.2014.04.034.
Wang, H., Gao, W., Development of calcium-permeable AMPA receptors and their correlation with NMDA receptors in fast-spiking interneurons of rat prefrontal cortex. J. Physiol. 588 (2010), 2823–2838, 10.1113/jphysiol.2010.187591.
Wang, H., Stradtman, G.G., Wang, X.-J., Gao, W.-J., A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proc. Natl. Acad. Sci. 105 (2008), 16791–16796, 10.1073/pnas.0804318105.
Wang, L.P., Li, F., Wang, D., Xie, K., Wang, D., Shen, X., Tsien, J.Z., NMDA receptors in dopaminergic neurons are crucial for habit learning. Neuron 72 (2011), 1055–1066, 10.1016/j.neuron.2011.10.019.
Watabe-Uchida, M., Zhu, L., Ogawa, S.K., Vamanrao, A., Uchida, N., Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74 (2012), 858–873, 10.1016/j.neuron.2012.03.017.
Wild, A.R., Bollands, M., Morris, P.G., Jones, S., Mechanisms regulating spill-over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons. Eur. J. Neurosci. 42 (2015), 2633–2643, 10.1111/ejn.13075.
Yang, Q., Zhu, G., Liu, D., Ju, J.G., Liao, Z.H., Xiao, Y.X., Zhang, Y., Chao, N., Wang, J., Li, W., et al. Extrasynaptic NMDA receptor dependent long-term potentiation of hippocampal CA1 pyramidal neurons. Sci. Rep. 7 (2017), 1–9, 10.1038/s41598-017-03287-7.
Yao, L., Rong, Y., Ma, X., Li, H., Deng, D., Chen, Y., Yang, S., Peng, T., Ye, T., Liang, F., et al. Extrasynaptic NMDA receptors bidirectionally modulate intrinsic excitability of inhibitory neurons. J. Neurosci. 42 (2022), 3066–3079, 10.1523/JNEUROSCI.2065-21.2022.
Yi, F., Bhattacharya, S., Thompson, C.M., Traynelis, S.F., Hansen, K.B., Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors. J. Physiol. 597 (2019), 5495–5514, 10.1113/JP278168.
Zweifel, L.S., Parker, J.G., Lobb, C.J., Rainwater, A., Wall, V.Z., Fadok, J.P., Darvas, M., Kim, M.J., Mizumori, S.J., Paladini, C.A., et al. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc. Natl. Acad. Sci. USA 106 (2009), 7281–7288, 10.1073/pnas.0813415106.