[en] In Komagataella phaffii (Pichia pastoris), formate is a recognized alternative inducer to methanol for expression systems based on the AOX1 promoter (pAOX1). By disrupting the formate dehydrogenase encoding FDH1 gene, we converted such a system into a self-induced one, as adding any inducer in the culture medium is no longer requested for pAOX1 induction. In cells, formate is generated from serine through the THF-C1 metabolism, and it cannot be converted into carbon dioxide in a FdhKO strain. Under non-repressive culture conditions, such as on sorbitol, the intracellular formate generated from the THF-C1 metabolism is sufficient to induce pAOX1 and initiate protein synthesis. This was evidenced for two model proteins, namely intracellular eGFP and secreted CalB lipase from C. antarctica. Similar protein productivities were obtained for a FdhKO strain on sorbitol and a non-disrupted strain on sorbitol-methanol. Considering a K. Phaffii FdhKO strain as a workhorse for recombinant protein synthesis paves the way for the further development of methanol-free processes in K. phaffii.
Disciplines :
Biotechnology
Author, co-author :
Bustos Cosios, Cristina Veronica ; Université de Liège - ULiège > TERRA Research Centre ; School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
Berrios, Julio ; School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
Fickers, Patrick ; Université de Liège - ULiège > TERRA Research Centre > Microbial technologies
Language :
English
Title :
Formate from THF-C1 metabolism induces the AOX1 promoter in formate dehydrogenase-deficient Komagataella phaffii.
Publication date :
October 2024
Journal title :
Microbial Biotechnology
ISSN :
1751-7915
eISSN :
1751-7907
Publisher :
John Wiley and Sons Ltd, United States
Volume :
17
Issue :
10
Pages :
e70022
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
WBI - Wallonie-Bruxelles International Universidad Técnica Federico Santa María FONDECYT - Chile Fondo Nacional de Desarrollo Científico y Tecnológico PUCV - Pontificia Universidad Católica de Valparaíso ANID - Agencia Nacional de Investigación y Desarrollo
Funding text :
The authors thank Prof. Gasser from CD Laboratory of growth-decoupled protein production in yeast, Department of Biotechnology, University of Natural Resources and Life Sciences for providing pKTAC-CRE vector. A. Anckaert, M. Delvenne, Vandenbroucke, V., S. Steels and R. Thomas are acknowledged for their technical help and fruitful discussion. This research was funded by Becas Doctorado Nacional grant number 21211138-Agencia Nacional de Investigaci\u00F3n y Desarrollo (ANID), Chile; Doctoral Internship Scholarship (PUCV, Chile); Research Stay Scholarship N\u00B0 018/2022 (Direcci\u00F3n de Postgrado y Programas, UTFSM, Chile); Wallonie-Bruxelles International through the Cooperation bilateral Belgique-Chili project SUB/2019/435787 (RIO4) and SUB/2023/591923/MOD (RI06), FONDECYT Regular (project number 1191196), University of Liege, Terra Teaching and Research Center.
Ata, Ö., Ergün, B.G., Fickers, P., Heistinger, L., Mattanovich, D., Rebnegger, C. et al. (2021) What makes Komagataella phaffii non-conventional? FEMS Yeast Research, 21, foab059.
Barone, G.D., Emmerstorfer-Augustin, A., Biundo, A., Pisano, I., Coccetti, P., Mapelli, V. et al. (2023) Industrial production of proteins with Pichia pastoris —Komagataella phaffii. Biomolecules, 13, 441.
Berrios, J., Flores, M.O., Díaz-Barrera, A., Altamirano, C., Martínez, I. & Cabrera, Z. (2017) A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of Pichia pastoris: temperature effect and scale-up simulation. Journal of Industrial Microbiology & Biotechnology, 44, 407–411.
Berrios, J., Theron, C.W., Steels, S., Ponce, B., Velastegui, E., Bustos, C. et al. (2022) Role of dissimilative pathway of Komagataella phaffii (Pichia pastoris): formaldehyde toxicity and energy metabolism. Microorganisms, 10, 1466.
Bustos, C., Quezada, J., Veas, R., Altamirano, C., Braun-Galleani, S., Fickers, P. et al. (2022) Advances in cell engineering of the Komagataella phaffii platform for recombinant protein production. Metabolites, 12, 346.
Carly, F., Niu, H., Delvigne, F. & Fickers, P. (2016) Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate. Journal of Industrial Microbiology & Biotechnology, 43, 517–523.
Collins, T.J. (2007) ImageJ for microscopy. BioTechniques, 43, 25–30.
Cotton, C.A., Claassens, N.J., Benito-Vaquerizo, S. & Bar-Even, A. (2020) Renewable methanol and formate as microbial feedstocks. Current Opinion in Biotechnology, 62, 168–180.
Ergün, B.G., Berrios, J., Binay, B. & Fickers, P. (2021) Recombinant protein production in Pichia pastoris: from transcriptionally redesigned strains to bioprocess optimization and metabolic modelling. FEMS Yeast Research, 21, foab057.
Feng, A., Zhou, J., Mao, H., Zhou, H. & Zhang, J. (2022) Heterologous protein expression enhancement of Komagataella phaffii by ammonium formate induction based on transcriptomic analysis. Biochemical Engineering Jzournal, 185, 108503.
Fickers, P., Nicaud, J.M., Destain, J. & Thonart, P. (2003) Overproduction of lipase by Yarrowia lipolytica mutants. Applied Microbiology and Biotechnology, 63, 136–142.
Gabba, M., Frallicciardi, J., van't Klooster, J., Henderson, R., Syga, Ł., Mans, R. et al. (2020) Weak acid permeation in synthetic lipid vesicles and across the yeast plasma membrane. Biophysical Journal, 118, 422–434.
García-Ortega, X., Cámara, E., Ferrer, P., Albiol, J., Montesinos-Seguí, J.L. & Valero, F. (2019) Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffii) using the methanol-free GAP promoter. Where do we stand? New Biotechnology, 53, 24–34.
Guo, F., Dai, Z., Peng, W., Zhang, S., Zhou, J., Ma, J. et al. (2021) Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnology and Bioengineering, 118, 357–371.
Hartner, F.S. & Glieder, A. (2006) Regulation of methanol utilisation pathway genes in yeasts. Microbial Cell Factories, 5, 39.
Inan, M. & Meagher, M.M. (2001) Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. Journal of Bioscience and Bioengineering, 92, 585–589.
Jayachandran, C., Palanisamy Athiyaman, B. & Sankaranarayanan, M. (2017) Formate co-feeding improved Candida Antarctica lipase B activity in Pichia pastoris. Research Journal of Biotechnology, 12, 29–36.
Jhong, H.R.M., Ma, S. & Kenis, P.J. (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2, 191–199.
Kastanos, E.K., Woldman, Y.Y. & Appling, D.R. (1997) Role of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae. Biochemistry, 36, 14956–14964.
Krainer, F.W., Dietzsch, C., Hajek, T., Herwig, C., Spadiut, O. & Glieder, A. (2012) Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial Cell Factories, 11, 22.
Lin-Cereghino, J., Wong, W.W., Xiong, S., Giang, W., Luong, L.T., Vu, J. et al. (2005) Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. BioTechniques, 38, 44–48.
Liu, B., Li, H., Zhou, H. & Zhang, J. (2022) Enhancing xylanase expression by Komagataella phaffii by formate as carbon source and inducer. Applied Microbiology and Biotechnology, 106, 7819–7829.
Liu, B., Zhao, Y., Zhou, H. & Zhang, J. (2022) Enhancing xylanase expression of Komagataella phaffii induced by formate through Mit1 co-expression. Bioprocess and Biosystems Engineering, 45, 1515–1525.
Mitic, B.M., Troyer, C., Lutz, L., Baumschabl, M., Hann, S. & Mattanovich, D. (2023) The oxygen-tolerant reductive glycine pathway assimilates methanol, formate and CO2 in the yeast Komagataella phaffii. Nature Communications, 14, 1–13.
Niu, H., Jost, L., Pirlot, N., Sassi, H., Daukandt, M., Rodriguez, C. et al. (2013) A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut+/pAOX1-lacZ strain. Microbial Cell Factories, 12, 33.
Piper, M.D., Hong, S.P., Ball, G.E. & Dawes, I.W. (2000) Regulation of the balance of one-carbon metabolism in Saccharomyces cerevisiae. Journal of Biological Chemistry, 275, 30987–30995.
Prielhofer, R., Barrero, J.J., Steuer, S., Gassler, T., Zahrl, R., Baumann, K. et al. (2017) GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Systems Biology, 11, 123.
Sakai, Y., Nakagawa, T., Shimase, M. & Kato, N. (1998) Regulation and physiological role of the DAS1 gene, encoding dihydroxyacetone synthase, in the methylotrophic yeast Candida boidinii. Journal of Bacteriology, 180, 5885–5890.
Sambrook, J. & Russell, D.W. (2001) Molecular cloning: a laboratory manual, 3rd edition. New York: Cold Spring Harbor Laboratory Press.
Sassi, H., Delvigne, F., Kar, T., Nicaud, J.M., Coq, A.M.C.-L., Steels, S. et al. (2016) Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica. Microbial Cell Factories, 15, 159.
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.
Sibirny, A.A., Ubiyvovk, V.M., Gonchar, M.V., Titorenko, V.I., Voronovsky, A.Y., Kapultsevich, Y.G. et al. (1990) Reactions of direct formaldehyde oxidation to CO2 are non-essential for energy supply of yeast methylotrophic growth. Archives of Microbiology, 154, 566–575.
Singh, A. & Narang, A. (2020) The Mut+ strain of Komagataella phaffii (Pichia pastoris) expresses PAOX1 5 and 10 times faster than Muts and Mut−strains: Evidence that formaldehyde or/and formate are true inducers of PAOX1. Applied Microbiology and Biotechnology, 104, 7801–7814.
Takagi, S., Tsutsumi, N., Terui, Y. & Kong, X.Y. (2012) Method for methanol independent induction from methanol inducible promoters in Pichia. US Patent 8236528B2.
Theron, C.W., Berrios, J., Steels, S., Telek, S., Lecler, R., Rodriguez, C. et al. (2019) Expression of recombinant enhanced green fluorescent protein provides insight into foreign gene-expression differences between Mut+ and MutS strains of Pichia pastoris. Yeast, 36, 285-296.
Tyurin, O.V. & Kozlov, D.G. (2015) Deletion of the FLD gene in methylotrophic yeasts Komagataella phaffii and Komagataella kurtzmanii results in enhanced induction of the AOX1 promoter in response to either methanol or formate. Microbiology (Russian Federation), 84, 408–411.
Velastegui, E., Theron, C., Berrios, J. & Fickers, P. (2019) Downregulation by organic nitrogen of AOX1 promoter used for controlled expression of foreign genes in the yeast Pichia pastoris. Yeast, 36, 297–304.
Vogl, T. & Glieder, A. (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnology, 30, 385–404.
Vogl, T., Sturmberger, L., Fauland, P.C., Hyden, P., Fischer, J.E., Schmid, C. et al. (2018) Methanol independent induction in Pichia pastoris by simple derepressed overexpression of single transcription factors. Biotechnology and Bioengineering, 115, 1037–1050.
Wang, J., Wang, X., Shi, L., Qi, F., Zhang, P., Zhang, Y. et al. (2017) Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Scientific Reports, 7, 1–12.
Wang, X., Wang, Q., Wang, J., Bai, P., Shi, L., Shen, W. et al. (2016) Mit1 transcription factor mediates methanol signaling and regulates the alcohol oxidase 1 (AOX1) promoter in Pichia pastoris. The Journal of Biological Chemistry, 291, 6245–6261.