[en] Chemical pollution in coastal waters, particularly from agricultural runoff organophosphates, poses a significant threat to marine ecosystems, including coral reefs. Pollutants such as chlorpyrifos (CPF) are widely used in agriculture and have adverse effects on marine life and humans. In this paper, we investigate the impact of CPF on the metamorphosis of a coral reef fish model, the clownfish Amphiprion ocellaris, focusing on the disruption of thyroid hormone (TH) signalling pathways. Our findings reveal that by reducing TH levels, CPF exposure impairs the formation of characteristic white bands in clownfish larvae, indicative of metamorphosis progression. Interestingly, TH treatment can rescue these effects, establishing a direct causal link between CPF effect and TH disruption. The body shape changes occurring during metamorphosis are also impacted by CPF exposure, shape changes are less advanced in CPF-treated larvae than in control conditions. Moreover, transcriptomic analysis elucidates CPF's effects on all components of the TH signalling pathway. Additionally, CPF induces systemic effects on cholesterol and vitamin D metabolism, DNA repair, and immunity, highlighting its broader TH-independent impacts. Pollutants are often overlooked in marine ecosystems, particularly in coral reefs. Developing and enhancing coral reef fish models, such as Amphiprion ocellaris (Cuvier, 1830), offers a more comprehensive understanding of how chemical pollution affects these ecosystems. This approach provides new insights into the complex mechanisms underlying CPF toxicity during fish metamorphosis, shedding light on the broader impact of environmental pollutants on marine organisms.
Reynaud, Mathieu ; Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan ; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, French Polynesia
Vianello, Stefano ; Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan
Lee, Shu-Hua; Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan
Salis, Pauline ; Sorbonne Université, CNRS, Biologie Intégrative des Organisms Marins, BIOM, Observatoire Océanologique, France
Wu, Kai; Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan
Frederich, Bruno ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Lecchini, David; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, French Polynesia ; Laboratoire d'Excellence “CORAIL”, Perpignan, France
Besseau, Laurence; Sorbonne Université, CNRS, Biologie Intégrative des Organisms Marins, BIOM, Observatoire Océanologique, France
Roux, Natacha; Computational Neuroethology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
Laudet, Vincent; Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan ; Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan ; CNRS IRL 2028 “Eco-Evo-Devo of Coral Reef Fish Life Cycle” (EARLY, France
Language :
English
Title :
The multi-level effect of chlorpyrifos during clownfish metamorphosis
Genomics Research Center, Academia Sinica ANR - French National Research Agency Academia Sinica JSPS - Japan Society for the Promotion of Science
Funding text :
We thank the High Throughput Genomics Core of the Biodiversity Research Center at Academia Sinica for performing the NGS experiments. The core facility is funded by Academia Sinica Core Facility and Innovative Instrument Project (AS-CFII-108-114). We further thank Dr. Mei-Yeh Lu and Ms. Pei-Lin Chao for their assistance and discussion troubleshooting quality-control metrics. We also thank the staff of the ICOB Marine Research Station for superb help for fish husbandry. Work from our laboratory is supported by a Grand Challenge Grant from Academia Sinica and JSPS KAKENHI grant 22H02678 at OIST. L.B. and D.L. have been supported by a grant from Agence Nationale de la Recherche SENSO (ANR19-CE14-0010).
Abdel-Daim, Mohamed M., Mahmoud, AO Dawood, Mohamed, Elbadawy, Aleya, Lotfi, Saad, Alkahtani, Spirulina platensis reduced oxidative damage induced by chlorpyrifos toxicity in Nile tilapia (Oreochromis niloticus). Animals, 10(3), 2020, 473.
Abreu-Villaça, Y., Levin, E.D., Developmental neurotoxicity of succeeding generations of insecticides. Environ. Int. 99 (2017), 55–77, 10.1016/J.ENVINT.2016.11.019.
Adams, D.C., Otárola-Castillo, E., Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4:4 (2013), 393–399, 10.1111/2041-210X.12035.
Akhtar, N., Srivastava, M.K., Raizada, R.B., Assessment of chlorpyrifos toxicity on certain organs in rat, Rattus norvegicus. J. Environ. Biol. 30:6 (2009), 1047–1053.
Ali, D., Nagpure, N.S., Kumar, S., Kumar, R., Kushwaha, B, Genotoxicity assessment of acute exposure of chlorpyrifos to freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Chemosphere 71:10 (2008), 1823–1831.
Alvarez, M., Du Mortier, C., Jaureguiberry, S., Venturino, A., Joint probabilistic analysis of risk for aquatic species and exceedence frequency for the agricultural use of chlorpyrifos in the Pampean region, Argentina. Environ. Toxicol. Chem. 38:8 (2019), 1748–1755.
Aman, A.J., Kim, M., Saunders, L.M., Parichy, D.M., Thyroid hormone regulates abrupt skin morphogenesis during zebrafish postembryonic development. Dev. Biol. 477 (2021), 205–218, 10.1016/j.ydbio.2021.05.019.
Baken, E.K., Collyer, M.L., Kaliontzopoulou, A., Adams, D.C., Geomorph v4.0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 12:12 (2021), 2355–2363, 10.1111/2041-210X.13723.
Bao, B., Ke, Z., Xing, J., Peatman, E., Liu, Z., Xie, C., Xu, B., Gai, J., Gong, X., Yang, G., Jiang, Y., Tang, W., Ren, D., Proliferating cells in suborbital tissue drive eye migration in flatfish. Dev. Biol. 351:1 (2011), 200–207, 10.1016/j.ydbio.2010.12.032.
Bartley, R., Waters, D., Turner, R., Kroon, F., Garzon-Garcia, A., Kuhnert, P., Lewis, S., Smith, R., Bainbridge, Z., Olley, J., Brooks, A., Burton, J., Brodie, J., Waterhouse, J., 2017 Scientific Consensus Statement: land use impacts on the Great Barrier Reef water quality and ecosystem condition, Chapter 2: sources of sediment, nutrients, pesticides and other pollutants to the Great Barrier Reef. http://www.reefplan.qld.gov.au/about/assets/2017-scientific-consensus-statement-summary-chap02.pdf, 2017.
Basirun, A.A., Ahmad, S.A., Sabullah, M.K., Yasid, N.A., Daud, H.M., Khalid, A., Shukor, M.Y., In vivo and in vitro effects on cholinesterase of blood of Oreochromis mossambicus by copper. 3. Biotech 9 (2019), 1–12.
Baumann, L., Ros, A., Rehberger, K., Neuhauss, S.C.F., Segner, H., Thyroid disruption in zebrafish (Danio rerio) larvae: different molecular response patterns lead to impaired eye development and visual functions. Aquat. Toxicol. 172 (2016), 44–55, 10.1016/j.aquatox.2015.12.015.
Besson, M., Feeney, W.E., Moniz, I., François, L., Brooker, R.M., Holzer, G., Metian, M., Roux, N., Laudet, V., Lecchini, D., Anthropogenic stressors impact fish sensory development and survival via thyroid disruption. Nature Communications, 11(1), 2020, 3614.
Besson, M., Gache, C., Bertucci, F., Brooker, R.M., Roux, N., Jacob, H., Berthe, C., Sovrano, V.A., Dixson, D.L., Lecchini, D., Exposure to agricultural pesticide impairs visual lateralization in a larval coral reef fish. Sci. Rep., 7(1), 2017, 9165.
Bishop, C.D., Erezyilmaz, D.F., Flatt, Thomas, Georgiou, C.D., Hadfield, M.G., Heyland, A., Hodin, J., et al. What is metamorphosis?. Integr. Comp. Biol. 46:6 (2006), 655–661.
Blanton, M.L., Specker, J.L., The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit. Rev. Toxicol. 37:1–2 (2007), 97–115.
Bocquené, G., Franco, A., Pesticide contamination of the coastline of Martinique. Mar. Pollut. Bull. 51:5–7 (2005), 612–619.
Bosu, S., Rajamohan, N., Al Salti, S., Rajasimman, M., Das, P., Biodegradation of chlorpyrifos pollution from contaminated environment-A review on operating variables and mechanism. Environ. Res., 118212, 2024.
Botté, E.S., Jerry, D.R., Codi King, S., Smith-Keune, C., Negri, A.P., Effects of chlorpyrifos on cholinesterase activity and stress markers in the tropical reef fish Acanthochromis polyacanthus. Mar. Pollut. Bull. 65:4–9 (2012), 384–393.
Brunson, J.C., Ggalluvial: layered grammar for alluvial plots. J. Open Source Softw., 5, 2020, 49.
Campinho, M.A., Teleost metamorphosis: the role of thyroid hormone. Front. Endocrinol., 10(JUN), 2019, 383, 10.3389/fendo.2019.00383.
Carvalho, F.P., Gonzalez-Farias, F., Villeneuve, J.P., Cattini, C., Hernandez-Garza, M., Mee, L.D., Fowler, S.W., Distribution, fate and effects of pesticide residues in tropical coastal lagoons of northwestern Mexico. Environ. Technol. 23:11 (2002), 1257–1270, 10.1080/09593332308618321.
Chen, W.L., Sheets, J.J., Nolan, R.J., Mattsson, J.L., Human red blood cell acetylcholinesterase inhibition as the appropriate and conservative surrogate endpoint for establishing chlorpyrifos reference dose. Regul. Toxicol. Pharmacol. 29:1 (1999), 15–22.
Chen, D., Zhang, Z., Yao, H., Cao, Y., Xing, H., Xu, S., Pro-and anti-inflammatory cytokine expression in immune organs of the common carp exposed to atrazine and chlorpyrifos. Pestic. Biochem. Physiol. 114 (2014), 8–15.
Chen, Y., Lun, A.T., Smyth, G.K., From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research, 5, 2016.
Chen, Y., Chen, L., Lun, A.T.L., Baldoni, P.L., Smyth, G.K., edgeR 4.0: powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. bioRxiv, 2024 2024-01.
Chopra, K., Ishibashi, S., Amaya, E., Zebrafish duox mutations provide a model for human congenital hypothyroidism. Biology Open, 8(2), 2019, bio037655.
Collin, G., Huna, A., Warnier, M., Flaman, J.M., Bernard, D., Transcriptional repression of DNA repair genes is a hallmark and a cause of cellular senescence. Cell Death Dis, 9(3), 2018, 259.
Collyer, M.L., Adams, D.C., RRPP: an r package for fitting linear models to high‐dimensional data using residual randomization. Methods Ecol. Evol. 9:7 (2018), 1772–1779.
Cowgill, U.M., Gowland, R.T., Ramirez, C.A., Fernandez, V., The history of a chlorpyrifos spill: cartagena, Colombia. Environ. Int. 17:1 (1991), 61–71.
Cui, Y., Guo, J., Xu, B., Chen, Z., Potential of chlorpyrifos and cypermethrin forming DNA adducts. Mutat. Res. Genet. Toxicol. Environ. Mutagen 604:1–2 (2006), 36–41.
Das, P.C., Cao, Y., Rose, R.L., Cherrington, N., Hodgson, E., Enzyme induction and cytotoxicity in human hepatocytes by chlorpyrifos and N, N-diethyl-m-toluamide (DEET). Drug Metabol. Drug Interact. 23:3–4 (2008), 237–260.
De Angelis, S., Tassinari, R., Maranghi, F., Eusepi, A., Di Virgilio, A., Chiarotti, F., Ricceri, L., et al. Developmental exposure to chlorpyrifos induces alterations in thyroid and thyroid hormone levels without other toxicity signs in Cd1 mice. Toxicol. Sci. 108:2 (2009), 311–319.
De Groef, Bert, Van der Geyten, Serge, Darras, Veerle M., Kühn, Eduard R., Role of corticotropin-releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates. Gen. Comp. Endocrinol. 146:1 (2006), 62–68.
de Jesus, E.G., Inui, Y., Hirano, T., Cortisol enhances the stimulating action of thyroid hormones on dorsal fin-ray resorption of flounder larvae in vitro. Gen. Comp. Endocrinol. 79:2 (1990), 167–173.
Díaz-Resendiz, K.J.G., Toledo-Ibarra, G.A., Girón-Pérez, M.I., Modulation of immune response by organophosphorus pesticides: fishes as a potential model in immunotoxicology. J. Immunol. Res, 2015.
Djekkoun, N., Depeint, F., Guibourdenche, M., El Khayat El Sabbouri, H., Corona, A., Rhazi, L., Gay-Queheillard, J., Rouabah, L., Hamdad, F., Bach, V., Benkhalifa, M., et al. Chronic perigestational exposure to chlorpyrifos induces perturbations in gut bacteria and glucose and lipid markers in female rats and their offspring. Toxics, 10(3), 2022, 138.
Downie, A.T., Lefevre, S., Illing, B., Harris, J., Jarrold, M.D., McCormick, M.I., Nilsson, G.E., Rummer, J.L., Rapid physiological and transcriptomic changes associated with oxygen delivery in larval anemonefish suggest a role in adaptation to life on hypoxic coral reefs. PLoS Biol., 21(5), 2023, e3002102.
Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., Huber, W., BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21:16 (2005), 3439–3440.
Durinck, S., Spellman, P.T., Birney, E., Huber, W., Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4:8 (2009), 1184–1191.
El-Bouhy, Z., El-Nobi, G., Reda, R., Ibrahim, R., "Effect of insecticide ‘‘chlorpyrifos” on immune response of Oreochromis niloticus. Zagazig Vet. J. 44 (2016), 196–204.
Farías-Serratos, B.M., Lazcano, I., Villalobos, P., Darras, V.M., Orozco, A., Thyroid hormone deficiency during zebrafish development impairs central nervous system myelination. PLoS One, 16(8), 2021, e0256207, 10.1371/journal.pone.0256207.
Fortenberry, G.Z., Hu, H., Turyk, M., Barr, D.B., Meeker, J.D., Association between urinary 3, 5, 6-trichloro-2-pyridinol, a metabolite of chlorpyrifos and chlorpyrifos-methyl, and serum T4 and TSH in NHANES 1999-2002. Sci. Total Environ. 424 (2012), 351–355, 10.1016/j.scitotenv.2012.02.039.
Galindo, D., Sweet, E., DeLeon, Z., Wagner, M., DeLeon, A., Carter, C., McMenamin, S.K., Cooper, W.J., Thyroid hormone modulation during zebrafish development recapitulates evolved diversity in danionin jaw protrusion mechanics. Evol. Dev. 21:5 (2019), 231–246, 10.1111/ede.12299.
Gao, C.i, Yu, G., Cai, P., ggVennDiagram: an intuitive, easy-to-use, and highly customizable R package to generate Venn diagram. Front. Genet., 12, 2021, 706907.
Ghayyur, S., Tabassum, S., Ahmad, M.S., Akhtar, N., Khan, M.F., Effect of chlorpyrifos on hematological and seral biochemical components of fish Oreochromis mossambicus. Pakistan J. Zool., 51(3), 2019, 1047.
Govarthanan, M., Ameen, F., Kamala-Kannan, S., Selvankumar, T., Almansob, A., Alwakeel, S.S., Kim, W., Rapid biodegradation of chlorpyrifos by plant growth-promoting psychrophilic Shewanella sp. BT05: an eco-friendly approach to clean up pesticide-contaminated environment. Chemosphere, 247, 2020, 125948.
Gu, Z., Eils, R., Schlesner, M., Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:18 (2016), 2847–2849.
Guillot, R., Muriach, B., Rocha, A., Rotllant, J., Kelsh, R.N., Cerdá-Reverter, J.M., Thyroid hormones regulate zebrafish melanogenesis in a gender-specific manner. PLoS One, 11(11), 2016, e0166152, 10.1371/JOURNAL.PONE.0166152.
Gupta, S.C., Mishra, M., Sharma, A., Balaji, T.D., Kumar, R., Mishra, R.K., Chowdhuri, D.K., Gupta, Subash, C., et al. Chlorpyrifos induces apoptosis and DNA damage in Drosophila through generation of reactive oxygen species. Ecotoxicol. Environ. Saf. 73:6 (2010), 1415–1423.
Hatami, M., Banaee, M., Haghi, B.N., Sub-lethal toxicity of chlorpyrifos alone and in combination with polyethylene glycol to common carp (Cyprinus carpio). Chemosphere 219 (2019), 981–988.
Haynes, D., Johnson, J.E., Organochlorine, heavy metal and polyaromatic hydrocarbon pollutant concentrations in the great barrier reef (Australia) environment: a review. Mar. Pollut. Bull. 41:7–12 (2000), 267–278, 10.1016/S0025-326X(00)00134-X.
He, W., Guo, W., Qian, Y., Zhang, S., Ren, D., Liu, S., Synergistic hepatotoxicity by cadmium and chlorpyrifos: disordered hepatic lipid homeostasis. Mol. Med. Rep. 12:1 (2015), 303–308.
Holzer, G., Besson, M., Lambert, A., François, L., Barth, P., Gillet, B., Hughes, S., Piganeau, G., Leulier, F., Viriot, L., Lecchini, D., Laudet, V., Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos. Elife, 6, 2017, 10.7554/eLife.27595.
Huerlimann, R., Roux, N., Maeda, K., Pilieva, P., Miura, S., Chen, H.C., Izumiyama, M., Laudet, V., Ravasi, T., The transcriptional landscape underlying larval development and metamorphosis in the Malabar grouper (Epinephelus malabaricus). Elife, 13, 2024.
Islam, M.S., Tanaka, M., Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine Pollution Bulletin (Vol. 48, Issues 7–8, Pp. 624–649), 2004, Pergamon, 10.1016/j.marpolbul.2003.12.004.
Jarvinen, A.W., Tanner, D.K., Toxicity of selected controlled release and corresponding unformulated technical grade pesticides to the fathead minnow Pimephales promelas. Environ. Pollut. Ecol. Biol. 27:3 (1982), 179–195.
Jin, Y., Liu, Z., Peng, T., Fu, Z., The toxicity of chlorpyrifos on the early life stage of zebrafish: a survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity. Fish Shellfish Immunol. 43:2 (2015), 405–414.
Juberg, D.R., Gehen, S.C., Coady, K.K., LeBaron, M.J., Kramer, V.J., Lu, H., Marty, M.S., Chlorpyrifos: weight of evidence evaluation of potential interaction with the estrogen, androgen, or thyroid pathways. Regul. Toxicol. Pharmacol. 66:3 (2013), 249–263, 10.1016/J.YRTPH.2013.03.003.
Kapernick, A., Shaw, M., Dunn, A., Komarova, T., Mueller, J., Carter, S., Eaglesham, G., Schaffelke, B., Bass, D., Haynes, D., River pesticide loads and GBR lagoon pesticide data. ANON, Water quality and ecosystem monitoring program-Reef Water Quality Protection Plan. AIMS Final Report to GBRMPA, 2006, 66–104.
Keer, S., Storch, J.D., Nguyen, S., Prado, M., Singh, R., Hernandez, L.P., McMenamin, S.K., Thyroid hormone shapes craniofacial bones during postembryonic zebrafish development. Evol. Dev. 24:1–2 (2022), 61–76, 10.1111/ede.12399.
King, J., Alexander, F., Brodie, J., Regulation of pesticides in Australia: the Great Barrier Reef as a case study for evaluating effectiveness. Agric. Ecosyst. Environ. 180 (2013), 54–67.
Kitada, Y., Kawahata, H., Suzuki, A., Oomori, T., Distribution of pesticides and bisphenol A in sediments collected from rivers adjacent to coral reefs. Chemosphere 71:11 (2008), 2082–2090.
Kumar, S., Kaushik, G., Villarreal-Chiu, J.F., Scenario of organophosphate pollution and toxicity in India: a review. Environ. Sci. Pollut. Control Ser. 23:10 (2016), 9480–9491, 10.1007/s11356-016-6294-0.
Larsen, D.A., Penny, S., Dickey, J.T., Jean, R., Dickhoff, W.W., In vitrothyrotropin-releasing activity of corticotropin-releasing hormone-family peptides in Coho Salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 109:2 (1998), 276–285.
Laudet, V., The origins and evolution of vertebrate metamorphosis. Curr. Biol. 21:18 (2011), R726–R737, 10.1016/J.CUB.2011.07.030.
Laudet, V., Ravasi, T., (eds.) Evolution, Development and Ecology of Anemonefishes: Model Organisms for Marine Science, 2022, CRC Press.
Lawson, A.A., Barr, R.D., Acetylcholinesterase in red blood cells. Am. J. Hematol. 26:1 (1987), 101–112.
Leis, J.M., Fisher, R., Swimming speed of settlement-stage reef-fish larvae measured in the laboratory and in the field: a comparison of critical speed and in situ speed Thesis-Spatial and temporal water quality changes during a large scale dredging operation View project Signif. https://www.researchgate.net/publication/280976006, 2006.
Leis, J.M., Siebeck, U., Dixson, D.L., How nemo finds home: the neuroecology of dispersal and of population connectivity in larvae of marine fishes. Integr. Comp. Biol. 51:5 (2011), 826–843, 10.1093/icb/icr004.
Leong, K.H., Tan, L.L.B., Ali, M.M., Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere 66:6 (2007), 1153–1159.
Li, D., Huang, Q., Lu, M., Zhang, L., Yang, Z., Zong, M., Tao, L., The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis. Chemosphere 135 (2015), 387–393.
Libin, H., Huang, Z., Shuiqing, W., Zheng, L., Transcriptome analysis identifies candidate genes related to albinism mechanism in the skin of the Picasso clownfish. Acta Oceanographica 44:2 (2022), 67–76.
Liem, J.F., Mansyur, M., Soemarko, D.S., Kekalih, A., Subekti, I., Suyatna, F.D., Suryandari, D.A., Malik, S.G., Pangaribuan, B., Cumulative exposure characteristics of vegetable farmers exposed to Chlorpyrifos in Central Java–Indonesia; a cross-sectional study. BMC Public Health, 21(1), 2021, 1066.
Liem, J.F., Subekti, I., Mansyur, M., Soemarko, D.S., Kekalih, A., Suyatna, F.D., Suryandari, D.A., Malik, S.G., Pangaribuan, B., The determinants of thyroid function among vegetable farmers with primary exposure to chlorpyrifos: a cross-sectional study in Central Java, Indonesia. Heliyon, 9(6), 2023, e16435.
Lock, E.J., Waagbø, R., Wendelaar Bonga, S., Flik, G., The significance of vitamin D for fish: a review. Aquac. Nutr. 16:1 (2010), 100–116.
Love, M.I., Huber, W., Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (2014), 1–21.
Marino, D.J.G.l., Ronco, A.E., Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull. Environ. Contam. Toxicol., 75, 2005.
McCarthy, D.J., Chen, Y., Smyth, G.K., Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40:10 (2012), 4288–4297.
McMenamin, S.K., Parichy, D.M., Metamorphosis in teleosts. Current Topics in Developmental Biology (Vol. 103, Pp. 127–165), 2013, Academic Press, 10.1016/B978-0-12-385979-2.00005-8.
Mehta, A., Verma, R.S., Srivastava, N., Chlorpyrifos‐induced DNA damage in rat liver and brain. Environ. Mol. Mutagen. 49:6 (2008), 426–433.
Miao, Z., Wang, W., Miao, Z., Cao, Q., Xu, S., Role of Selenoprotein W in participating in the progression of non-alcoholic fatty liver disease. Redox Biol., 2024, 103114.
Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C., Sakmann, B., Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:6068 (1986), 406–411.
Miura, S., Nakamura, S., Kobayashi, Y., Piferrer, F., Nakamura, M., Differentiation of ambisexual gonads and immunohistochemical localization of P450 cholesterol side-chain cleavage enzyme during gonadal sex differentiation in the protandrous anemonefish, Amphiprion clarkii. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 149:1 (2008), 29–37.
NRA. NRA Review of Chlorpyrifos, Vol. 1, Series 00.5. National Registration Authority for Agricultural and Veterinary Chemicals. 2000.
Ojha, A., Gupta, Y.K., Evaluation of genotoxic potential of commonly used organophosphate pesticides in peripheral blood lymphocytes of rats. Hum. Exp. Toxicol. 34:4 (2015), 390–400.
Olsvik, Pål A., Berntssen, Marc HG., Søfteland, Liv, Modifying effects of vitamin E on chlorpyrifos toxicity in Atlantic salmon. PLoS One, 10(3), 2015, e0119250.
Oruç, E.Ö., Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pestic. Biochem. Physiol. 96:3 (2010), 160–166.
Otênio, J.K., Souza, K.D., Alberton, O., Alberton, L.R., Moreno, K.G.T., Gasparotto Junior, A., Palozi, R.A.C., Lourenço, E.L.B., Jacomassi, E., Thyroid-disrupting effects of chlorpyrifos in female Wistar rats. Drug Chem. Toxicol. 45:1 (2022), 387–392, 10.1080/01480545.2019.1701487.
Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14:4 (2017), 417–419.
Pierens, S.L., Fraser, D.R., The origin and metabolism of vitamin D in rainbow trout. J. Steroid Biochem. Mol. Biol. 145 (2015), 58–64.
Polidoro, B.A., Comeros-Raynal, M.T., Cahill, T., Clement, C., Land-based sources of marine pollution: pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa. Mar. Pollut. Bull. 116:1–2 (2017), 501–507, 10.1016/j.marpolbul.2016.12.058.
Ponce-Vélez, G., de la Lanza-Espino, G., Organophosphate pesticides in coastal lagoon of the gulf of Mexico. J. Environ. Protect. 10:2 (2019), 103–117, 10.4236/jep.2019.102007.
Posit team. RStudio: Integrated Development Environment for R. Posit Software. 2023, PBC, Boston, MA URL http://www.posit.co/.
Prakash, S., Toxic effect of chlorpyrifos pesticides on the behaviour and serum biochemistry of Heteropnetues fossilis (Bloch). Int. J. Agric. Sci. 11:1 (2020), 22–27.
Qiao, K., Hu, T., Jiang, Y., Huang, J., Hu, J., Gui, W., Ye, Q., Li, S., Zhu, G., Crosstalk of cholinergic pathway on thyroid disrupting effects of the insecticide chlorpyrifos in zebrafish (Danio rerio). Sci. Total Environ., 757, 2021, 143769.
Reiss, R., Neal, B., Lamb, J.C. IV, Juberg, D.R., Acetylcholinesterase inhibition dose–response modeling for chlorpyrifos and chlorpyrifos-oxon. Regul. Toxicol. Pharmacol. 63:1 (2012), 124–131.
Robinson, Mark D., McCarthy, Davis J., Smyth, Gordon K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:1 (2010), 139–140.
Roche, H., Salvat, B., Ramade, F., Assessment of the pesticides pollution of coral reefs communities from French polynesia. Revue d'Ecologie (La Terre et La Vie) 66:1 (2011), 3–10 http://documents.irevues.inist.fr/handle/2042/55860.
Roux, N., Miura, S., Dussenne, M., Tara, Y., Lee, S.H., de Bernard, S., Reynaud, M., Salis, P., Barua, A., Boulahtouf, A., Balaguer, P., Gauthier, K., Lecchini, D., Gibert, Y., Besseau, L., Laudet, V., The multi-level regulation of clownfish metamorphosis by thyroid hormones. Cell Rep, 42(7), 2023.
Roux, N., Salis, P., Lambert, A., Logeux, V., Soulat, O., Romans, P., Frédérich, B., Lecchini, D., Laudet, V., Staging and normal table of postembryonic development of the clownfish (Amphiprion ocellaris). Dev. Dyn. 248:7 (2019), 545–568, 10.1002/DVDY.46.
Roux, N., Logeux, V., Trouillard, N., Pillot, R., Magré, K., Salis, P., Lecchini, D., Besseau, L., Laudet, V., Romans, P., A star is born again: Methods for larval rearing of an emerging model organism, the False clownfish Amphiprion ocellaris. J. Exp. Zoo. Part B: Mol. Dev. Evol. 336:4 (2021), 376–385.
Rudis, B., Bolker, B., Schulz, J., Kothari, A., Sidi, J., ggalt: extra coordinate systems, geoms’, statistical transformations, scales and fonts for ‘ggplot2. Available at: https://CRAN.R-project.org/package=ggalt, 2017.
Ryu, T., Herrera, M., Moore, B., Izumiyama, M., Kawai, E., Laudet, V., Ravasi, T., A chromosome-scale genome assembly of the false clownfish. Amphiprion ocellaris, G3 12(5), 2022, jkac074.
Sabdono, A., Radjasa, O.K., Trianto, A., Sarjito, Munasik, Wijayanti, D.P., Preliminary study of the effect of nutrient enrichment, released by marine floating cages, on the coral disease outbreak in Karimunjawa, Indonesia. Regional Studies in Marine Science, 30, 2019, 100704, 10.1016/J.RSMA.2019.100704.
Salis, P., Roux, N., Soulat, O., Lecchini, D., Laudet, V., Frédérich, B., Ontogenetic and phylogenetic simplification during white stripe evolution in clownfishes. BMC Biol. 16:1 (2018), 1–13, 10.1186/s12915-018-0559-7.
Salis, P., Lorin, T., Lewis, V., Rey, C., Marcionetti, A., Escande, M.L., Roux, N., Besseau, L., Salamin, N., Sémon, M., Parichy, D., et al. Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish. Pigment Cell Melanoma Res 32:3 (2019), 391–402.
Samajdar, I., Mandal, D.K., Acute toxicity and impact of an organophosphate pesticide, chlorpyrifos on some haematological parameters of an Indian minor carp, Labeo bata (Hamilton 1822). Int. J. Environ. Sci. 6:1 (2015), 106–113.
Sanden, M., Olsvik, P.A., Søfteland, L., Rasinger, J.D., Rosenlund, G., Garlito, B., Ibáñez, Maria, Berntssen, Marc HG., Dietary pesticide chlorpyrifos-methyl affects arachidonic acid metabolism including phospholipid remodeling in Atlantic salmon (Salmo salar L.). Aquaculture 484 (2018), 1–12.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:7 (2012), 676–682.
Schunter, C., Donelson, J.M., Munday, P.L., Ravasi, T., Resilience and adaptation to local and global environmental change. Evolution, Development and Ecology of Anemonefishes, 2022, CRC Press, 253–274.
Shaw, M., Furnas, M.J., Fabricius, K., Haynes, D., Carter, S., Eaglesham, G., Mueller, J.F., Monitoring pesticides in the great barrier reef. Mar. Pollut. Bull. 60:1 (2010), 113–122, 10.1016/J.MARPOLBUL.2009.08.026.
Sheikh, M.A., Fujimura, H., Miyagi, T., Uechi, Y., Yokota, T., Yasumura, S., Oomori, T., Detection and ecological threats of PSII herbicide diuron on coral reefs around the Ryukyu Archipelago, Japan. Mar. Pollut. Bull. 58:12 (2009), 1922–1926.
Shu, Y., Yuan, J., Hogstrand, C., Xue, Z., Wang, X., Liu, C., Li, T., Li, D., Yu, L., Bioaccumulation and thyroid endcrione disruption of 2-ethylhexyl diphenyl phosphate at environmental concentration in zebrafish larvae. Aquat. Toxicol., 267, 2024, 106815.
Soum, T., Ritchie, R.J., Navakanitworakul, R., Bunthawin, S., Dummee, V., Acute Toxicity of Chlorpyrifos (CPF) to Juvenile Nile tilapia (Oreochromis niloticus): Genotoxicity and Histological Studies. 2022, 130–140.
Sudhakaran, B.V., Sreeja, S., Impact of acute chlorpyrifos toxicity on the histology and biochemistry of the stomach, intestine, and muscle of the Anabas testudineus. bioRxiv, 2023 2023-10.
Sultatos, L.G., Metabolic activation of the organophosphorus insecticides chlorpyrifos and fenitrothion by perfused rat liver. Toxicology 68:1 (1991), 1–9.
Tanvir, E.M., Afroz, R., Chowdhury, M.A.Z., Gan, S.H., Karim, N., Islam, M.N., Khalil, M.I., A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats. Hum. Exp. Toxicol. 35:9 (2016), 991–1004.
Tornero, V., Hanke, G., Chemical contaminants entering the marine environment from sea-based sources: a review with a focus on European seas. Marine Pollution Bulletin (Vol. 112, Issues 1–2, Pp. 17–38), 2016, Pergamon, 10.1016/j.marpolbul.2016.06.091.
Trasande, L., When enough data are not enough to enact policy: the failure to ban chlorpyrifos. PLoS Biol., 15(12), 2017, e2003671.
Triassi, M., Nardone, A., Giovinetti, M.C., de Rosa, E., Canzanella, S., Sarnacchiaro, P., Montuori, P., Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the river of the “Land of Fires” area, southern Italy. Sci. Total Environ. 678 (2019), 741–754, 10.1016/j.scitotenv.2019.04.202.
Ubaid Ur Rahman, H., Asghar, W., Nazir, W., Sandhu, M.A., Ahmed, A., Khalid, N., A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: evidence of mechanisms, exposures and mitigation strategies. Sci. Total Environ., 755(Pt 2), 2021, 142649, 10.1016/j.scitotenv.2020.142649.
Velmurugan, B., Satar, E.İ., Yolcu, M., Uysal, E., Toxic impact of chlorpyrifos, an organophosphate pesticide, on serum biochemical parameters of Anabas testudineus. Acta Biologica Turcica 35:1 (2022), 5–13.
Wang, Y., Yuan, S., Jia, X., Ge, Y., Ling, T., Nie, M., Lan, X., Chen, S., Xu, A., Mitochondria-localised ZNFX1 functions as a dsRNA sensor to initiate antiviral responses through MAVS. Nat. Cell Biol. 21:11 (2019), 1346–1356.
Wang, R., Yang, M., Zheng, Y., Song, F., Zhao, X., Chen, C., Interactive transgenerational effects of parental co-exposure to prochloraz and chlorpyrifos: disruption in multiple biological processes and induction of genotoxicity. Pestic. Biochem. Physiol., 198, 2024, 105713.
Wickham, H., Data Analysis. 2016, Springer International Publishing.
Wołejko, E., Łozowicka, B., Jabłońska-Trypuć, A., Pietruszyńska, M., Wydro, U., Chlorpyrifos occurrence and toxicological risk assessment: a review. International Journal of Environmental Research and Public Health (Vol. 19, Issue 19, P. 12209), 2022, Multidisciplinary Digital Publishing Institute, 10.3390/ijerph191912209.
Wong, H.L., Garthwaite, D.G., Ramwell, C.T., Brown, C.D., Assessment of occupational exposure to pesticide mixtures with endocrine-disrupting activity. Environ. Sci. Pollut. Control Ser. 26:2 (2018), 1642–1653, 10.1007/S11356-018-3676-5 2018 26:2.
Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation, 2(3), 2021.
Xiong, J., Tian, L., Qiu, Y., Sun, D., Zhang, H., Wu, M., Wang, J., Evaluation on the thyroid disrupting mechanism of malathion in Fischer rat thyroid follicular cell line FRTL-5. Drug Chem. Toxicol. 41:4 (2018), 501–508.
Xu, J., Ke, Z., Xia, J., He, F., Bao, B., Change of body height is regulated by thyroid hormone during metamorphosis in flatfishes and zebrafish. Gen. Comp. Endocrinol. 236 (2016), 9–16, 10.1016/j.ygcen.2016.06.028.
Yin, X., Zhu, G., Li, X.B., Liu, S., Genotoxicity evaluation of chlorpyrifos to amphibian Chinese toad (Amphibian: Anura) by comet assay and micronucleus test. Mutat. Res. Genet. Toxicol. Environ. Mutagen 680:1–2 (2009), 2–6.
Yu, G., Wang, L., Han, Y., He, Q., clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 16:5 (2012), 284–287.
Zwahlen, J., Gairin, E., Vianello, S., Mercader, M., Roux, N., Laudet, V., The ecological function of thyroid hormones. Philosophical Trans. Roy.Soc. B, 379(1898), 2024, 20220511.