[en] Firn can store glacial meltwater and delays contribution to sea level rise, but ice layers and ice slabs within the shallow firn layer can impede the downward percolation of melt. Here we report firn conditions along a transect on southwest Devon Ice Cap, Nunavut, and explore its response to air temperature variability over a decadal period. We present results from two field campaigns, during which six shallow firn cores were extracted along the same transect in spring 2012 and 2022. At all sites, the ice fraction was less in 2022 than in 2012, and the firn content increased. Between 2012 and 2022, the ice fraction of the firn layer changed by -30 % at the lowest elevation site (1400 m a.s.l.) and by -11% at the highest elevation site (1800 m a.s.l.) and by an average of -26% across all sites. Despite higher annual positive degree day sums during 2012-2022 compared to 2002-2012, cooler summers in 2013, 2018, and 2021 resulted in less ice content in the shallow firn layer. This demonstrates that the shallow firn layer can regenerate from several cooler years and highlights the nuanced response of the Devon Ice Cap shallow firn layer to climate warming.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Hallé, Danielle; University of Waterloo, Waterloo, Canada
van Wychen, Wesley; University of Waterloo, Waterloo, Canada
Burgess, David; Geological Survey of Canada, Ottawa, Canada
Danielson, Bradley; Geological Survey of Canada, Ottawa, Canada
Kelly, Richard; University of Waterloo, Waterloo, Canada
Alley RB, Bolzan JF and Whillans IM (1982) Polar firn densification and grain growth. Annals of Glaciology, 3, 7–11, ISSN 0260-3055 (doi: 10.3189/s0260305500002433)
Alley RB, Shuman CA, Meese DA, Gow AJ, Taylor KC, Cuffey KM, Fitzpatrick JJ, Grootes PM, Zielinski GA, Ram M, Spinelli G and Elder B (1997) Visual-stratigraphic dating of the gisp2 ice core: Basis, reproducibility, and application. Journal of Geophysical Research: Oceans, 102, 26367–26381, ISSN 21699291 (doi: 10.1029/96JC03837)
Armstrong C, Durand R, Y Etchevers, Greene P, McClung E, Nishimura D, Satyawali K, Sokratov P and Fierz S (2009) The international classification for seasonal snow on the ground prepared by the icsi-uccs-iacs working group on snow classification
Ashmore D, Mair D and Burgess D (2019) Meltwater percolation, impermeable layer formation and runoff buffering on devon ice cap, canada. Journal of Glaciology, 66, ISSN 00221430 (doi: 10.1017/jog.2019.80)
Bell C, Mair D, Burgess D, Sharp M, Demuth M, Cawkwell F, Bingham R and Wadham J (2008) Spatial and temporal variability in the snowpack of a high arctic ice cap: Implications for mass-change measurements. Annals of Glaciology, 48, 159–170, ISSN 02603055 (doi: 10.3189/172756408784700725)
Bezeau P, Sharp M, Burgess D and Gascon G (2013) Firn profile changes in response to extreme 21st-century melting at devon ice cap, nunavut, canada. Journal of Glaciology, 59, 981–991, ISSN 00221430 (doi: 10.3189/2013JoG12J208)
Box J, Colgan W, Wouters B, Burgess D, O’Neel S, Thomson L and Mernild S (2018) Global sea-level contribution from arctic land ice: 1971-2017. Environmental Research Letters, 13, ISSN 17489326 (doi: 10.1088/1748-9326/aaf2ed)
Burgess D and Sharp MJ (2008) Recent changes in thickness of the devon island ice cap, canada. Journal of Geophysical Research: Solid Earth, 113, 1–18, ISSN 21699356 (doi: 10.1029/2007JB005238)
Burgess DO (2017) Mass balance of ice caps in the queen elizabeth islands, arctic canada: 2014 2015. Geological Survey of Canada, Open File:, 8223, 38 (doi: 10.4095/300231)
Burgess DO (2018) Validation of the racmo2.3 surface mass-balance model over northwest devon ice cap, nunavut (doi: 10.4095/308355)
Burgess DO and Danielson BD (2022) Meighen ice cap: changes in geometry, mass, and climatic response since 1959. Canadian Journal of Earth Sciences, 59, 884–896, ISSN 14803313 (doi: 10.1139/cjes-2021-0126)
Burgess DO and Sharp MJ (2004) Recent changes in areal extent of the devon ice cap, nunavut, canada. Arctic, Antarctic, and Alpine Research, 36, 261–271, ISSN 15230430 (doi: 10.1657/1523-0430(2004)036[0261:RCIAEO]2.0.CO;2)
Chan K, Grima C, Rutishauser A, Young DA, Culberg R and Blankenship DD (2023) Spatial characterization of near-surface structure and meltwater runoff conditions across the devon ice cap from dual-frequency radar reflectivity. Cryosphere, 17, 1839–1852, ISSN 19940424 (doi: 10.5194/tc-17-1839-2023)
Colgan W and Sharp M (2008) Combined oceanic and atmospheric influences on net accumulation on devon ice cap, nunavut, canada. Journal of Glaciology, 54, 28–40, ISSN 00221430 (doi: 10.3189/002214308784409044)
Ettema J, Broeke MRVD, Meijgaard EV, Berg WJVD, Box JE and Steffen K (2010) Climate of the greenland ice sheet using a high-resolution climate model - part 1: Evaluation. Cryosphere, 4, 511–527, ISSN 19940416 (doi: 10.5194/tc-4-511-2010)
Gardner AS and Sharp M (2007) Influence of the arctic circumpolar vortex on the mass balance of canadian high arctic glaciers. Journal of Climate, 20, 4586–4598, ISSN 08948755 (doi: 10.1175/JCLI4268.1)
Gascon G, Sharp M, Burgess D, Bezeau P and Bush AB (2013) Changes in accumulation-area firn stratigraphy and meltwater flow during a period of climate warming: Devon ice cap, nunavut, canada. Journal of Geophysical Research: Earth Surface, 118, 2380–2391, ISSN 21699011 (doi: 10.1002/2013JF002838)
Gray L, Burgess D, Copland L, Cullen R, Galin N, Hawley R and Helm V (2013) Interferometric swath processing of cryosat data for glacial ice topography. Cryosphere, 7, 1857–1867, ISSN 19940416 (doi: 10.5194/tc-7-1857-2013)
Jullien N, Tedstone AJ, Machguth H, Karlsson NB and Helm V (2023) Greenland ice sheet ice slab expansion and thickening. Geophysical Research Letters, 50(10), e2022GL100911 (doi: https://doi.org/10.1029/2022GL100911), e2022GL100911 2022GL100911
Koerner ARM (1977) Devon island ice cap: Core stratigraphy and paleoclimate published by: American association for the advancement of science stable url: https://www.jstor.org/stable/1744032. Science, 196, 15–18
Koerner R (1970) The mass balance of the devon island ice cap, northwest territories, canada, 1961-66. Journal of Glaciology, 9, 325–336, ISSN 0022-1430 (doi: 10.3189/s0022143000022863)
Koerner RM (1966) Accumulation on the devon island ice cap, northwest territories, canada. Journal of Glaciology, 6, 383–392, ISSN 0022-1430 (doi: 10.3189/s0022143000019493)
Koerner RM (2005) Mass balance of glaciers in the queen elizabeth islands, nunavut, canada. Annals of Glaciology, 42, 417–423, ISSN 02603055 (doi: 10.3189/172756405781813122)
Ligtenberg SRM, Kuipers Munneke P, Noël BPY and van den Broeke MR (2018) Brief communication: Improved simulation of the present-day greenland firn layer (1960–2016). The Cryosphere, 12(5), 1643–1649 (doi: 10.5194/tc-12-1643-2018)
MacFerrin M, Machguth H, van As D, Charalampidis C, Stevens CM, Heilig A, Vandecrux B, Langen PL, Mottram R, Fettweis X, den Broeke MR, Pfeffer WT, Moussavi MS and Abdalati W (2019) Rapid expansion of greenlands low-permeability ice slabs. Nature, 573, 403–407, ISSN 14764687 (doi: 10.1038/s41586-019-1550-3)
Machguth H, Macferrin M, As DV, Box JE, Charalampidis C, Colgan W, Fausto RS, Meijer HA, Mosley-Thompson E and Wal RSVD (2016) Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change, 6, 390–393, ISSN 17586798 (doi: 10.1038/nclimate2899)
Mair D, Burgess D and Sharp M (2005) Thirty-seven year mass balance of devon ice cap, nunavut, canada, determined by shallow ice coring and melt modeling. Journal of Geophysical Research: Earth Surface, 110, 1–13, ISSN 21699011 (doi: 10.1029/2003JF000099)
Maure D, Kittel C, Lambin C, Delhasse A and Fettweis X (2023) Spatially heterogeneous effect of climate warming on the arctic land ice. Cryosphere, 17, 4645–4659, ISSN 19940424 (doi: 10.5194/tc-17-4645-2023)
McDowell IE, Keegan KM, Wever N, Osterberg EC, Hawley RL and Marshall HP (2023) Firn core evidence of two-way feedback mechanisms between meltwater infiltration and firn microstructure from the western percolation zone of the greenland ice sheet. Journal of Geophysical Research: Earth Surface, 128(2), e2022JF006752
Mikkelsen AB, Hubbard A, Macferrin M, Box JE, Doyle SH, Fitzpatrick A, Hasholt B, Bailey HL, Lindbäck K and Pettersson R (2016) Extraordinary runoff from the greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention. Cryosphere, 10, 1147–1159, ISSN 19940424 (doi: 10.5194/tc-10-1147-2016)
Noël B, VandeBerg W, Wouters B, VandenBroeke M, Lhermitte S and Schaffer N (2018) Six decades of glacial mass loss in the canadian arctic archipelago. Journal of Geophysical Research, 123, ISSN 01480227 (doi: 10.1029/2017JF004304)
Noël B, Lenaerts JTM, Lipscomb WH, Thayer-Calder K and van den Broeke MR (2022) Peak refreezing in the greenland firn layer under future warming scenarios. Nature Communications, 13, ISSN 20411723 (doi: 10.1038/s41467-022-34524-x)
Pfeffer WT, Meier MF and Illangasekare TH (1991) Retention of greenland runoff by refreezing: implications for projected future sea level change. Journal of Geophysical Research, 96, ISSN 01480227 (doi: 10.1029/91jc02502)
Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvärinen O, Ruosteenoja K, Vihma T and Laaksonen A (2022) The arctic has warmed nearly four times faster than the globe since 1979. Communications Earth and Environment, 3, ISSN 26624435 (doi: 10.1038/s43247-022-00498-3)
Rennermalm, Hock R, Covi F, Xiao J, Corti G, Kingslake J, Leidman SZ, Miège C, MacFerrin M, MacHguth H, Osterberg E, Kameda T and McConnell JR (2022) Shallow firn cores 1989-2019 in southwest greenland’s percolation zone reveal decreasing density and ice layer thickness after 2012. Journal of Glaciology, 68, 431–442, ISSN 00221430 (doi: 10.1017/jog.2021.102)
Rounce DR, Hock R, Maussion F, Hugonnet R, Kochtitzky W, Huss M, Berthier E, Brinkerhoff D, Compagno L, Copland L, Farinotti D, Menounos B and McNabb RW (2023) Global glacier change in the 21st century: Every increase in temperature matters. Science, 379, 78–83, ISSN 10959203 (doi: 10.1126/science.abo1324)
Sasgen I, Salles A, Wegmann M, Wouters B, Fettweis X, Noël BP and Beck C (2022) Arctic glaciers record wavier circumpolar winds. Nature Climate Change, 12, 249–255, ISSN 17586798 (doi: 10.1038/s41558-021-01275-4)
Schaffer N, Copland L, Zdanowicz C, Burgess D and Nilsson J (2020) Revised estimates of recent mass loss rates for penny ice cap, baffin island, based on 20052014 elevation changes modified for firn densification. Journal of Geophysical Research: Earth Surface, 125, 1–17, ISSN 21699011 (doi: 10.1029/2019JF005440)
Schaffer N, Copland L, Zdanowicz C and Hock R (2023) Modeling the surface mass balance of penny ice cap, baffin island, 1959-2099. Annals of Glaciology, ISSN 02603055 (doi: 10.1017/aog.2023.68)
Sharp M, Burgess DO, Cogley JG, Ecclestone M, Labine C and Wolken GJ (2011) Extreme melt on canada’s arctic ice caps in the 21st century. Geophysical Research Letters, 38, 3–7, ISSN 00948276 (doi: 10.1029/2011GL047381)
Shepherd A, Du Z, Benham TJ, Dowdeswell JA and Morris EM (2007) Mass balance of devon ice cap, canadian arctic. Annals of Glaciology, 46, 249–254, ISSN 02603055 (doi: 10.3189/172756407782871279)
Tepes P, Gourmelen N, Nienow P, Tsamados M, Shepherd A and Weissgerber F (2021) Changes in elevation and mass of arctic glaciers and ice caps, 20102017. Remote Sensing of Environment, 261, 112481, ISSN 00344257 (doi: 10.1016/j.rse.2021.112481)
Thompson-Munson M, Kay JE and Markle BR (2023) Greenland’s firn responds more to warming than to cooling. The Cryosphere (doi: 10.5194/egusphere-2023-2629)
Vandecrux B, Fausto RS, Langen PL, van As D, MacFerrin M, Colgan WT, Ingeman-Nielsen T, Steffen K, Jensen NS, Møller MT and Box JE (2018) Drivers of firn density on the greenland ice sheet revealed by weather station observations and modeling. Journal of Geophysical Research: Earth Surface, 123, 2563–2576, ISSN 21699011 (doi: 10.1029/2017JF004597)
VanWychen W, Davis J, Copland L, Burgess DO, Gray L, Sharp M, Dowdeswell JA and Benham TJ (2017) Variability in ice motion and dynamic discharge from devon ice cap, nunavut, canada. Journal of Glaciology, 63, 436–449, ISSN 00221430 (doi: 10.1017/jog.2017.2)
Xiao J, Rennermalm ÅK, Covi F, Hock R, Leidman SZ, Miège C, MacFerrin MJ and Samimi S (2022) Local-scale spatial variability in firn properties in southwest greenland. Frontiers in Earth Science, 10, 938246
Zdanowicz C, Smetny-Sowa A, Fisher D, Schaffer N, Copland L, Eley J and Dupont F (2012) Summer melt rates on penny ice cap, baffin island: Past and recent trends and implications for regional climate. Journal of Geophysical Research: Earth Surface, 117, ISSN 21699011 (doi: 10.1029/2011JF002248)