Deep Learning, Bioimage Analysis, fish morphometry, skeletal biology, aquaculture, zebrafish
Abstract :
[en] Biomedical research on skeletal disorders increasingly relies on small fish models like
zebrafish and medaka to investigate conditions such as osteoporosis and fibrous dys-
plasia. These models provide insights into human skeletal pathologies and broader
disorders like cancer and arthritis. Meanwhile, in aquaculture, farmed fish frequently
develop skeletal deformities in the jaw, operculum, and vertebral column, compromising
fish welfare, performance, and product quality. These anomalies result in significant
economic losses due to manual culling. Understanding the underlying mechanisms of
skeletal development in fish is crucial for improving both human health and aquaculture
sustainability. This thesis explores the application of deep learning methodologies in
bioimage analysis, focusing on morphometric and phenotypic studies in biomedical and
aquaculture research within the framework of EU funded BioMedAqu project
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Computer science
Author, co-author :
Kumar, Navdeep ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Language :
English
Title :
Automated Bioimage Analysis of Fish Morphometry: Enhancing Biomedical and Aquaculture Research Through Deep Learning
Defense date :
03 June 2025
Institution :
ULiège - University of Liège [Applied Sciences], Liège, Belgium
Degree :
Doctor of Philosophy
Promotor :
Geurts, Pierre ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Algorithmique des systèmes en interaction avec le monde physique ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Jury member :
Marée, Raphaël ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
Wehenkel, Louis ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
Muller, Marc ; Université de Liège - ULiège > GIGA > GIGA Cancer - Molecular Angiogenesis
Laizé, Vincent; University of Algarve > The Algarve Centre of Marine Sciences (CCMR) > Researcher