Doctoral thesis (Dissertations and theses)
Automated Bioimage Analysis of Fish Morphometry: Enhancing Biomedical and Aquaculture Research Through Deep Learning
Kumar, Navdeep
2025
 

Files


Full Text
NavdeepKumar_PhD_Thesis.pdf
Author preprint (16.06 MB) Creative Commons License - Public Domain Dedication
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Deep Learning, Bioimage Analysis, fish morphometry, skeletal biology, aquaculture, zebrafish
Abstract :
[en] Biomedical research on skeletal disorders increasingly relies on small fish models like zebrafish and medaka to investigate conditions such as osteoporosis and fibrous dys- plasia. These models provide insights into human skeletal pathologies and broader disorders like cancer and arthritis. Meanwhile, in aquaculture, farmed fish frequently develop skeletal deformities in the jaw, operculum, and vertebral column, compromising fish welfare, performance, and product quality. These anomalies result in significant economic losses due to manual culling. Understanding the underlying mechanisms of skeletal development in fish is crucial for improving both human health and aquaculture sustainability. This thesis explores the application of deep learning methodologies in bioimage analysis, focusing on morphometric and phenotypic studies in biomedical and aquaculture research within the framework of EU funded BioMedAqu project
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Computer science
Author, co-author :
Kumar, Navdeep ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Language :
English
Title :
Automated Bioimage Analysis of Fish Morphometry: Enhancing Biomedical and Aquaculture Research Through Deep Learning
Defense date :
03 June 2025
Institution :
ULiège - University of Liège [Applied Sciences], Liège, Belgium
Degree :
Doctor of Philosophy
Promotor :
Geurts, Pierre  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Algorithmique des systèmes en interaction avec le monde physique ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Jury member :
Marée, Raphaël  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
Wehenkel, Louis  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
Muller, Marc  ;  Université de Liège - ULiège > GIGA > GIGA Cancer - Molecular Angiogenesis
Laizé, Vincent;  University of Algarve > The Algarve Centre of Marine Sciences (CCMR) > Researcher
Meas-Yedid, Vannary;  Institut Pasteur > Unité d’Analyse d'Images Biologiques > Research Engineer
European Projects :
H2020 - 766347 - BioMedaqu - Aquaculture meets Biomedicine: Innovation in Skeletal Health research.
Name of the research project :
BioMedaqu - Aquaculture meets Biomedicine: Innovation in Skeletal Health research
Funders :
European Union. Marie Skłodowska-Curie Actions
European Union
Funding number :
766347
Available on ORBi :
since 21 April 2025

Statistics


Number of views
110 (14 by ULiège)
Number of downloads
79 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi