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ABSTRACT

Biomedical research on skeletal disorders increasingly relies on small fish models like
zebrafish and medaka to investigate conditions such as osteoporosis and fibrous dys-
plasia. These models provide insights into human skeletal pathologies and broader
disorders like cancer and arthritis. Meanwhile, in aquaculture, farmed fish frequently
develop skeletal deformities in the jaw, operculum, and vertebral column, compromising
fish welfare, performance, and product quality. These anomalies result in significant
economic losses due to manual culling. Understanding the underlying mechanisms of
skeletal development in fish is crucial for improving both human health and aquaculture
sustainability. This thesis explores the application of deep learning methodologies in
bioimage analysis, focusing on morphometric and phenotypic studies in biomedical and
aquaculture research within the framework of EU funded BioMedAqu project.

A thorough literature review in Chapter 3 identifies the current state-of-the-art
(SOTA) image analysis methods, including conventional techniques and emerging ap-
proaches like convolutional neural networks (CNNs). Despite the advancements in these
methods, significant challenges persist, including the processing of high-content and
high-throughput imaging data, the limitations of traditional image analysis protocols,
and the scarcity of well-annotated datasets. The thesis systematically addresses these
challenges through the development and implementation of innovative deep learning
models tailored for various tasks.

Chapter 4 focuses on segmenting the operculum and head regions in flourescence
microscopy images of zebrafish larvae using deep learning based Convolutional Neural
Networks (CNNs). This segmentation enables precise measurement of the operculum-
to-head ratio, serving as a quantitative metric for assessing bone mineralization. By
mitigating class imbalance with advanced loss functions and employing a two-step
segmentation process, our end-to-end approach significantly enhances automated mor-
phometric analysis.

Chapter 5 employs deep learning methods for the detection of anatomical landmarks
in various data sets of fish species in both biomedical and aquaculture research. In this
chapter, various regression based strategies combined with different CNN architectures
are evaluated for detecting anatomical landmarks. The implemented methods provide a
robust and scalable solution for bioimage analysis, enhancing landmark detection in fish
species for applications in both biomedical and aquaculture fields.

Chapter 6 focuses on detecting and segmenting weak, faint, overlapping, and missing
structures in 2D lateral and ventral bioimages of zebrafish larvae. Using U-Net vari-
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ants with single and multi-output masks, we demonstrated that deep learning models
effectively segment bone structures, particularly in lateral views. Despite challenges in
ventral views, like blurred boundaries and subjective manual annotations, our model ac-
curately identified missing structures and segmented weak, faint, and overlapping ones
while showing resilience to mislabeled data. This automated approach enhances bone
development studies by reducing manual effort and improving analytical consistency.

Incorporating advanced deep learning techniques, the research outlines the com-
plexities of designing effective neural network architectures while emphasizing the
importance of preserving spatial information in biomedical images. The findings indicate
that existing models often struggle with class imbalance and the subjective nature of
expert annotations, hindering their performance. This research is motivated by the
need to create scalable, automated solutions that can facilitate bioimage analysis while
improving accessibility for researchers across disciplines.

This thesis relies on a common web based open source image analysis platform to
integrate the implemented methodologies, fostering collaboration and improving result
reproducibility, offering valuable insights that could benefit both aquaculture practices
and biomedical research.
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CHAPTER

INTRODUCTION

1.1 Context

In the realm of biomedical research, model fish species like zebrafish (Danio rerio), and
medaka (Oryzias latipes) are highly regarded as valuable vertebrate models. They are
extensively used in a variety of biomedical applications, encompassing drug testing,
morphometric screening, genome editing, toxicology assessments, and behavior analysis
in vertebrates [25, 27, 117, 120, 145, 156, 165, 166]. These model fish exhibit significant
genetic and metabolic pathway similarities with both fish and mammals, sharing over
70% of their genes with humans [9, 75, 148, 180]. Notably, zebrafish and medaka models
are particularly advantageous due to their ease of maintenance and reproduction. These
model fish are raised in a controlled environment at a facility or designated labora-
tory, with conditions that replicate their natural habitats. Along with other technical
advantages such as their small size, typically 4.5-5.5 mm at 10 days post-fertilization
(dpf) [96, 107], low maintenance cost, high fecundity, and compatibility with genetic
engineering tools, these fish are popular among scientists of their suitability for in vivo
imaging [175, 236] (we discuss more about imaging methods in Section 3.2 of Chapter
3). The embryonic and larval stages of these animals are translucent, allowing for the
application of advanced imaging technologies to observe biological processes in a living
animal. This property bears great potential for biomedical research when combined with
the availability of transgenic and mutant lines that allow modeling human skeletal

diseases and tracking specific organs and cell types with fluorescent markers [52]. Ac-
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CHAPTER 1. INTRODUCTION

cording to the Business Research Insights website [2] (accessed on 2 January, 2025),
the global zebrafish model services market size was USD 434.4 million in the year 2022
and is projected to reach USD 618.23 million in 2031, with a compound annual growth
rate (CAGR) of 14.4% during the forecast period.

Also, fish is recognized as a valuable source of high-quality protein and essential
nutrients that are integral to a healthy human diet. Within the aquaculture industry,
fish holds a primary position as the predominant source of cultivated seafood for human
consumption. According to the European Commission’s Ocean and Fisheries website,
marine and freshwater fish constitute approximately 49% of total aquaculture produc-
tion. Commonly consumed food fish species include gilthead seabream (Sparus aurata),
meagre (Argyrosomus regius), and salmon (Salmo salar), which are saltwater species,
while rainbow trout (Oncorhynchus mykiss) is a freshwater counterpart. In their natural
habitats, such as the sea or rivers, healthy fish thrive without external interventions
in terms of food and care. However, in fish farms, fish are reared within controlled or
artificial environments, such as ponds, tanks, or cages, which require external care and
provisioning of food. Given the escalating global demand for aquaculture products, the
industry faces significant pressure to enhance its supply. To meet this demand, fish
farmers adopt intensive production practices, which can result in challenges like dete-
riorating water quality, higher fish density per unit of water volume, and limited food
availability for the fish. These factors may contribute to stressed fish, the development

of physical abnormalities, and susceptibility to serious diseases [126].

To detect and classify deformities in the farmed (cultured) or the model fish, manual
inspection or analysis is employed, which requires significant time and technical effort.
In addition, direct physical interaction with the fish can induce fear or stress that
may reflect on its behavior. Due to abnormal behavior or stress, fish can not swim or
take proper diet, which can lead to poor health of the fish [126]. To improve animal
welfare both in aquaculture and biomedical research, scientists are looking for methods
requiring minimal manual interaction with the animals, with more focus on their health

and quality of life.

Computer vision, as a non-invasive technology, is increasingly adopted by fish farmers
and biomedical researchers to monitor health and behavioral changes in animals and
fish with little to no physical interaction. Nowadays, computer vision based techniques
employ artificial intelligence methods such as machine learning (ML) or deep learning
(DL), which not only speed up the diagnosis but are also helpful in improving the accuracy

of the detection. Deep learning represents a cutting-edge AI approach that empowers
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1.2. PROJECT BIOMEDAQU

computers to learn from data and perform tasks on par with human capabilities (we
discuss deep learning in detail in Section 2.4 of Chapter 2). Computer vision and image
processing techniques can also be helpful to speed up other routine procedures such as
animal feeding [78], animal sorting, and animal counting by automatizing these tasks
and with minimal physical interaction with the animals. According to the website [187]
(accessed on 12 January, 2025), the top 10 Al and software start-up companies for the
aquaculture industry have raised USD 282 million in the past 5 years, illustrating the

enthusiasm for Al-based smart farming in aquaculture.

1.2 Project BioMedAqu

This thesis was carried out within the framework of the project Aquaculture meets
Biomedicine: Innovation in Skeletal Health research (1 August 2018 - 31 Jan-
uary 2023) abbreviated as BioMedAqu. It was a Marie Sklodowska-Curie Innovative
Training Network (MCSA-ITN) with the aim of creating an innovative expertise, com-
bining research in skeletal biology of aquaculture and model fish species. Aquaculture
commonly referred to as fish farming is a highly valued industry, producing quality
seafood for human consumption. However farmed fish often suffer from severe skeletal
deformities in their jaw, operculum and vertebral column as sketched in Figure 1.1.
These skeletal anomalies usually affect fish welfare, performance and product quality. In
order to secure future markets and value, without the expansion of production efforts,
fish farmers and businesses are focusing on improving the morphological quality of their
current production. In fact, major economic losses are directly related to the develop-
ment of skeletal disorders altering the external shape of reared fish, i.e. opercular and
vertebral column deformities. Fish with such deformities are rejected by the potential re-
tailers or customers thereby representing a significant economic loss for the fish farmers
[115, 205]. Such deformities require tedious technical effort and time to manually cull
out deformed fish from the productive cycle; which should be done as early as possible in
order to not waste resources on growing sub-optimal fish. By finding solutions to avoid
the development of these deformities, fish health can be improved and economic losses to
fish farmers can be reduced to substantial extent.

Meanwhile, our aging population is affected by human skeletal pathologies (such as
Osteoporosis and Fibrous dysplasia) at an alarming rate which has triggered research
using the tools offered by small fish models such as zebrafish (Danio rerio) or Japanese

rice fish also known as medaka (Oryzias latipes). These fish species are the predominant
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(A)

Jaw

Operculum

Vertebral Column

(B)

Figure 1.1: (A) Three mostly affected skeletal parts of a fish due to bone related deformi-
ties. (B) Vertebral and Jaw deformities in Gilthead Seabream (first column), vertebral
deformity in Medaka (second column)

choice to be used as an animal model in the field of biomedical research to discover the
potential causes of various human disorders such as development of cancer or arthritis
[41, 110]. In other biomedical research areas, such as drug discovery, these model fish are
used to test drugs and assess their effects on the human body [35]. Within the framework
of the project, the primary focus in this biomedical research is to use these small fish
models, cell culture and artificial intelligence (AI) to target the biological mechanisms

that underline the development of bone disorders.

The long term goal of this project is to discover new and practical knowledge about
the skeletal system of aquaculture and model fish species also enhancing the potential
research for the diagnosis and treatment of bone related skeletal anomalies in human
beings as well. BiomedAqu aims to bring together the expertise and research approaches
from the aquaculture field and the biomedical sector using aquaculture and model fish

species.



1.3. THESIS OBJECTIVE

1.3 Thesis objective

The main objective of this thesis is to develop computer vision and Al-based deep learning
algorithms tailored to automate various bioimage analysis tasks. These algorithms are
designed for researchers in the biomedical and aquaculture fields, particularly for mor-
phometric and phenotypic studies aimed at improving fish skeletal health. To accomplish
this, we explore various deep learning techniques for bioimage analysis, focusing on
tasks like image segmentation, anatomical landmark detection, and identification and
segmentation of missing, weak, faint and overlapping bone structures. These methods
are developed and evaluated with collaborators of the BioMedAqu project, which seeks
to streamline the analysis of bioimages from multiple fish species such as zebrafish and
medaka for biomedical research, and gilthead seabream for aquaculture applications.
The algorithms are designed to support in the future fish farmers and biomedical re-
searchers by providing faster, more accurate bioimage analysis, significantly enhancing

efficiency over traditional manual methods.

1.4 Thesis structure

This thesis is organized into several chapters, the first two chapters cover the introduction
and background, while the subsequent three chapters present our contributions to this

work. The remainder of this manuscript is structured as outlined below:

¢ Chapter 2 — Machine learning and Deep learning background

This chapter provides an in-depth exploration of the foundational concepts under-
lying machine learning and deep learning as subfields of artificial intelligence. The
primary emphasis of this chapter is on deep learning methods employed in our
image analysis endeavors. While not delving into exhaustive details, the objective
is to provide enough background information for readers not possessing a funda-
mental understanding of deep learning (especially from biological background),

facilitating comprehension of the contributions made in this context
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¢ Chapter 3 - Literature Review

This chapter provides a comprehensive review of current state-of-the-art computer-
vision-based methods and tools, both automatic and semi-automatic, applied in
image analysis for morphometric and phenotypic studies of aquaculture and
biomedical model fish. It also emphasizes the primary challenges encountered
in implementing these methodologies. This chapter is based on the journal paper
P2, listed in Section 1.5

¢ Chapter 4 — Segmentation in microscopy bioimages of zebrafish

This part of the dissertation describes research work done for automatic segmen-
tation of head and operculum parts of the zebrafish larvae from single channel
microscopy image dataset for the task of morphometric analysis. This chapter is

based on the conference paper P4, listed in Section 1.5

¢ Chapter 5 - Anatomical landmark detection in fish bioimages

This chapter contains the research work performed for the evaluation of various
deep learning methods for the task of anatomical landmark detection on three
bioimage datasets of different fish species within the framework of the BioMedAqu

project. This chapter is based on the conference paper P3, listed in Section 1.5
¢ Chapter 6 - Uncovering the Missing Zebrafish Larval Bone Structures: A
Deep Learning Approach in Microscopy

This part of the thesis describes the deep learning based segmentation protocol for
identifying or uncovering the missing, faint, weak and occluded structures in the
lateral and ventral brighfield microscopy images of zebrafish larvae. This chapter

is based on the paper P1 (in preparation for publication), mentioned in Section 1.5

¢ Chapter 7 - Conclusion and future perspeftives

The thesis ends with this chapter, highlighting the key points from the research

we carried out and discussion of some future work

1.5 Publications and Oral talks

This thesis is based on the following publications and oral talks delivered in various

international conferences and Journals:



1.5. PUBLICATIONS AND ORAL TALKS

P1

P2.

P3.

Ol

02.

P4.

03.

Navdeep Kumar, Ratish Raman, Marc Muller, Pierre Geurts, Raphaél Marée,
“Uncovering the Bone Structures in Zebrafish Larvae: A Deep Learning

Approach in Microscopy” (in preparation)

Navdeep Kumar, Raphaél Marée, Pierre Geurts, Marc Muller, "Recent Advances
in Bioimage Analysis Methods for Detecting Skeletal Deformities in Biomed-

ical and Aquaculture Fish Species", Journal paper, Biomolecules, 2023

Navdeep Kumar, Zachary Dellacqua, Claudia Di Biagio, Ratish Raman, Arianna
Martini, Clara Boglione, Marc Muller, Pierre Geurts, Raphaél Marée, "Empirical
Evaluation of Deep Learning Approaches for Landmark Detection in
Fish Bio-Images", Conference paper, European Conference on Computer Vision
Workshops (ECCV- 2022)

Navdeep Kumar, Marc Muller, Pierre Geurts, Raphaél Marée, "Building Artificial
Intelligence Tools for Automatic Recognition and Classification of Bone
related Deformities in Aquaculture Fish", Oral presentation in Aquaculture
Europe 2022, Rimini Italy

Navdeep Kumar, Marc Muller, Pierre Geurts, Raphaél Marée, '"Deep learning
based multi-modal image analysis in fish skeletal research'. Oral presenta-
tion at Interdisciplinary Approaches in Fish Skeletal Biology, (IAFSB-2022) Olho,
Algarve, Portugal.

Navdeep Kumar, Alessio Carletti, Paulo J Gavaia, Leonor M Cancela, Marc Muller,
Pierre Geurts, Raphaél Marée, "Deep Learning Approaches for Head and
Operculum Segmentation in Zebrafish Microscopy Images'", Conference
paper, International Conference on Computer Analysis of Images and Patterns
(CAIP-2021)

Navdeep Kumar, Zachary Dellacqua, Arianna Martini, Clara Boglione, Marc Muller,
Pierre Geurts, Raphaél Marée, "Towards Setting up of an Automatic Recogni-
tion System for Vertebrae and Opercular Anomalies in Reared Gilthead
Seabream (Sparus aurata)" Poster presentation in Aquaculture Europe 2021,

Funchal Madeira Portugal
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1.6 Code and models

The code and models are open source and are publicly available under permissive

licenses:

C1. Chapter 4: https://github.com/navdeepkaushish/S_Zebrafish_Head_Opercu

lum_UNet_Segmentation (code and models)

C2. Chapter 5: https://github.com/navdeepkaushish/S_Deep-Fish-Landmark-P

rediction (code and models)

C3. Chapter 6: https://github.com/navdeepkaushish/S_Deep-Zebrafish-Bone-S

tructures-Segmentation-V (Code)

1.7 Contributions to the datasets collected and
annotated related to the thesis and the
BioMedAqu project

During this research work, we have also contributed to the collection and annotation of
the following data sets except D2, which is produced by GIGA research at University of
Liege. Within the framework of the BioMedAqu project and according to its guidelines,
these datasets are publicly available on ULiege research instance of Cytomine [124], a
collaborative web-based platform developed in our team and used with collaborators
from the BioMedAqu to annotate and share images. All datasets used in this thesis can

be accessed using username: biomedaqu and password: BioMed$Aqu2025

D1. BIOMEDAQUE-GIGA-ZEBRAFISH-MICROSCOPIC (https://research.cytom
ine.be/#/project/153858703/images) : Collected by Ratish Raman, annotated
by Ratish Raman and Navdeep Kumar and used for identifying and segmenting

the bone structures of zebrafish (Danio rerio) larvae in Chapter 6

D2. LANDMARKS-ULG-ZEBRA (https://research.cytomine.be/#/project/6
555554 /images) : This dataset is produced by GIGA research at University of
Liege and is used in Chapter 5 for anatomical landmark detection in microscopy

bioimages of zebrafish (Danio rerio) larvae.
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1.7. CONTRIBUTIONS TO THE DATASETS COLLECTED AND ANNOTATED
RELATED TO THE THESIS AND THE BIOMEDAQU PROJECT

D3.

D4.

D5.

De6.

D7.

Ds.

BIOMEDAQUE-LESA-SAURATA-XRAYS-ZACH (https://research.cytomine.
be/#/project/434321374/images) : This dataset is collected by Zachary Dellac-
qua, annotated by Arianna Martini and Navdeep Kumar and used in Chapter 5 for
anatomical landmark detection in radiography bioimages of Gilthead seabream

(Sparus aurata)

BIOMEDAQU-LESA-MEDAKA (https://research.cytomine.be/#/project/5
49112638/images) : This dataset is collected by Claudia Di Biagio, annotated by
Arianna Martini and Navdeep Kumar and used for anatomical landmark prediction

in microscopy bioimages of Medaka (Oryzias latipes) fish in Chapter 5

BIOMEDAQU-CCMR-FLORESCENT-ZEBRA-LARVEA-ALLESSIO (https://re
search.cytomine.be/#/project/144022238/images) : This dataset is collected
by Alessio Carletti, annotated by Alessio Carletti and Navdeep Kumar and is
used in Chapter 4 for segmenting the head and operculum areas from red channel

microscopy bioimages of zebrafish

BIOMEDAQU-CCMR-SUNIL-SEABREAM-MICRO (https://research.cytomin
e.be/#/project/542666357/images) : This dataset is collected by Sunil Poudel,
annotated by Sunil Poudel and Navdeep Kumar and can be used in future projects

related to identifying the skeletal deformities in Gilthead seabream (Sparus aurata)

BIOMEDAQU-IPMA-AREFULL-MICRO-LETICIA (https://research.cytomin
e.be/#/project/5352715635/images) : This dataset is collected by Leticia Lujan
Amoraga, annotated by Leticia Lujan Amoraga and Navdeep Kumar and can be
used in future projects related to identifying skeletal deformities in microscopy

bioimages of Meagre (Argyrosomus regius) fish

BIOMEDAQU-UGENT-XRAYS-VERTEBRAE MEASURMENTS-LUCIA (https:
//research.cytomine.be/#/project/527989586/images) : This dataset is
collected by Lucia Drabikova and annotated by Arianna Martini and Navdeep
Kumar. The dataset can be used in future studies related to finding the vertebral

deformities in radiography bioimages of Salmom (Salmo salar) fish
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CHAPTER

MACHINE LEARNING AND DEEP LEARNING
BACKGROUND

This chapter provides a basic overview of Al, with a focus on key concepts in machine
learning (ML) and deep learning (DL) as they relate to this research. Specifically, we
emphasize deep learning techniques in computer vision, particularly convolutional neural
networks (CNNs), implemented in this thesis. Rather than covering the entire Al field,
this chapter summarizes relevant topics and includes references for those seeking more
technical details on ML and DL. Additionally, it introduces the notation used throughout
the thesis.

In Section 2.1, we start by providing brief definitions of Al and its subfields ML
and DL and introducing some notation and terminologies we use in this chapter. Next,
Section 2.2 covers various types of learning methods and their categories. Section 2.3 is
related to protocols used for model evaluation and selection. We introduce deep learning
(DL) in Section 2.4. Section 2.5 is dedicated to transfer learning and domain adaptation.
Finally, Section 2.6 ends the chapter with a discussion of the metrics and loss functions

used throughout this thesis.

2.1 What is Artificial Intelligence?

Artificial Intelligence (Al) is the ability of the digital computers or robotic machines

to perform tasks comparably to human beings. In its simplest form, it is programmed
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CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING BACKGROUND

to execute actions and take decisions with minimum human intervention. Its more
sophisticated form possesses the ability to learn from extensive datasets, whether labeled
or unlabeled, and to generalize its learning experiences. This enables Al algorithms to
make inferences, reason about specific situations, and autonomously engage in problem-
solving [159]. Although Al is a broad field that has many sub-domains, in this thesis, we
focus on statistical machine learning and deep learning concepts that are related to our
research work. Figure 2.1 shows the relationship between AI, ML and DL.

Artificial Intelligence

Machine Learning

Any technique that
enables computers
to mimic human
intelligence, using
logic, if-then rules,
decision trees, and
machine learning
(includingdeep
learning)

Deep Learning A subset of Al that

The subset of machine learning includes abstruse
composed of algorithms that permit statistical techniques
software to train itself to perform tasks, that enable machines
like speech and image recognition, by to improve at tasks
exposing multilayered neural networks to with experience. The
vast amounts of data. category includes
deep learning

Figure 2.1: Relationship between Artificial Intelligence, Machine learning and Deep
learning (source: Unite.Al).

2.1.1 Machine learning

Machine learning (ML) is a sub-field of Al in which computers are trained to optimize a
performance criterion using example data or past experience. An ML model is established
with specific parameters and the learning process involves executing a computer program
to refine these parameters based on training data or prior experiences. The model can
serve a predictive function, making future predictions, or a descriptive one, extracting
knowledge from data, or even both [10].

Technically, an ML model learns from an experience E with respect to some class
of tasks T' and performance measure P if its performance at tasks in 7', as measured
by P, improves with experience E [132]. Thus Machine learning is about building

programs that improve their performance on certain tasks as they gain experience,
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2.1. WHAT IS ARTIFICIAL INTELLIGENCE?

usually in the form of exposure to data. These tasks belong to a particular class, indicating
a specific domain or category of problems the program is learnt to tackle. Machine
learning leverages statistical principles to construct mathematical models, primarily
focusing on drawing inferences from a sample. The involvement of computer science in
this domain is twofold. Firstly, during the training phase, there is a requirement for
streamlined algorithms to address optimization challenges, along with the capability to
handle and analyze substantial volumes of data. Secondly, after a model is acquired, the
representation and algorithmic approach for inference must be optimized for efficiency.
In specific scenarios, the effectiveness of the learning or inference algorithm, including

its space and time complexity, can be just as crucial as its predictive accuracy [10].

2.1.2 Notations and terminologies

In the context of supervised learning (see Section 2.2.1), the output can be either quanti-
tative (numerical) or qualitative (categorical). Categorical variables are often encoded

nan

numerically, particularly in binary classification tasks (e.g., "true" or "false," "survived"
or "died"), typically using 0 and 1 or sometimes —1 and 1 [72]. These numeric represen-
tations are referred to as targets. For multi-class classification with K categories, a
common approach is the use of dummy variables, where each category is represented
by a K-dimensional binary vector with only one active bit.

Input variables are typically denoted by symbol X. If X is a vector, its elements can
be accessed using subscripts X ;. We denote quantitative outputs as Y and qualitative
outputs as C (for category). Uppercase letters such as X, Y, or C are used when referring
to the general aspects of a variable. Lowercase letters are used for observed values; thus,
the i*" observed value of X is denoted as x; (where x; is again a scalar or vector). Matrices
are represented by bold uppercase letters; for instance, a set of N input p-vectors x;,
i =1,...,N would be expressed as the N x p matrix X. Typically, vectors will not be
represented in bold unless they consist of N components. This practice differentiates a
p-vector of inputs x; for the i?” observation from the n-vector x 7, which encompasses all
observations on variable X ;. As a standard assumption, all vectors are considered to be
column vectors. Consequently, the i** row of X is denoted as XL.T, representing the vector
transpose of x;.

Given an input vector X, the goal of supervised learning is to predict an accurate
output Y, represented as Y (pronounced "Y -hat"). For real-valued outputs, Y € R, while
for categorical outputs, the predicted class is denoted as C. Most of the classification

methods however first output a prediction of the class conditional probability estimates
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Y in the range [0,1] that is then compared to a threshold to get a predicted class C (e.g.,
¢=1if y> 0.5, ¢ =0 otherwise). This methodology extends to K-level qualitative outputs,

where K represents the number of categories.

2.2 Overview of learning methods

A learning algorithm in machine learning refers to the method used to train a model by
adjusting its parameters, based on data. The goal of a learning algorithm is to identify
patterns in the data and generalize them to make predictions or decisions on unseen
data. Learning algorithms can be categorized based on the type of learning they facilitate.
The process of constructing a model using a learning algorithm is termed the training
phase. Subsequently, when this trained model is applied to new data, it transitions to
the inference phase. In the succeeding subsections, we describe about types of learning

methods used in Machine learning.

2.2.1 Supervised learning

In supervised learning (SL), the learning algorithms begins with a dataset comprising
training examples, paired with their corresponding ground truth labels. For instance, in
the context of learning to categorize handwritten digits, a supervised learning algorithm
analyzes numerous pictures of handwritten digits, each accompanied by a label indicating
the correct numerical value represented in the image. The algorithm will then learn the
relationship between the images and their associated numbers, and apply that learned
relationship to classify completely new images (without labels) that the machine has
not seen before [122]. In another image classification task, where the objective is to
assign a label to a given image, a typical example involves determining whether an
image contains a cat, a dog, or another type of animal. In this context, the images
are represented as integer values assigned to each image pixel, and the input space
encompasses all possible color or pixel values: X ¢ N¥***¢ where w, h and ¢ respectively
denote the image width, height, and number of channels (typically 3 for RGB color
images). The output space ) (containing all possible target values) comprises the three
labels of interest: {cat,dog,other}. The model takes an image X € X" as input and outputs
y, representing one of the predefined labels. It is important to note that this predicted
label y might be incorrect, constituting a mistake by the model. To distinguish the correct

label denoted as y (also known as ground truth) from the output label (predicted) y, a
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performance measure, denoted as P can evaluate the accuracy of the output label.

Formally, given a set of N training examples of the form {(x1,y1),...,(xn, yN)} Wwhere
x; € X represents the feature vector of the i*” example and y; € ) is its true label (or
class), a learning algorithm tries to discover a function f : X — )/, where X is the input

space and ) is the output space.

The function f is typically fit so as to minimize a "distance" metric, commonly referred
to as the loss function, that measures how far the predictions provided by f are from
the true output. In "regression" tasks, loss functions such as the squared error or
absolute error are typically used to compute the error between the actual and predicted
values. Conversely, "classification" tasks often rely on log-based loss functions, such as

cross-entropy (CE) loss function. Loss functions are discussed in detail in Section 2.6.2.

In this thesis, we mainly focus on supervised learning based on DL methods, which
will be introduced in Section 2.4. In the following sections, we explore some popular
supervised learning approaches commonly applied to various machine learning tasks.
Although these methods are not implemented in our thesis, they are included to provide
readers with background information about previous techniques used for tasks similar

to those we address using DL based approaches.

2.2.1.1 Linear regression

Linear regression stands as a supervised machine learning algorithm designed to de-
termine the linear association between a dependent variable and one or multiple inde-
pendent features. When there is only one independent feature, the algorithm is referred
to as Univariate Linear Regression. Conversely, if there are more than one features
involved, it is termed as Multivariate Linear Regression. Formally, given a vector of

inputs X = (X1,...,X,), a regression model tries to predict the output Y as:
A A p A
Y:90+ZXJ'9J' (2.1)
=1

where Y is called target variable, 0 is the intercept also called bias in machine learning.
Together with 6, 6 ; are called the coefficients of Equation (2.1) (or parameters) of the
regression model. A linear model approximating the relationship between the dependent
and independent variables is called a regression line. This model is illustrated in Figure
2.2.
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Figure 2.2: Linear regression line showing the relationship between independent variable
X and dependent variable Y

2.2.1.2 Tree-based approaches

Decision tree learning [72] is a popular non-parametric supervised learning algorithm
used for both classification and regression tasks. It represents a predictive model by a
tree-like structure, similar to a flowchart, where each internal node is labeled with a test
based on the input features, each branch corresponds to one of the outcomes of the test
present in the branch’s source node, and each leaf (terminal) node contains a value of
the output, either a class in the case of classification or a numerical value in the case
of regression. A prediction is computed from the tree by retrieving the value associated
with the leaf reached by the test example when propagated in the tree from the root
node, following the outcomes of the tests met at each internal node. An example of a
classification tree is shown in Figure 2.3.

A decision tree is constructed by recursively splitting the training set into subsets
until all leaf nodes contain training examples with the same value of the output (the leaf
is pure) or of the inputs (no further splits are possible). At each node, the best split is
found by locally maximizing some score function (based, e.g., on class entropy in the case

of classification or output variance in the case of regression) measuring the quality of the
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split. Fully grown trees, however, often lead to overfitting, due to the fragmentation of
the data. To mitigate this, pruning is often employed to reduce tree complexity. Pruning
comes in two flavors: pre-pruning, which stops splitting a node when some criterion is
met (e.g., node depth is above some threshold or there are too few examples reaching the
node) or post-pruning, which removes nodes from a fully grown tree so as to optimize its
performance on an independent validation set. While pre-pruning is computationally
more efficient, post-pruning is more effective in finding the optimal trade-off between

underfitting and overfitting (see Section 2.3.2).

/////' Root Node ‘\\\\\

<18 > 30

Subtree

Decision
Node

\\\\\\‘ Leaf Nodes \\\\ ;::;///

Figure 2.3: Decision tree structure for the binary classification problem of determining
whether the patient is at high or low risk of a heart attack.

2.2.1.3 Ensemble methods

Ensemble methods [232] are machine learning algorithms that combine the outputs of
multiple base learners in order to produce a new learner, potentially better than the
individual base learners. The majority of ensemble methods employ a single base learning
algorithm, producing an homogeneous ensemble of models all of the same type. On the
other hand, some methods, such as stacking, use different types of learning algorithms to
produce heterogeneous ensembles. Two popular families of (homogeneous) ensemble
methods are averaging methods and boosting methods. Averaging methods build the
models within the ensemble independently of each other by introducing randomization

in the training procedure. The prediction of the individual models are then combined by
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a simple arithmetic average in regression or majority vote in classification. The main
effect of averaging methods is to reduce variance. Boosting methods on the other hand
build the models within the ensemble sequentially, with each model focusing on the
errors done by the previous models in the sequence. They are capable of turning weak,
highly biased, learners (ie., marginally better than random guess in classification) into

strong learners by iteratively reducing their bias.

Among popular averaging methods, one notable algorithm is random forests, which
constructs an ensemble of decision trees. The random forests algorithm trains each
tree of the ensemble from a bootstrap sample of the original training set. Each tree is
furthermore learned using a modified decision tree learning algorithm that selects the
best split from a subset of only £ features drawn at random at each node, a technique
known as feature subsampling [155]. This random selection of features at each split
reduces the correlation between individual decision trees, thus enhancing the overall
ensemble performance by mitigating the risk of overfitting [37, 90]. Additionally, random
forests operate efficiently on large datasets and handle high-dimensional feature spaces
well, making them robust to noisy or missing data [22]. The extremely randomized trees
(ET) algorithm [62] represents a variation of random forests, introducing an additional
randomization for decorrelation. The ET algorithm constructs an ensemble of unpruned
decision or regression trees following the conventional top-down approach. Its primary
distinctions from random forests are twofold: it randomly selects cut-points for node
splitting, and it utilizes the entire learning sample to grow the trees instead of a bootstrap
replica. Its explicit randomization of cut-points and attributes, coupled with ensemble
averaging, aim to more effectively reduce variance compared to the other less randomized
strategies, while the prime motivating factor to use original learning sample rather than
bootstrap replica is to minimize the bias. Due to the simplicity of the node splitting
procedure, the computational efficiency is also smaller compared to other ensemble-based

methods that locally optimize cut-points.

Boosting methods include many variants such as Gradient Boosting [60], AdaBoost
(Adaptive Boosting) [569], and XGBoost (Extreme Gradient Boosting) [38]. While generic,
most boosting methods employs weak learners typically in the guise of decision trees
of small depth, mostly for computational efficiency reason. In the case of Adaboost, the
initial tree is trained on observations with uniform weights. Subsequently, each tree
in the ensemble is trained on observations with increased (resp. decreased) weights
when they are poorly (resp. correctly) classified by the preceding trees in the ensemble.

Gradient boosting can handle any differentiable loss function. It builds an additive model
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where each term is trained to approximate the inverse of the current gradient of the
loss function. XGBoost is a specific implementation of gradient boosting with decision
trees, which significantly enhance both speed and performance. XGBoost incorporates
regularization techniques to prevent overfitting and enhance generalization. It also
provides support for parallel processing and distributed computing, making it scalable to

large datasets.

2.2.2 Unsupervised learning

Unsupervised learning (USL) is a machine learning approach where algorithms analyze
and interpret data without predefined labels or categories. Unlike supervised learning,
which relies on labeled datasets for training, USL discovers hidden structures and
patterns within raw, unorganized data.

The primary objective of unsupervised learning is to explore the underlying distribu-
tion of data and group similar instances based on shared characteristics. The algorithm
autonomously identifies clusters, associations, or anomalies without prior knowledge of
correct outputs. This makes USL particularly useful in scenarios where manual labeling
is impractical or costly.

In computer vision, unsupervised learning is widely used for tasks where labeled

data is scarce, expensive, or difficult to obtain. Here are some real-world applications:

* Clustering for Image Segmentation: In this approach, image segmentation is
performed by grouping the image pixels into separate regions based on their colour
or intensity values. This approach is used in medical image segmentation, satellite

imaging and object background separation tasks.

* Dimensionality reduction and feature extraction: Unsupervised dimensional-
ity reduction techniques in computer vision streamline image data by reducing its
dimensions (image compression), enhancing model performance and interpretabil-
ity. The goal is to condense image features into a more manageable size while
preserving critical information. Commonly applied during data preprocessing, this
technique, for instance, is employed in autoencoders [208] to eliminate noise and

redundant information from visual data, thus enhancing picture quality.

* Synthetic image generation: Unsupervised learning is employed in Generative
Adversarial Networks (GANSs) [67] to construct realistic or synthetic images from

random noise for creating synthetic samples when real-world data is scarce or
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expensive to collect. In context to medical imaging research, synthetic images are
produced that enhance the performance of medical AI models by generating rare

disease samples for training.

2.2.3 Semi-supervised learning

Semi-supervised learning (SSL) techniques become particularly valuable when acquiring
a substantial quantity of labeled data proves to be challenging or costly, while obtaining
significant amounts of unlabeled data remains comparatively easy. In these situations,
neither fully supervised nor unsupervised learning approaches offer satisfactory solu-
tions. Training with few labeled examples implies the algorithm has to deal with labeled
datapoints differently than with unlabeled datapoints. For labeled points, the algorithm
will use traditional supervision to update the model weights; and for unlabeled points,
the algorithm minimizes the difference in predictions between other similar training
examples. Formally, the given dataset X = (x1,...,x,) is divided into two parts: the set of
points X; = (x1,...,x;) (with [ < n) represents instances for which corresponding labels
Y; =(y1,...,y;) are provided, while the set X;, = (x741,...,%7:4) (With [ + u = n) comprises
points having no labels [36].

Semi-supervised learning depends on specific assumptions regarding the unlabeled
data employed for training the model and the relationships between data points belonging
to different classes. An essential requirement for the implementation of semi-supervised
learning is that the unlabeled examples used in model training should be related to
the task the model is being trained for. In more formal terms, SSL necessitates that
the distribution p(x) of the input data encompasses information about the posterior
distribution p(y|x), signifying the conditional probability of a given data point x belonging
to a specific class y [234]. To illustrate this, if unlabeled data is employed to enhance
the training of an image classifier distinguishing between cats and dogs, the training
dataset must include images of both cats and dogs; images of unrelated objects such as
horses or buses would not contribute to the learning process. Generally speaking, any
semi-supervised learning algorithm relies on one or more of the following assumptions

being explicitly or implicitly satisfied [233]:

¢ The cluster assumption states that data points within a specific cluster, defined
as a group of data points sharing greater similarity among themselves than with

other available data points, are likely to belong to the same class.
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* The continuity assumption states that if two data points, x and x’, are close to
each other in the input space (the set of all possible values for x), then their labels,

y and y’, should be the same.

* The data are positioned approximately on a manifold with a significantly lower
dimension than the input space. This assumption enables the use of distances and

densities defined specifically on the manifold.

2.3 Model selection and evaluation

Evaluating a model is a fundamental principle in machine learning, which aims to
understand how well the model generalizes to unseen data and whether it meets the
requirements of the problem at hand. It is the process of assessing the performance
and effectiveness of a machine learning model using various metrics and techniques. In
Section 2.3.1, we discus about the basic criteria for assessing the model performance.
Bias-variance trade-off for effective evaluation is described in Section 2.3.2 and Section
2.3.3 is dedicated to discussing some of the practical considerations and current practices

involved while performing model evaluation.

2.3.1 Empirical risk minimization

In the realm of supervised learning, empirical risk minimization (ERM) is a principle
that guides the process of model training by minimizing the empirical risk, which is
essentially the error or discrepancy between the predictions made by a model and the
actual observed outcomes in the training data [203]. Directly minimizing the expected
risk also called generalization error is not feasible due to the unavailability of true
distributions. It is more practical to devise an unbiased estimator of empirical risk or
estimated risk, which is assessed using the provided supervised training set, D. In ERM,
the goal is to find the model parameters that minimize a certain objective function, often
referred to as the loss function. This function quantifies how well the model performs on

the training data.

1 N
Remp(g): _ZL(yi,fH(xi)) (2.2)
Ni=1

where 6 are model parameters, N is number of samples in the training data. The
training example (x;,y;) comes from the training set D, where x; is the input and y; is

the corresponding true output label. fy(x;) is the output produced by the model with

21



CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING BACKGROUND

parameters 6 given input x; and L is the loss function that measures the discrepancy
between the predicted output fy(x;) and the actual output label y;.

While ERM aims to minimize the empirical risk on the training data, the ultimate
goal is to develop models that generalize well on unseen data. Generalization refers to
the ability of a model to perform accurately on new, unseen examples beyond the training
set. Ensuring good generalization involves not only minimizing the empirical risk but

also controlling the model’s complexity to prevent overfitting [197, 207].

2.3.2 Bias variance trade-off

Bias-variance trade-off refers to the term that addresses the issue of balancing the
two sources of errors (i.e., bias and variance) while assessing the performance of ML
model. Bias refers to the error introduced by approximating a real-world problem with a
simplified model. A model with high bias tends to make strong assumptions about the
underlying data distribution, leading to systematic errors [206]. High bias results in
underfitting, where the model fails to capture the complexity of the underlying data
distribution and performs poorly both on the training data and unseen data. Variance
refers to the model’s sensitivity to fluctuations in the training data. A model with
high variance is overly sensitive to the training data and captures noise or random
fluctuations in the data. High variance results in overfitting, where the model learns
to fit the training data too closely, capturing noise and irrelevant details that do not
generalize well to unseen data.

If a model is too simple (high bias), it may not capture important patterns in the
data, leading to underfitting. However, increasing model complexity to reduce bias may
lead to higher variance and overfitting. Achieving good model performance involves
finding the right balance between bias and variance, resulting in optimal performance
on unseen data. Techniques such as regularization, cross-validation, and model selection
help manage the bias-variance trade-off by controlling model complexity and tuning

model parameters. Figure 2.4 shows the classical depiction of bias-variance trade-off.

2.3.3 Model selection and evaluation practices

Evaluating a model based on the bias-variance trade-off may not be effective in practical
scenarios, as the evaluation of these terms is non trivial and computationally intensive.
Instead, one uses an independent test set, a subset of data reserved exclusively for

evaluating a trained model, to estimate its true generalization performance. Two key
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the bias vs. variance trade-off
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Figure 2.4: Illustration of bias-variance trade-off (source: [204])

tasks are involved in this process: model selection and model evaluation. Model
selection involves choosing the best-performing model from a set of candidates based
on their ability to generalize well to unseen data. Model evaluation, on the other hand,
focuses on measuring the performance of the selected model using the independent test
set. Various approaches can be employed to address these tasks effectively.

The first approach involves splitting the entire dataset into training and test sets
in proportions, that ensure the training set is sufficiently large to train the model to
an optimal level, while the test set is large enough to reliably evaluate the model. For
large datasets, this may seems plausible. But in many real world problems such as in
biomedical research, where the datasets are small, using this approach does not work
well. To handle the small datasets, another popular approach called cross validation
is applied for selecting and evaluating the model. In this approach, dataset is divided
into multiple subsets, known as folds, where the model is trained on all folds except
one and evaluated on the remaining fold. This process is repeated multiple times, with
each fold serving in turn as test set in different iterations. The most common type of
cross-validation is k-fold cross-validation, where the dataset is divided into £ equal-sized
folds. The specific way these folds are used depends on the task at hand. In a typical
setting, the data is first split into £ equally sized folds. In each iteration, one fold is
used as the test set, while the remaining £ — 1 folds are merged and shuffled to form

the training and validation sets, often split in a (¢ —2) : 1 ratio. The validation set is
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used to select the best model, and the test set for that iteration is used to evaluate the
model’s performance. Once all % iterations are completed, the final score is computed by
averaging the test scores from each iteration. This approach ensures that every sample
in the dataset gets the opportunity to serve as a test sample, thereby reducing potential

bias and providing a robust estimate of the model’s generalization performance.

2.4 Deep Learning

Deep learning is is a sub-field of Artificial Intelligence in which learning is achieved
from the data itself using artificial neural networks. In contrast to conventional machine
learning methods where hand-crafted features are explicitly provided to the learning
algorithm for model training, deep learning generates its own set of features for learning
through the provided data and its labels (in case of supervised deep learning). In this
section, we explore advanced deep learning concepts particularly relevant to our research
work. In Section 2.4.1, we introduce the concept of ’Artificial Neural Network’ (ANN) and
its basic components. In Section 2.4.2, we discuss about ’‘Convolutional Neural Networks’
(CNNs) and its fundamental working mechanisms. Parameter optimization and the
learning processes of CNNs is discussed in Section 2.4.3. In Section 2.4.4, we discus

about various CNN architectures used for vision tasks relevant to our thesis.

2.4.1 Neural networks and its components

An artificial neural network (ANN) is an interconnected system of artificial neurons,
somehow inspired by biological neurons. Each artificial neuron can be thought of as a
computational unit that receives inputs, processes them, and produces an output. The
connections between neurons, known as synapses, are assigned weights that determine
the strength and nature of the connection. A positive weight represents an excitatory
connection, while a negative weight indicates an inhibitory connection. In an ANN,
neurons are organized into layers, where each layer receives inputs from the preceding
layer and passes its outputs to the next.

Mathematically, an ANN model can be defined as a parameterized approximation
function f : X — ), where X is the input space (typically R?) and ) the output space
(typically R? for some integer d = 1). A neural network function, denoted as f(x;0), is
constructed by composing other functions g¥(x;0%), where I = (1,...,L) represents the

number L of layers. The learnable parameter set 6 contains all the learnable parameters
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of the neural network [222]. A typical ANN, also called Multilayer perceptron (MLP)
consists of one input layer, one or more hidden layer(s) and one output layer as shown in
Figure 2.5. The process of passing the data through the NN to infer a model prediction
is called forward propagation. In the forward propagation, the pre-activation value,

noted zé., of the j** neuron in layer [ is computed from the previous layer as follows:
O_ 0 -1, 0
z; = l; wia; bj (2.3)

where n; is the number of neurons in layer /, wE.li) is the weight, connecting the i*” neuron
of layer [ — 1 to the j** neuron in layer [. a(il_l) is the (post) activation value of neuron i
of layer / — 1 and bg.l) is the bias term for j** neuron in layer I.

The activation of the j** neuron of layer [ is then obtained as follows:
@) _ l
a;’ =¢ (zj) (2.4)

where ¢(z) is a pre-defined activation function such as hyperbolic tangent, sigmoid,
softmax or rectifier function. Activation functions are discussed in Section 2.4.2.4.

For the entire layer, the computations can be vectorized as:

20 =Whal=D 4 p® (2.5)

a®) = [0} (z(l)) (2.6)

where W& (e R *"1-1) and b"¥) (e R™) are the weight matrix and the bias vector of layer
1, and z¥ and a'¥) represent respectively the pre (weighted sum) and post (outputs)
activation values.

The forward propagation is initialized by taking a® equal to the input vector x. The
output layer takes as input the activation values of the last hidden layer z) and produces
the final model prediction. It takes a similar form as a hidden layer with as many neurons

bL*1 and an activation function that

as there are outputs, with parameters WZ+1 and
depends on the nature of the output, often the identity function in regression and a
softmax activation in classification (see Section 2.4.2.4).

The trainable parameters of the networks are thus the weight matrices and bias

vectors of the L hidden and the output layers:

0= {(W(l),b(l)),l - 1,...,L+1}.
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Figure 2.5: A typical ANN with one input layer x, two hidden layers (g!, g2) and one
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2.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are similar to ordinary Artificial Neural Net-
works (ANNSs) in that they are composed of neurons with weights and biases. However,
CNNs include one or more convolutional layers that may be followed by pooling layers
(discussed in Section 2.4.2.3), which reduce the spatial dimensions of feature maps
while retaining important information. Pooling operations also contribute to making
the network invariant to translations, enhancing its robustness in recognizing features
regardless of their position in the input. CNNs are generally employed in vision-based
tasks such as image classification, segmentation and object detection but are also used
outside vision, eg., for time series analysis or language translation. CNNs share the
weights across neurons that makes it possible to have less number of parameters as
compared to fully connected ANNSs, thus considerably reducing the complexity of the
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model. Unlike ANNs, where neurons are fully connected to each other, in CNNs, the
neurons are locally connected with a small portion of the input image. Multiple filters
slide through the image to learn different features of the input image. The input to
CNNs is usually a volumetric data such as images (height x width x depth) where the
convolutional operation is performed across the last dimension (depth or channels). A
typical CNN is composed of different types of layers and components that are described

in the next section.

2.4.2.1 Convolutional layer

Convolutional layers consist of a number of filters, also called kernels, that perform
convolution operations over the images and produces the feature/activation maps. A
filter is a small matrix of weights which slides over the image from left to right and top
to bottom for convolution operation. Its dimension and numbers are specified manually,

thus representing a hyperparameter of the CNN. As an example, a convolution operation
k11 k12
ko1 koo
2 x 2 as an element-wise multiplication followed by sum. For the (i, /)" position in the

can be defined on an image I with dimension M x N with filter K = ( ) of dimension
output feature map Z, the value is computed as:

2

2
z; 1= Y. Y Kip,ql-Ili+p-1,j+q—1] 2.7
p=1qg=1

For every pixel I[i, j] in the original image I, the surrounding pixels centered around the
image kernel is re-estimated and this pixel neighborhood is convolved with the kernel
K resulting in a singular output value z[; j;. The kernel can be moved across the larger
image, sliding from left to right and from top to bottom, as shown in Figure 2.6.

During training, the weights of the kernels are generally randomly initialized. Cur-
rent practices use some specific initialization strategies such as "xavier initialization"
[64] or "he initialization" [73]. Apart from number of kernels and initialization, a kernel

has other hyperparameters which are chosen or tuned manually.

* Dimension of a filter- A filter of size F' x F' applied to an image of size I x I x C
has the volume of F' x F' x C (shown in Figure 2.7) that slides over the image and
produces the feature or activation map of O x O x 1 (we discus about output volume

O later in this section).

* Stride- The stride is the number of pixels by which a filter moves over the image
after one operation (shown in Figure 2.8). Stride is used in ’convolution’ and "pooling’

operations.
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Figure 2.6: Illustration of convolution operation on an image of size 6 x 6 with a filter of
size 3 x 3 [146]
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Figure 2.7: Illustration of K filters of size F x F x C [1]

Figure 2.8: A 1d stride of 2, operations over 7 pixels of the image.

¢ Padding- Padding is the process of adding P zeros to the sides of the boundaries
of the input image to make it customizable to the network. A Valid padding means
no padding (P = 0) and the last convolution is dropped if dimensions do not match.
A Same padding is performed in such a way that the output feature map has size
[é] where I is image dimension and S is the stride. A Full padding is applied
where it is important for the network to apply full convolutions on the limits of the

input. In the Full mode, the filter sees the inputs from end-to-end.

The output dimension of a feature map O depends upon the above mentioned hyperpa-
rameters. Considering I the length of the input volume size, F' the length of the filter,
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P the amount of zero padding, S the stride, then the output size O of the feature map

along that dimension is given by:

_ I—F + Pgtort + Peng
- S

In Equation (2.8), P+ and P,,q refer to how much padding (zero-valued pixels) is

0 +1 (2.8)

added to the beginning (top/left) and end (bottom/right) of the input matrix, respectively,
before applying the convolution operation in CNNSs. In practice, it is usually considered

Pgiort = Pepng = P in which case we can replace Pgyqrt + Pong by 2P in Equation 2.8.

2.4.2.2 Transpose convolution

Transpose convolution also know as deconvolution is an operation in the convolution layer
that act as a reverse of convolution operation. Unlike standard convolution where output
feature maps has reduced dimensions, transpose convolution is applied to upsample
the feature maps. Transpose convolution is used to increase the spatial resolution of
feature maps. This is particularly useful in tasks such as image segmentation or image
generation, where finer details need to be preserved or generated [116]. Mathematically,
a transpose convolution with 2 x 2 kernel on an input image I of dimension M x N is

computed for pixel (Z,j) in the output image O as:

= o9

where p and ¢ are the indices of the kernel K and s is the stride, typically 1 in case of

2

2
Oiji=>. > Kip,ql1
p=1q=1

transpose convolution.

Transpose convolution has the learnable parameters along with tunable hyperparam-
etes such as padding, stride to customize the output feature maps. In practice, transpose
convolution is followed by regular convolution to mitigate the artifacts of the upsampled
output feature maps. It is mainly used in computer vision problems where the goal is to

recover the original spatial resolution of the input images.

2.4.2.3 Pooling layer

Another basic component of CNN is Pooling layer which is often applied after convolu-
tional layer and has no learnable parameters. Pooling layer is crucial to preserve spatial
information and at the same time also responsible for reducing the dimension of the
feature map, resulting in a compressed representation of the input feature maps. Pooling

layer divides the input data into small non overlapping regions called pooling windows
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and applies aggregation operation such as Max or Average of the values for each pooling
window, thus reducing the size of the input feature maps. During pooling operation only
height and width of the input data is reduced while depth remains unchanged. Figure
2.9 shows the 'Max’ operation of the pooling layer.

Max Pooling

——>

Filter size = (2 x 2)
Stride =(2, 2)

Figure 2.9: Illustration of Max pooling operation of pooling layer with filter size 2 x 2 and
stride (2,2)

Pooling Layers provide a form of translation invariance by extracting the most
relevant features from different spatial locations, making the model more robust to
variations in the position of the features. Model complexity is significantly reduced by
using pooling layers as they aid in reducing the number of parameters of the network.
Moreover, a form of regularization is achieved by pooling layers as they aggregate the

important information from the local regions while ignoring the minor variations.

2.4.2.4 Activation layer

The activation layer employs a non-linear activation function on or before the pooling
layer’s output. This mechanism introduces non-linearity into the model, facilitating
the learning of more complex representations of the input data. Activation function is
generally applied right after the convolution operation and before pooling layer. Following

are popular activation function used in CNNs:

* ReLu- Rectified linear unit known as 'ReLu’ is a non linear activation which
quashed out negative values from the input feature maps. ReLu and its variants

are shown in Figure 2.10:

¢ Sigmoid- Sigmoid is a non linear activation function applied after convolution
operation to squash the incoming values between 0,1. The output probability
values are summed to 1 making it a frequent choice at the output layer of the

neural network for binary classification problems. In modern days, sigmoid is not
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Figure 2.10: Description of rectified linear unit ‘ReLu’ and its variants

used as an activation function in the middle layers of the neural network due to
its propensity to produce small gradient even for large input values, thus slowing
down the training with vanishing gradient problem [76] in large and deep
networks. Mathematically, sigmoid function is expressed as:

1
l1+eX

Softmax- Softmax is a non-linear activation function which squashes the values of
incoming vectored input data between 0,1 and so that they sum to 1. It is generally
applied at the last layer of the network to output probability values between 0 and
1 for multi-class classification problems. Mathematically, if the vector x of size c is

the input of the Softmax layer, its output, also of size ¢ is computed as

b1
p2 Xi
p=| | wherep;= ne—x. (2.11)
: ijleJ
[Pn |

2.4.2.5 Fully connected layer

A fully connected layer, also known as a dense layer, is a layer that connects each neuron

to all neurons in the previous layer, thus forming a subnetwork of dense connections in

the CNN. It is typically applied at the end of the network and is designed to capture the

global patterns of the input data. In the context of a CNN, the input to a fully connected
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layer is typically the output of the preceding convolutional and pooling layers, flattened
into a one-dimensional vector. Since every connection has a weight associated with it,
a fully connected layers has maximum number of parameters which are learnt during
training. Fully connected layers are responsible for learning high-level features and
patterns in the input data, which are essential for making predictions or classifications.
By connecting every feature from the previous layers to the subsequent layers, fully
connected layers enable the network to learn complex relationships and make predictions

based on the learned representations [17].

2.4.3 Optimization in Convolutional Neural Networks

Parameters (0) in CNNs are randomly initialized in the beginning, meaning that they
are not optimized and the performance of the network is also initially random. In order
to optimize the performance of the network, these parameters need to be fine-tuned
carefully so that the model gives the results as per needed. In the paradigm of supervised
learning, optimization or learning is performed with a training set which contains data
examples and their labels. The training data is provided to the network which has a ’loss
function’ that is used to minimize or maximize some objective function. Loss function is
usually a mathematical function that measures the discrepancy between the predicted
output of a model and the actual target value. It provides a way to quantify how well
the model’s predictions align with the true labels or expected outputs. For example the
loss function of the form: L(f (x;;0),y;) = If (x;;0)— y; |2 is used in linear regression and
many other algorithms (we discuss about loss functions in detail in Section 2.6.2).
Since it is challenging to determine the optimal parameters analytically, gradient
descent based numerical solutions come handy in case of optimizing CNN parameters.
The goal of gradient descent is to minimize the loss function by iteratively updating the
model’s parameters in the direction of negative gradient of the loss function. Gradient
descent start with the initial parameter set (6y) (weights and biases) of the network. The
algorithm iteratively computes the gradient of the loss function with respect to each
parameter. The gradient indicates the direction and magnitude of the steepest increase
in the loss function. The parameters should thus be updated in the opposite direction of
the gradient to reduce the loss. In the simplest form of gradient decent, this update is

performed iteratively using the following formula:
9t+1 = Ht —HV£(9t), (212)
where ¢ represent the current iteration, VL denotes the gradient of the loss function with
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respect to 6 and 71, known as the step size or the learning rate, is a hyperparameter
that must be manually tuned.

During training of CNNs, choosing the appropriate learning rate is a challenging task.
Setting this hyperparameter with large value makes the algorithm to diverge; setting it
with very small value slows down the convergence [66]. In practice, stochastic gradient
descent makes the learning rate a decreasing function 7; of the iteration number ¢,
giving a learning rate schedule, so that the first iterations cause large changes in the
parameters, while the later ones do only fine-tuning [174].

The gradient descent algorithm keeps on iterating training data over and over again
until it reaches some convergence. Due to the high-dimensional nature of training data,
it is highly unlikely that gradient descent will lead to a global minimum of the less
function. Instead, it converges towards a local minimum. The standard batch mode
gradient descent algorithm calculates gradients over the entire training set before
updating the model parameters, which can be computationally expensive for large
datasets. To address this issue, the Stochastic Gradient Descent (SGD) method updates
the model parameters after computing the gradients for a single random sample from
the training set in each iteration. Another computationally efficient strategy is to use
mini batch, in which gradient descent algorithm computes the gradients of a small
batch of samples from the training set before updating the model parameters. The bath
size is a model hyperparameter, which has to be set manually.

Stochastic gradient descent with momentum is an improved version of regular SGD
optimizer that dynamically fine-tune the model parameters during training, thus helps
the algorithm converge faster while minimizing some predefined loss function. In the
context of SGD optimizers, the notion of momentum refers to the idea to keep tracks of
the direction of the past gradients with the help of exponentially moving averages
and to use this information to update the parameters [158]. Mathematically, in SGD

with momentum, the update rule for the parameters 0 at iteration ¢ is given by:

ve=PB-vim1—1-VLO,), (2.13)
011 ="0¢ +vy, (2.14)

where:

* y; is moment at iteration ¢,

* (1is a moment parameter (typically between 0 and 1),
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* VL(0;) is the gradient of the loss function with respect to the parameters 6 at

iteration ¢,

* 7 1is learning rate or step size.

In this formulation, the momentum term v; is updated at each iteration by taking
a weighted average of the previous momentum v;_; and the current gradient. This
weighted average acts as a memory of past gradients’ directions, allowing the optimizer
to continue moving in the same direction if gradients consistently point in that direction.
This momentum-based update helps to smooth out the oscillations in the gradient
updates. Instead of the optimizer making large, erratic jumps in the parameter space,
the momentum term causes it to move more smoothly and steadily. Additionally, this
smoothing effect can accelerate the convergence of the optimization process, especially
in scenarios with high curvature or noisy gradients. In these challenging optimization
landscapes, the momentum term can help the optimizer navigate more effectively and
reach the optimum more quickly [185].

The other most widely used optimizers are RMSProp (Root mean squared propaga-
tion) [193] and Adam (adaptive moment estimation) [98] which are considered further
improved versions of stochastic gradient with moment. The RMSProp optimizer works
by exponentially decaying the learning rate every time the squared gradient is less
than a certain threshold. This helps reduce the learning rate more quickly when the
gradients become small. In this way, RMSProp is able to smoothly adjust the learning
rate for each of the parameters in the network. The RMSprop algorithm utilizes ex-
ponentially weighted moving averages of squared gradients to update the parameters.

Mathematically, the update rule for RMSprop at iteration ¢ for parameter 6 is given by:

vi= v+ (1-B)-(VLO)), (2.15)
Ore1=0; - \/%7 — VL@, 2.16)

where:

* v, is the exponentially decaying average of past squared gradients for parameter 6

at iteration ¢,
* fBis a decay rate parameter (typically set to a value close to 1, e.g., 0.9),

* VL(0;) is the gradient of the loss function with respect to parameter 6 at iteration
¢
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* 7nis learning rate and ¢ is s small constant for numerical stability.

Adam optimizer can be thought of as a combination of RMSProp and SGD with
momentum. It uses the squared gradients to scale the learning rate like RMSprop, and
it takes advantage of momentum by using the moving average of the gradient instead of
the gradient itself, like SGD with momentum. This combines dynamic learning Rate and

smoothing to reach the convergence. Mathematically, an adam optimizer is described as:

my=P1-me1+(1—P1)-VLEO,), (2.17)
ve = Po-vi-1 + (1- o) (VLO)), (2.18)
N my
= 2.19
my 1 _ ﬂi ) ( )
Ut
by = 2.20
Ut 1 _ ﬂ; ) ( )
0t11=0;— A77 My, (2.21)
Uy +€

where:

* m; and v; are the first and second moment estimates of the gradients for parameter

0 at iteration ¢,

B1 and Be are decay rate parameters (typically close to 1, e.g., 0.9 and 0.999

respectively),

* VL(0;) is the gradient of the loss function with respect to parameter 6 at iteration
Z

* m; and 0; are bias-corrected estimates of the first and second moments respectively,

* 7nis learning rate and ¢ is s small constant for numerical stability.

2.4.3.1 Backpropagation

All gradient descent variants discussed so far require to be able to compute the gradient
of the loss function VL (0) with respect to all model parameters 0, i.e. all weights and
biases in a neural network. This is achieved in the context of neural networks using the
backpropagation algorithm [158] (for backward propagation). This efficient algorithm
is instrumental for the training of neural networks and its existence is one of the

fundamental reasons behind their popularity.
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Each individual component of the gradient, 6,C/6w§j, of a loss £ measures the sensi-
tivity of the function value (output value) with respect to a change in its argument wﬁj
(input value). In the case of MLPs or CNNs, model predictions, and consequently also
the loss, are formulated as several nested function compositions, one per network layer
(see Sections 2.4.1 and 2.4.2). The computation of the gradient is based on a repetitive
application of the chain rule [216] that expresses the derivative of the composition of two

functions f and g as follows:

dg df

af dx’ (2.22)

d%c(g (f (X)) =
Backpropagation exploits the chain rule and the layered structure of the network to
efficiently compute all components of the gradient VL () in a single pass through the
network from the last to the first layer. The resulting algorithm avoids duplicate compu-
tations and has a computational complexity linear with respect to the number of model
parameters. The full mathematical derivation of the algorithm is out-of-scope of this
introductory chapter but details can be found for example in [72, 147].
Backpropagation is a fundamental algorithm for training neural networks, efficiently
computing gradients using the chain rule to update weights and minimize loss. Although
introduced in the early 1980s, it remains the fundamental mechanism powering modern
deep learning, allowing neural networks to approximate increasingly complex functions.
It may however face challenges such as vanishing and exploding gradients, which can
hinder training. These issues can however be mitigated through strategic choices of
activation functions, proper weight initialization techniques, advanced optimization
algorithms or specific network architecture. Despite its low computational complexity
in theoretical term, its application to large-scale neural networks can be very costly.
Fortunately, implementation on specialized hardware such as GPUs can accelerate the

computation, making the training of sophisticated models practically feasible.

2.4.3.2 Batch normalization

Batch normalization [86] layer is applied in a CNN to optimize the training. It normalizes
the activations of each layer by adjusting and scaling them and is typically applied after
the convolution and activation layers but before pooling layers. During training, batch
normalization computes the 'mean’ and ’variance’ for each mini-batch and uses them to
normalize the activations. As an example, suppose, we have a mini-batch of activations

X = {x1,x®...x™} where m is the size of mini-batch, given an activation @, the first
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step is to normalize the mini-batch as:

(i)
)X TH
= —, (2.23)
Vo2 +e
where y, 02 is the mean and variance of the mini-batch respectively and € is a small
constant for numerical stability.
After normalizing, two learnable parameters y and S for scaling and shifting respectively

are applied to the normalized activations x* as:
3y O =y 4 g, (2.24)

During training, the population statistics (mean and variance) are updated using expo-

nentially moving averages as:

Hnew = Qloid +(1—a) u,

2 2 2
Onew =0, +(1—a)o”,

where a is a momentum parameter typically close to 1 (0.9 or 0.99). During inference,
it uses the aggregated statistics of the entire training dataset to normalize the activa-
tions. Overall batch normalization can speed up training by allowing the use of higher
learning rates thus narrowing down the parameter search. It also helps to improve the
generalization performance of the network by maintaining the intermediate activations

in an acceptable range to prevent the problem of exploding or vanishing gradients [163].

2.4.3.3 Dropout layer

Dropout [176] is another useful method for optimizing the training of a CNN as it
prevents overfitting by dropping some random neuron activations during training. At
every iteration, it selects a random subset of neurons of the previous layer and set the
activations to zero with a probability p. To ensure that the activations of different set
of neurons are dropped, this process is performed for each training example and each
neuron independently. The remaining neurons are scaled by a factor of ﬁ to compensate
for dropped neurons and maintains an expected output magnitude. During inference,
the dropout layer is typically deactivated, with all the neuron activation being used.
Overall, the dropout layer acts as a form of regularization by introducing noise into
the network training. This noise helps prevent the network from relying too heavily
on any particular set of neurons and encourages the network to learn more robust and

generalized features.
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2.4.4 CNN architectures

Currently a number of state-of-the-art CNN architectures are being used by researchers,
academicians and companies to solve computer vision based image classification, seg-
mentation and object detection tasks. We discuss some of the architectures that we have

implemented in our thesis work.

2.4.4.1 Residual network

AlexNet [100] and VGG16 [171] were the first of its kinds of CNNs that have revolu-
tionized deep learning in the field of computer vision. Nowadays they have however
become obsolete and are replaced by deeper and more sophisticated CNNs. One such
CNN is Residual Network, popularly known as ResNet [74], that uses skip connections or
shortcuts, allowing the network to learn residual mappings instead of directly learning
the desired underlying mapping. This residual mapping solves the problem of vanish-
ing gradients that occurs in deep networks. The basic building block of ResNet is the
residual block which consists of two convolutional layers with batch normalization and
ReLu as activation functions and a shortcut or skip connection that skips one or more
intermediate layers. This skip connection allows the flow of gradient directly through
the network without passing through the activation function, thereby mitigating the
vanishing gradient problem. The shortcut connections simply perform identity mapping,
i.e., they directly pass along the input to the next layers. ResNet comes in number of
variants, such as ResNet18, ResNet50, ResNet152 where numbers indicate the numbers
of layers in the ResNet. Apart from standalone architecture, variants of ResNets are also
used as backbone networks for various deep transfer learning task (We discuss about
transfer learning in Section 2.5). Figure 2.11 shows the configuration of residual blocks
in the ReseNet34 architecture.

2.4.4.2 Fully Convolutional Network

A Fully Convolutional Network, also known as FCN [116], is a CNN architecture primar-
ily used for semantic segmentation tasks in computer vision. Semantic segmentation
is a pixel-wise classification where each pixel is assigned a predefined label (object or
background). This is in contrast with the standard image classification, where a label is
assigned to the entire image. Contrary to traditional CNN, where the last layers are fully
connected or dense layers, in FCN architecture, convolutional layers are implemented

end-to-end fashion. In FCN, the initial layers are made up of stack of convolutional
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Figure 2.11: A typical 34 layered ReseNet34 architecture with 4 residual blocks. Skip
connection are placed after every two convolutional layers (source:[74])
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blocks followed by maxpooling whereas later layers are upsampling layers that use
transpose convolutional (or decovolutional) layers to recover the spatial resolution. Skip
connections are incorporated by fusion of intermediate layers with upsampling layers as
shown in Figure 2.12. The variants of FCN includes FCN8, FCN16 and FCN32 where

number indicates the number of layers in the network architecture.

2.4.4.3 U-Net architecture

U-Net [157] is a popular CNN architecture for semantic segmentation, initially proposed
in biomedical domain. It follows an encoder-decoder architecture, where the encoder is
used to extract hierarchical feature representations by gradually reducing the spatial
dimensions of the input image through convolutions with max-pooling operations and
the decoder part upsamples these features to generate a segmentation map with the
same spatial dimensions as the input image. In the encoder part, contracting feature
maps have increasing number of channels along the subsequent convolutional layers

whereas in decoder part, expending feature maps have decreasing number of channels
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Figure 2.12: An FCN network architecture with skip (fusion) connections in the interme-
diate layers

along the upsampling path. Skip connections are used to fuse the compressed activations
from encoder with the upsampled activations of decoder thereby combining the high-
resolution, low-level features from the encoder with low-resolution, high-level features
from the decoder. U-Net is proven to be very effective in semantic segmentation tasks in
biomedical field, including cell segmentation, organ segmentation, and lesion detection
in medical images [29, 79, 109]. Figure 2.13 shows the original U-Net architecture with

all its specifications.

2.4.4.4 High resolution Network architecture

High resolution network architecture, known as HRNet [211] is primarily developed
for general purpose computer vision tasks including semantic segmentation, human
pose estimation, object detection and facial landmark detection. It maintains high-
resolution representations throughout the network by using parallel branches with
different resolutions. These branches are then fused together at multiple stages of
the network, allowing the model to capture both fine-grained details and high-level
semantic information simultaneously. It starts from a high-resolution convolution stream,
gradually adding high-to-low resolution convolution streams one by one, and connect
the multi-resolution streams in parallel. The resulting network consists of several
stages as shown in Figure 2.14, and the nth stage contains n streams corresponding
to n resolutions. Repeated multi-resolution fusions is performed by exchanging the

information across the parallel streams over and over [211].
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2.5 Deep transfer learning and domain adaptation

One of the bottlenecks in training deep CNNs is the requirement for a large amount
of labeled data to train the model. In real-world applications, such as general image
classification, datasets with millions of labeled images (e.g., ImageNet [49]) are available,
providing sufficient data to train a CNN classifier or an object detector. In biomedical
domain, where labeled image datasets are often scarce or not publicly accessible, training
a CNN can be however quite challenging. Deep Transfer Learning is a machine learning
technique where a pre-trained deep learning model, developed for one (source) task, is
adapted for a different but related (target) task. It leverages the knowledge gained from
the source task to improve performance or efficiency on the target task, particularly
when the target task has limited data. By gaining the knowledge from the source task,
the model can effectively learn representations that generalize well to the target task
[140, 235]. In this thesis, we discuss about supervised deep transfer learning applied to

anatomical landmark detection. Deep transfer learning has the following components:

* Source and target tasks: Source task comes from source domain Dg and it

consists of labeled data pairs {(xf , yf )}Zsl for which the model is already trained
S

and y;.g are the corresponding labels. Target task comes from target domain that

and the sample set Ng is very large. Here x? are input features from source task

consists of labeled data pairs {(x7,y) }ZTI for which the model is transferred and
T

the sample set N of this domain is small. In this case x; are input features for
target task and yiT are the corresponding labels (if available). In transfer learning,
we leverage the model fg learned from the source task to improve the learning

process for the target task.

¢ Pre-trained model: It is a deep learning model of a source task, trained on large,
diverse datasets (e.g., ImageNet for image tasks), capturing general patterns like
edges, shapes, or textures in their early layers, and task-specific features in their

later layers.

Deep transfer learning has two approaches to transfer the knowledge from source task
to target task, namely feature extraction and fine-tuning. In feature extraction, the
model fgs, learned on the source task is used as a fixed feature extractor to transform raw
input data from source task into a lower-dimensional, informative feature representation.
Instead of training the entire model from scratch, the early or intermediate layers (which

capture general patterns) of fg are used as a fixed, untrained, feature extractor, while a
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new classifier g7 is trained using these features as inputs. More formally, let us denote
by fs(.;0s) the feature extractor whose parameters g are determined on the source data.
The target model f7(x;07) is defined as

fr(x;0r) = gr(fs(x!;05);07),

with the parameters 67 optimized on the target data:

Nr
0r = argmin ). L7 (g1(fs(;05)0),] ),
i=1

where L7 is the loss function of the target task. The model g7 can be any trainable
classifier (e.g., a fully connected layer).

In the fine-tuning approach, the target task model f7 is initialized with the weights of
the source model fr and then fine-tuned on the target dataset. Technically, we fine-tune

the model by the following formulation:

N7

fr=argmin izZILT (f (xf’,eT) ,yiT) + 1-R(O7,65), (2.25)

where L1 is the loss function of the target task, R(07,60g) is a (optional) regularization
term, for instance to manage the difference between fs and f7. A is the hyperparameter
that controls the strength of regularization. In the fine-tuning approach, a pretrained
model serves as the backbone or encoder of the target model f7. The model consists of
two sets of parameters: g from the source task model fs and 67 from the target task
model f7, both of which are integrated into a common network for training. Fine-tuning

offers several options for updating the model parameters [226]:

* The early layers (typically from the pretrained model) can be frozen, meaning
their parameters remain unchanged during training, while only the later layers

are optimized.

¢ Alternatively, the entire pretrained backbone can be frozen, and only the final
classification layer is trained. The approach then becomes an instance of feature

extraction.

¢ In a full fine-tuning approach, all parameters in 07 are updated during optimiza-

tion, allowing the model to fully adapt to the target task.

Domain adaptation is a particular family of transfer learning problems in which

a model to perform a given task has been trained on one (source) data distribution
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but has to be applied to perform the same task on a different, but related, (target)
data distribution. Unlike in general transfer learning, in domain adaptation, the input
space and tasks, and thus the label space, are shared between the source and target
domains, and only the source and target input distributions are different. For instance,
in biomedical research, laboratories across different regions use various data acquisition
tools (such as microscopes or X-ray machines) and use all their own acquisition settings to
collect similar types of data. These differences in acquisition settings often cause models
trained on data acquired by one laboratory to perform poorly on data acquired by another
laboratory, leading to the issue of domain shift. Domain shift can lead to a drop in the
model’s performance when applied to the target domain, as the model is trained on one
distribution but tested on another. The general transfer learning strategies mentioned
earlier, i.e. feature extraction and fine-tuning, can be applied for domain adaptation but
other more specific approaches exist that try to minimize the impact of domain shift
while minimizing the amount of target domain data to be collected (see, e.g., [70] for a

review).

2.6 Metrics and loss functions

In the context of model evaluation, if we are interested in performance measure in terms
of ‘the higher the better’, then it is called metric and if ‘the lower the better’, we call it
loss. While loss functions are used during training to optimize the model, evaluation
metrics (e.g., accuracy, F1l-score) are used after training to measure performance on
validation or test datasets. They serve different purposes but are often aligned to ensure
the model is optimized for relevant metrics. They help in assessing how well our model is
doing and can guide in fine-tuning the model or selecting the best model among different
alternatives. In this thesis, for the segmentation tasks discussed in Chapters 4 and 6,
we investigate both binary and multi-class semantic segmentation approaches which is
a type of pixel-wise classification task. In these approaches, each pixel is assigned to a
predefined class label, with binary segmentation involving two labels (e.g., 0 or 1), and
multi-class segmentation involving more than two labels. A binary classifier typically
generates a probability score P (y = 1| x) using sigmoid function in the final layer. This
score ranges between 0 and 1 and represents the likelihood that the input x belongs to the
positive class (e.g., "1") or background (e.g. , "0"). A multi-class classifier employs softmax
function in the last layer to produce the class probabilities, ranging between 0 and 1 and

summing to 1. In both cases, a decision threshold is a critical concept, where the goal
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is to assign one of the possible labels (i.e. classes) to each pixel. It refers to the value
at which the predicted probability or score for a given class is compared to determine
the final classification. In binary classification tasks, the default decision threshold on
a probability score is T' = 0.5, meaning that inputs with a predicted probability of 0.5
or higher are classified as the positive class (i.e. 1) while those below this threshold are
classified as the negative class (i.e. 0). Note however that, this probability score can
be tweaked to improve confidence calibration that enable better interpretability and
decision making. In case of multi-class classification, the default class is typically the
one that receives the highest class probability score, but, equivalently to the use of a
decision threshold, the probabilities can be rescaled using additional hyper-parameters
to favor some classes over the others.

Many metrics and loss functions are available in the machine learning literature. We
discuss below only those which are related to our thesis work. We fist cover in Section
2.6.1 metrics that are used to assess binary classifiers and then presents in Section 2.6.2

various loss functions that are used to train deep learning models.

2.6.1 Metrics

A metric is a quantitative measure used to evaluate the performance of a model on
an independent test set. Metrics provide insights into how well a model performs with
respect to the specific objectives of the problem being solved. We focus here on binary
classification problems and we will denote by y; € {0,1} the true output class of the ith
instance and by j; € {0,1} the model prediction for the same instance. Instances in the
next chapters will be mostly N image pixels that will have to be predicted as belonging
to a particular class (typically the positive class, encoded as 1) or to the background
(typically the negative class, encoded as 0), in the context of image segmentation tasks.

Before moving to the metrics descriptions, we first defined some terms used to

calculate them.

* True positives (TP): the number of positive instances that are correctly predicted

as positives by the model. It can be computed as:

M=

1

~
I

where N is the total number of instances (e.g. pixels in the image).
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* False positives (FP): the number of negative instances that are incorrectly

predicted as positives by the model. It is computed as:

N
FP=3) 5 -(1-y). (2.27)
=1

¢ False negatives (FN): the number of positive instances that are incorrectly

predicted as negatives by the model, computed as:

N
FN=Y (1-9) 5. (2.28)
i=1

* True negatives (TN): the number of negative instances that are correctly pre-

dicted as negative, computed as:

N
TN =) (1-5)-1-y). (2.29)
=1

2.6.1.1 Accuracy

Accuracy is the simplest metric which tell about the model performance in term of how
many predictions are correct out of total predictions. The accuracy assigns 1 to correct
predictions and 0 to misclassified samples (also known as 0—1 loss). Mathematically, the
accuracy score in terms of loss can be computed by the model over a dataset of n samples

as.
1 N
=Y (1-401(yi,5:)) (2.30)

M =
ace = 77 o]

where y; and y; are the actual and predicted values respectively. Another way of writing

the accuracy formula is:

TP +TN
= 2.31
Mace TP+TN +FP+FN (2.31)

where TP,TN,FP and FN are defined as above. Although accuracy is the most straight-

forward evaluation metric, it becomes unreliable in scenarios with imbalanced datasets

(see the next section). In such cases, relying on accuracy can lead to a biased model that
favors the majority class, failing to generalize effectively. This is particularly problematic
when the minority class holds greater significance, as the model may overlook crucial

instances, leading to poor performance in real-world applications.
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2.6.1.2 Precision, Recall and F1 score

Tackling class imbalance while measuring the performance of the model is vital in
situations where the minority class has more weight than negative class. For example,
in biomedical research, machine learning models are often used to detect whether a
patient has cancer. Suppose only 2% of the patients in the dataset have cancer. In such a
case, a model trained predominantly on the negative class could achieve a high accuracy
of 98% simply by predicting all patients as negative, while completely ignoring the
minority (positive) class. In scenarios like this, it is more meaningful to focus on metrics
that account for false positives (FP) (false alarms) and false negatives (FN) (missed
detections). Metrics such as Precision, Recall, and F1 score are more informative and
reliable performance measures compared to plain accuracy. These metrics can be defined

as:

* Precision measures the proportion of true positive predictions out of all positive
predictions (both true positives and false positives). In other words, precision looks
at ’how many retrieved cases are relevant’. It is also called ’positive predictive

value’ and calculated as:
TP

Precision = ——— 2.32
recision = o ( )
* Recall, also called ’sensitivity’ or 'true positive rate’ (TPR), measures the proportion
of true positive predictions out of all actual positive instances in the dataset.
In other words, it indicates the probability of retrieving relevant cases and is

calculated as:

TP
L 2,
Recall TPIFN (2.33)

* F1 score is the ’harmonic mean’ of precision and recall values and balances both
metrics. It gives more weight to lower values. The F1 score is high only if both

precision and recall values are high. F1 score is calculate as:

Precision x Recall

F18 =2. 2.34
core Precision+Recall ( )
In terms of TP, FP and FN, the F1 score can be expressed as:
2-TP
F1 Score= (2.35)

2.-TP+FP+FN
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2.6.1.3 ROC and AUC curves

The Receiver Operating Characteristic (ROC) curve and the Area Under the ROC Curve
(AUC) are commonly used evaluation metrics for binary classification models. They
provide insights into a model’s performance across different decision thresholds and help

assess its ability to discriminate between the positive and negative classes.

* ROC curve: The ROC curve is a graphical representation of the performance of
a binary classification model at different threshold values. The curve shows the
True Positive Rate (see recall in Section 2.6.1.2), also known as sensitivity or recall,
against the False Positive Rate (FPR = F%) or '1—specificity’ at various
threshold settings [186] as shown in Figure 2.15. By varying the decision threshold
of the model (the probability threshold above which an instance is classified as
positive), we can calculate different TPR and FPR values, resulting in points

on the ROC curve. An ideal ROC curve is more inclined to top left of the plot,

Perfect
classifier ROC curve
1i0e

True positive rate

1.0
False positive rate

Figure 2.15: Visualization of Receiver operating characteristic (ROC) curve. (source:
[237])

indicating high sensitivity and low specificity, showing better model performance.
A random classifier would result in a diagonal line from the bottom-left to the

top-right of the plot.

¢ AUC quantifies the overall performance of a binary classification model by calculat-
ing the area under the ROC curve. It represents the probability that the model will
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rank a randomly chosen positive instance higher than a randomly chosen negative
instance. AUC provides a scalar value between 0 and 1, with 1 indicating a perfect
model (with TRP = 100% and FPR = 0) in discriminating positive and negative
instances. AUC values below 0.5 shows that the model is worse than random guess
and value at 0.5 indicating the model is just performing at random chances (shown

in the diagonal line in Figure 2.15)

2.6.2 Loss functions

The loss function plays a crucial role in training a CNN. It is applied at the end of the
last layer to quantify the difference between predicted values (y;) and the actual ground
truth values (y;). The choice of a loss function depends on the specific task at hand,
such as classification, regression, or segmentation. In this section we discus some of the
loss functions we have implemented in our thesis work, first for regression and then for

classification problems.

2.6.2.1 Regression loss functions

Regression loss functions are used in tasks where the model output values are continuous
(e.g., when predicting (x, y) positions of a landmark in an image in Chapter 5). We describe

below the two regression loss functions used in our thesis.

2.6.2.1.1 Mean Squared Error (MSE). Mean squared error measures the mean
squared difference between true and predicted values. It Penalizes larger errors more

heavily due to the squaring and is thus sensitive to outliers. MSE is calculated as:
1 Y 9
LysE = N Y i—5) (2.36)
i=1
where N is the sample size, y; and y; are the true and predicted values respectively.

2.6.2.1.2 Mean Absolute Error (MAE). Mean absolute error measures the average

absolute difference between predicted and actual values:
1 N
Lyag ==Y lyi—il. (2.37)
N3

With respect to MSE, MAE is less sensitive to outliers, i.e. punctual large differences

between the true and predicted values.
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2.6.2.2 Classification loss functions:

We review in this section the classification losses used in our thesis. Most of these
losses are computed on the basis of class probability estimates instead of the final class
predictions, denoted as y; earlier. The main reason for this is that the latter are not
differentiable and thus can not be optimized by gradient descent. In what follows, in the
context of binary classification, we will therefore denote by p; the probability of class 1 as
predicted by the model (by default, y; =1 if p; > 0.5, y; = 0 otherwise). In the context of
multi-class classification, we will denote by p;; the probability that instance i is in class
J as predicted by the model and we will (one-hot) encode the true class of instance i with

the variables y;; € {0,1}, such that y; ; =1 if instance i is in class j, y;; = 0 otherwise.

2.6.2.2.1 Cross entropy loss. Cross entropy is one of the most popular loss functions
used to train CNNSs for classification tasks. It measures the distance between two
discrete probability distributions: the conditional class probabilities predicted by the
model, p;;, and the actual class probabilities. The former is the output of the network
last softmax layer. The actual class probabilities are typically unknown but one uses
instead a probability of 1 for the actual class of the example and O for all other classes,
as encoded by variables y;;. Let us develop cross entropy for binary classification (two

classes) and multi-class classification.

¢ Binary cross entropy for a training set of N instances is computed as follows:
1 N
LpcE = N Y (yi-log(pi)+(1—y;)-log(1-p;)) (2.38)
i=1

It is minimum, and equal to 0, when p; =y; forall i =1,...,N.

¢ Categorical cross entropy is defined as:

1 N C
=¥ yij-log(piy) (2.39)

Lcce =—
N33

where C is the number of classes. As for binary cross entropy, categorical cross

entropy is minimum and equal to 0 when p;; = y;; for all i and ;.

2.6.2.2.2 Jaccard loss: The Jaccard loss function [21], also known as the Intersection
over Union (IoU) loss, is commonly used in image segmentation tasks to quantify the
similarity between the predicted segmentation mask and the ground truth mask. It is

derived from the Jaccard Index (or IoU) and is designed to minimize the dissimilarity.
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First, we define Jaccard Index, which measures the similarity between two sets.

Mathematically, for two sets A and B, the Jaccard Index is given by:

IANB| AN Bl

= 2.4
JAUB|  |AI+IBI-ANBY’ (2.40)

Ju,B) =

where A (resp. B) is the set of positive pixels in the ground truth (resp. predicted)
mask. Assuming that our N instances are the image pixels, image segmentation can be
considered as a binary classification problem, where the N instances are the image pixels
and the goal is to predict for each pixel whether it belongs to the segmentation mask (1)
or not (0). Using our previous notations, the Jaccard Index (or IoU) can be derived as
follows:
_ YN iy

YN 3i+EN yi-YN 5 -y

where the sum is over all N image pixels. The numerator is the number of pixels belong-

J(3,5) (2.41)

ing to the mask (y; = 1) and that are predicted as positive (; = 1) and the denominator
is the number of pixels that are either positive or predicted as positive. Because it uses
the class predictions y;, the latter metrics can not be optimized by gradient descent. the

Jaccard Loss used for model training is defined as follows:

Liaccarda =1-J(D,y), (2.42)

where the class predictions y; € {0,1} are replaced in the Jaccard Index by the class

probability predictions p; € [0,1].

2.6.2.2.3 Dice loss: Introduced first in [181], the dice loss is used for image segmen-
tation tasks for highly unbalanced datasets. It measures the area of overlap between
predicted regions and ground truth regions, excluding the background region. To com-
pute the dice loss, we first define the dice coefficient (using the same notations as in the
previous section):

2-YN 9y
YN 5 +XN v

The dice coefficient is very close to the Jaccard Index of Equation 2.40. Interestingly, one

DC(3,5) = (2.43)

can show that it is also equivalent to the F1 score. Indeed, if we substitute TP, FP and
FN terms from Equations 2.26, 2.27 and 2.28 respectively, into Equation 2.43, then the

numerator becomes:

N
2-) 5i-y;=2-TP (2.44)
i—1
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and the denominator:

N N
Y 9 +> yi=TP+FP+TP+FN (2.45)
i=1 i=1

From Equations (2.44) and (2.45), the dice coefficient can thus be rewritten as:

2-TP
2-TP+FP+FN’

DC(,y) = (2.46)

which is exactly the F1 score from Equation (2.35).
As for the Jaccard index, DC(y,y) is not differentiable since it depends on class
predictions. The dice coefficient in Equation 2.43 is only for model assessment. The Dice

loss used for model training is written:
EDice =1 —DC(ﬁ,y), (2.47)

where again the class predictions J; € {0, 1} in the Dice Coefficient are replaced by the
class probability predictions p; € [0, 1].

2.6.2.2.4 Tversky loss: Tversky loss [161] generalizes the dice loss by introducing
two hyperparameters a and f (that should sum to 1) that allow to weight the “false

positives" and “false negatives" respectively. The Tversky coefficient is calculated as:

TP
TP+a-FP+p-FN’

Tv(y,y)= (2.48)

where a and f are weighting parameters that control the relative importance of false
positives (FP) and false negatives (FN), respectively. When a > 8, the Tversky index
places more emphasis on minimizing false positives, prioritizing sensitivity (recall).
When «a < B, tversky index tries to minimize the effect of false negatives and prioritizing
precision or specificity. Dice coefficient is recovered by setting the @ = f =0.5. Tversky
loss is the complement of tversky index, where class predictions are substituted for class
probabilities:

Liversky =1—Tv(p, y). (2.49)

Similar to the dice loss, the tversky loss quantifies the distance between two segmentation
masks and is used in medical image segmentation tasks of highly imbalanced datasets

(i.e. small segmentation masks).

2.6.2.2.5 Focal loss: Focal loss [111] is a modified version of the standard cross-
entropy loss, designed to address the class imbalance problem often encountered in

dense prediction tasks such as object detection, semantic segmentation, and medical
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imaging. It focuses more on the hard-to-classify examples (e.g., minority classes or
misclassified samples) by dynamically scaling the loss contribution of easy-to-classify
(true negatives) examples. Focal loss is used as a loss function, both in binary and
multi-class classification tasks. Mathematically, focal loss is defined as follows (in binary
classification setting):

1 N
Lrocal = =7 2 (vi-a- A= p) log() + (1~ y:) (1~ a)-p}log(1-py), (2.50)

N =1
where a and y are two hyperparameters. With respect to binary cross entropy, a (€ [0,1])
is a weighting factor that allows to re-balance the classes, while y (typically set to 2)
allows to give more weights to the hard-to-classify examples. For example, when y; =1,

the first term is rescaled by (1 — p;)", which increases as p; moves further away from 1.

2.6.2.2.6 Bi-tempered logistic loss: Bi-Tempered Logistic Loss [11] is another
extension of the standard cross-entropy loss, designed to improve robustness against
label noise (mislabeling) and outliers. Unlike standard cross-entropy, which assumes
data is perfectly labeled and reliable, Bi-Tempered Loss uses a tempered logarithmic
and tempered exponential framework, controlled by two parameters 77 and T'e. These
parameters shape the loss to mitigate the impact of outliers and noisy labels. The Bi-
Tempered Logistic Loss introduces tempered alternatives to the exponential (e.g. softmax
function in the last layer) and logarithmic functions (e.g. cross entropy loss function),
softening their impact and offering robustness to scenarios where the presence of outliers
and mislabeling of data make the training unstable. We define tempered logarithm

function log;(x) as:

xl_T—l .
ifT#1,
logp(x)=4{ 7 (2.51)
log(x) ifT=1,

When T =1, it reduces to natural logarithm log(x) and if 7' < 1, the logarithm func-
tion grows slowly, thereby limiting the influence of outliers. The tempered version of

exponential function expy(x) is defined as:

1
[1+(1-T)x]7™ if T #1,
exp (x) ifT=1,

expr(x) = { (2.52)

where [z], = max(z,0) ensures non-negativity. Setting 7" = 1 reduces Equation (2.52) to

the standard exp(x) and for T' > 1, it caps excessively large values, making predictions
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more stable. To calculate the Bi-tempered loss, firstly, a tempered softmax function is

used to compute the predicted probabilities p;; for instance i as:

expr, (2i;)

o1 exPry (Zik)

Pij (2.53)
where z;; are raw logits (model outputs) for instance i and class j and T2 controls how
the softmax function behaves. For Ty < 1, the output probabilities are flattened, reducing
overconfidence and for 79 > 1, the probabilities are sharpened (tail-heaviness), thus
keeping the loss value small while maintaining the decision boundary away from the
noisy examples. The loss, for N instances, is computed using the true labels y; and the

tempered logarithm as follows:

1 N C A
ACBi—tempered = _N Z Z Yij 'IOng (pij) ) (2.54)
i=1j=1
where T'1 controls the behavior of the logarithmic penalty. Tuning this term between
0 and 1 will ensure a finite amount of loss is incurred for each example even if they
are mislabeled. It down-weights extreme probabilities, thereby mitigating the impact of

noisy labels.
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CHAPTER

LITERATURE REVIEW

In this chapter, we review various computer vision-based automatic and semi-automatic
image analysis methods and tools that are used in morphometric and phenotype studies
of the aquaculture and biomedical model fish. These methods and tools play a significant
role in improving research by automating various aspects of the bioimage analysis. This
chapter aims to provide exhaustive information about the current conventional and
Al-based image analysis methods and tools to researchers from biomedical, aquaculture
and computer science background. Our literature review was performed using searches
in PubMed, Scopus, Google Scholar, Web of Science, Bioimage Informatics Index (ht
tps://biii.eu, and Papers With Code (https://paperswithcode.com/ databases
(accessed before 2 August 2023), and thanks to our personal communications with
researchers in the field, including members of the BioMedAqu project.

Reference: This chapter is an adapted and updated version of the work we published
in "Navdeep Kumar, Raphaél Marée, Pierre Geurts, Marc Muller, "Recent Advances in
Bioimage Analysis Methods for Detecting Skeletal Deformities in Biomedical

and Aquaculture Fish Species", Biomolecules, 2023".

3.1 Introduction

Image analysis refers to the process of examining, interpreting, and extracting meaning-
ful information from digital images. It involves applying various algorithms, techniques,

and tools to understand and analyze the content, structure, and characteristics of an
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image [65]. Image analysis can encompass a wide range of tasks, including image seg-
mentation, object detection, feature extraction, pattern recognition, image classification,
and image enhancement [139]. By utilizing computer vision, machine learning, and
other computational methods, image analysis enables the extraction of quantitative
data, identification of patterns, and generation of insights from visual data. It finds
applications in numerous fields, such as medical imaging, satellite imagery, surveillance,
quality control, robotics, and scientific research, contributing to advancements in areas
such as healthcare, agriculture, manufacturing [141]. By analyzing images, valuable
information can be extracted, patterns can be identified, and important insights can be
gained, leading to advancements in various domains. Automatic image analysis refers to
the process of using Al based computer vision algorithms and techniques to analyze and

extract information from images without human intervention.

In biomedical research, images also commonly referred to as bioimages are generated
using sophisticated instruments such as x-ray machines or powerful microscopes to
extract and visualize biological information within two (x,y) or three (x,y,z) dimensional
coordinate spaces and four (x,y,z,t) dimensional dynamic data spaces [224]. Bioimages
can provide uniquely valuable information about tissue composition, morphology and
function, as well as quantitative descriptions of many fundamental biological processes.
Biomedical imaging enables the real-time visualization of biological processes within
living organisms, capturing alterations in receptor kinetics, molecular and cellular sig-
naling, as well as interactions and the transit of molecules across membranes. Predomi-
nantly non-invasive, bioimaging methods provide accurate monitoring of metabolites,
serving as valuable biomarkers for identifying, monitoring the progression and assessing
the response to treatment of various diseases [134, 149]. While it is frequently underesti-
mated, there exists another crucial element in imaging that could arguably be deemed
the most significant dimension —the wavelength (1) of the imaging signal. Within this
pivotal dimension, specifically the electromagnetic spectrum, numerous specialized imag-
ing technologies have emerged, utilizing various signals across the electromagnetic
continuum [225]. Figure 3.1 shows commonly used bioimage modalities in biomedical

research.

Proceeded by Introduction, in Section 3.2, we first highlight the popular imaging
techniques used in acquiring fish bioimages. In the subsequent sections, we delve into
the image analysis techniques employed in biomedical (Section 3.3) and aquaculture
investigations (Section 3.4) to identify and categorize different types of bone-related

deformities in both model and food fish species. Table 3.1 focuses on user-friendly, Al-
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Figure 3.1: Commonly used bioimage modalities in biomedical research (source: [225])

based image analysis tools used in fish morphometric and phenotype research along with

their specifications.

3.2 Imaging Techniques Used in Fish Bioimages

As mentioned in Chapter 1, one of the main advantages of using zebrafish as a model
animal over other animals is its transparent body during early, external development
life stages, especially from 0 to 10 days dpf. The transparent body of the model fish larva
makes it easy for the biologists to see through its developing organs and bones during in-
vivo studies and also helps to produce bioimage datasets using various image acquisition
equipments [18, 82]. Given that image acquisition precedes image analysis, it is crucial
to employ suitable imaging methods and protocols to ensure effective and accurate image
analysis, particularly when conducting Al-based image analysis. Microscopic imaging
methods necessitate a meticulous pipeline to be adhered to, ensuring the prevention of
unwarranted variations in acquisition adjustments and parameters that might introduce
artifacts, capable of influencing the outcomes of image analysis algorithms [130, 168].
Beyond fundamental considerations like luminosity and focus control, special attention
to the fish’s positioning and the characteristics of the glass plates is also needed to
mitigate potential issues related to light refraction. This precautionary approach aims to

prevent problems like shadowed areas in the images that could disrupt the subsequent
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analysis [92]. Since most phenotype and morphometric studies in biomedical research
require capturing the fine-grained information at the sub-cellular level, microscopy
methods such as bright-field or fluorescence microscopy are prevalent compared to other
imaging approaches [4, 101]. More recently, confocal and light-sheet microscopy deliver
three-dimensional images [26], while Raman spectroscopy, Fourier-transform infrared
spectroscopy, or mass spectrometry imaging are able to reveal the spatial distribution of
individual (bio)molecules or classes of molecules [20, 45, 57, 77], resulting in ever more

high-content and demanding analysis requirements.

Apart from microscopy methods, X-ray radiography techniques are also popular in
biomedical and aquaculture research for analyzing the skeletal structures of the juvenile
and adult fish, including microCT imaging [16, 50, 128]. While microscopy imaging
methods are employed in the early life stages (embryonic and larval) of the model fish
due to its body’s optical clarity and small size, radiography methods are employed in the
later life stages to visualize hard tissues. The adult model fish serves as a distinct and
valuable resource for studying pathogenic and therapeutic aspects of adult human bone
diseases. This is attributed to the fact that certain functions such as bone turnover, repair,
degeneration, and metabolic responses are not fully mature in embryos [32]. Similarly, in
aquaculture research, radiography imaging methods are utilized for juvenile and adult

fish for several types of phenotype and morphometric studies [19, 48].

3.3 Fish bioimage Analysis in Biomedical Research

As outlined in Chapter 1, zebrafish or medaka is used as an animal model for many
biomedical research studies such as morphometry, phenotype classifications, toxicology
and drug discovery or to determine the causes of certain disease infections and pathogen
dissemination [179]. Such studies involve systematic procedure and protocols such as
rearing model fish in the laboratory with utmost care and supervision, preparing the
fish for image acquisition, acquiring of images, potentially with different modalities
(microscopy, radiography, fluorescence etc. as highlighted in section 3.2). In the following
subsections, we describe conventional/ML based and deep learning based computer vision
techniques for automatic or semi-automatic image analysis of fish bio-images in the

context of morphometric and phenotype studies.
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3.3.1 Conventional Machine Learning methods and algorithms

For small datasets, which are common in biomedical imaging, traditional ML methods,
as described in [202], were frequently used in morphometric studies of zebrafish larvae
before the advent of DL. In this paper authors addressed the problem of landmark
detection in bioimages of zebrafish larvae with a supervised learning approach called
extremely randomized trees (ET) algorithm [62]. In this work, each pixel is treated
as observation in a large training sample of pixels extracted either from the close
neighborhood of the landmark or some randomly chosen positions from the training
images. In the classification setting, a separate model is trained for each landmark to
predict whether each image pixel belongs to a landmark or not. In regression setting, also
a separate model is trained for each landmark in order to predict the Euclidean distance
of each pixel from the target landmark. The method is applied to multi-resolution input
features of the pixels at different scales and distances. Training has been done using an
ensemble of fully-grown decision trees without bootstrapping. The method is also tested
on other two publicly available biomedical datasets namely CEPHA [210] and DROSO
[173]. A similar supervised machine learning approach using extremely randomized
trees for automatically classifying brightfield images of wildtype zebrafish embryos
based on their defects has been discussed in [92]. In this work, authors described a
machine learning-based image classification algorithm that involves extracting dense
random subwindows from images, describing them using raw pixel values, and then
classifying these subwindows using ensembles of extremely randomized trees. Finally,
the classifications of these subwindows are combined to determine the classification
of the entire image. Specifically, the method begins by extracting 1000 subwindows of
random sizes and positions from each training image. The sizes of these subwindows
are controlled by parameters defining their minimum and maximum sizes relative to
the total image size. These subwindows are then resized to a fixed size of 32 x 32 pixels
and described by their raw pixel intensity values in a normalized red-green-blue (TRGB)
color space, where pixel value distributions are normalized within each subwindow by
channel (subtracting the mean and dividing by the standard deviation). Thereafter, an
image of the zebrafish embryo is classified according to its defects by joint exploitation of
these subwindows. The method can be employed in two modes: first, where subwindows
and, consequently, images are directly classified; or second, where image features, based
on the frequencies of subwindows in terminal nodes are classified using a linear SVM
method, also trained on the training set. Another approach to automatically classify

the absence or presence of malformation in the spine of the medakafish embryo (see in
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(A) (B)

(@] (D)

Figure 3.2: Different phenotypes in zebrafish tail. Larvae were imaged live under a
dissecting microscope under transmitted light illumination: (A) Downward curved tail;
(B) Upward curved tail; (C) Short tail; (D) Normal phenotype (source: [92]).

Figure 3.3) is discussed in [61]. In this work, a dataset of 2D high resolution microscopic
images of medakafish is used. Features extraction is performed firstly by segmenting
the embryo from the images. Since most of the malformations are characterize by
abnormal spin curvature, features such as dimensions, curvature angle is extracted.
These features are then fed to Random Forest Classifier (RFC) for training. Since feature
characterization depends upon the geometry of the skeleton representation of embryos,
authors admitted that their methods could not be applicable where tail of the deformed
embryo makes a hook shape (see subfigure ’/’ in Figure 3.3), hence not universal to any

type of malformation or with high degree of severity in the deformed tail.

When dealing with image data, SVM and boosting techniques are considered alter-
native choices for classification problems. One such approach is described in [87] for
automatic quantification of zebrafish tail deformation. This method is based on estimat-
ing the tail curvature of the zebrafish by measuring the partial segments of tails using
refined medial representations (RMR), then subsequently fuse these segments in order
to get the complete tails. Two data sets containing 67 and 72 images of well plates with 5
fishes per well plates have been used. Authors tested four classifiers namely Naive Bayes,
SVM with linear kernel, SVM with radial basis function (RBF) kernel and Adaboost
classifier. They reported that SVM with RBF kernel achieved the highest accuracy i.e.
95% per well and 91% per fish. They also reported that some of the misclassifications
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Figure 3.3: Images of 9 dpf Medaka alevins. a to c: healthy alevins shown in lateral view
in a, three-quarters view in b and dorsal view in c. d to f: alevins showing different types
of spine malformations, d being a major spine malformation (lateral view), e, a slight
“S-shaped” malformation (three quarter view) and f a hook-shaped alevin (dorsal view)
(source: [61]).

were due to debris in the micro-plate wells. In another approach, an ensemble based
machine learning method is used to classify compounds that evaluate the behavioral
phenotype assays and quantify the screen performance of a zebrafish [135]. A dataset
of two sets of compounds comprising 16 quality-controlled compounds and a reference
set of 648 known central nervous system ligands are chosen for training and random
forest classifier is trained to discriminate between compound induced phenotypes. Many
biological studies involve movement behavior analysis and its relevance to ecological
studies, toxicology research, or investigations into the effects of various environmental
factors on fish behavior. In [106], the authors used a decision tree approach to analyze
and categorize medaka fish movement patterns. These patterns describe the process of
collecting movement data from medaka fish and using this data to identify specific pat-
terns or behaviors. These patterns could include swimming speeds, directional changes,
or other locomotion-related traits that might be the indicators of some morphological

changes in fish body.

Supervised machine learning algorithms work well when the data is well annotated.
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In contrast, a conventional template matching based approaches do not need any labelling
of data and still able to perform well for object detection and segmentation tasks. One
such method for detecting and segmenting the head from the microscopy bio-images
of zebrafish and medaka is discussed in [192]. This work discusses the multi-template
matching approach, which involves using multiple templates (reference patterns) to
detect and locate objects of interest within microscopy images of zebrafish and medaka.
Template matching conducts the search by moving the template across the image,
essentially identifying objects with orientations similar to the template. To enhance the
capability for object detection, algorithm permits the input of multiple templates for the
search process. This includes the option to include additional perspectives and scales of
objects. Additionally, users can modify initial templates by selecting various flipping and
rotation options through the plugin interface. To monitor the physical activities and swim
pattern of a model fish larvae, statistical analysis and tracking of multiple zebrafish
larvae is also performed using gaussian mixture models [114, 213]. In [214], a method is
developed to detect and track multiple zebrafish larvae using adaptive gaussian mixture
models and Kuhn-Munkres algorithm. For detection and segmentation, an exponentially
decaying factor is used to update the model parameters recursively and detection period
of larvae is extended if no movement happens for a certain period of time in subsequent
frames. Identity assignment and association for each individual larvae are accomplished

in consecutive frames using Kuhn-Munkers algorithm [102].

3.3.2 Deep learning based analysis methods and algorithms

In recent years, considerable progress has been obtained in the field of AI development.
In particular, deep learning techniques are used for automatic image analysis in biomed-
ical sciences and are becoming the predominant choice in various morphometric and
phenotype studies [113, 182]. For single-cell phenotype assays that require gathering
complex data at the cellular or sub-cellular level to discriminate features linked to cellu-
lar shape, protein localization and intracellular movement, classifying phenotypes using
deep-learning methods have proven to be more effective than conventional approaches
[563, 191]. A similar deep learning based work is carried out in [51], where the goal is to
investigates the application of deep learning techniques for automating the process of
cell detection in wide-field microscopy images of zebrafish. The research explores various
CNN architectures and training methodologies to optimize performance for identifying
cells in complex biological images, aiding the biologists for studying cellular processes

and organisms.
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The diverse set of observable traits or phenotypes that researchers monitor during em-
bryonic development include morphological changes, cellular behaviors, or other features.
These different zebrafish larvae phenotypes are useful for studying the environmental
influence on embryo development. The limited availability of annotated data makes it
challenging to classify these phenotype traits, as the differences between them can be
subtle and ambiguous. In the work of [169], the authors device a two-tier deep learning
based pipeline where the CNN model with compressed separable convolution kernels is
adopted to address the overfitting issue caused by insufficient training data. Authors
report an averaged accuracy of 90% for all the phenotypes and maximum accuracy of
100% for some phenotypes (e.g., dead and chorion), thereby improving the accuracy to
22% against the baseline in [92]. This study offers an effective deep-learning solution
for classifying difficult zebrafish larvae phenotypes based on very limited training data.
A similar problem of phenotype classification of zebrafish larvae in high-throughput
screening using end-to-end deep-learning approach is described in [88]. In this study,
the authors tackle the challenge of categorizing morphological alterations in zebrafish
found in multi-fish wells, which often have fish overlapping with one another. Assessing
the stage, either as a component of a mutant phenotype or induced by treatment, is
essential for analyzing morphological changes and developmental delays in zebrafish
embryos within a specific time frame. However, the detection and quantification of these
delays is often achieved through manual observation, which is both time-consuming
and subjective. The work in [93], presents a method for automatically determining the
developmental stages of zebrafish embryos using deep learning techniques. In this study,
the authors introduce KimmelNet, a deep learning-based pretrained model that is a
simplified version of AlexNet [100], that can analyze 2D bright-field microscopy images
and accurately predict the age of zebrafish embryos. By leveraging a convolutional neural
network (CNN) architecture, the model achieves high accuracy in staging embryos, which
traditionally requires manual and time-consuming analysis by experts. The approach has
the potential to streamline research in developmental biology, improving the efficiency

and consistency of embryo staging.

An advantage of employing deep learning based CNNs is the ability to transfer
learned features from one type of task to another (see Section 2.5 about transfer learning),
which proves beneficial in situations where there is a shortage of well-annotated data.
In [199], a pretrained convolutional neural network (CNN) called VGG-16 [171] is fine-
tuned for the task of automated classification of various phenotypical changes induced by

toxic substance in zebrafish embryos. During fine tuning, initial layers are freezed and
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later layers of the VGG-16 are modified to classify the the 11 observable phenotype traits
of zebrafish larvae from the dataset produced by [92]. Environmental and genetic factors
that influences the process of embryo development, also encourage the biologists to
study the zebrafish eggs in their experiments. Due to the high throughput of microscopic
imaging, automated analysis of zebrafish egg microscopic images is highly demanded.
However, conventional ML algorithms for zebrafish egg image analysis suffer from
the problems of small imbalanced training dataset and subtle inter-class differences.
To handle these bottlenecks, a transfer learning with data augmentation based deep
learning approach is proposed in [170]. In this work, VGG-16, pretrained on imagenet is
used as backbone for the task of automatic classification of weather the egg is fertilized
or unfertilized. This study expands the application of deep transfer learning techniques
to classify zebrafish egg phenotypes, assisting the biologists in automated analysis of

bright-field microscopic images.

As pointed out in the works of [99, 160, 201], genetic inheritance is considered as
important factor when studying bone related abnormalities in human beings. Genetic
skeletal disorders (GSDs) represent a varied and complex group of rare bone growth
abnormalities resulting from disturbances in skeletal development processes, growth
pathways, and homeostasis. These disruptions stem from mutations in various genes
essential for skeletal system development [200]. Gene editing is one of the effective meth-
ods applied to model animals to see the effects of modified genes on the skeletal disorders
of the model animal. In [136], a U-Net based image segmentation protocol is proposed to
quantify phenotypes of altered renal, neural and craniofacial development in Xenopus
mutant zebrafish embryos in comparison with normal variability using images of various
modalities. These algorithms increase the sensitivity and throughput of evaluating devel-
opmental malformations caused by chemical or genetic disruption. Furthermore, authors
also provide a library of pre-trained networks and detailed instructions for applying
deep learning to the reader’s own datasets. Segmentation techniques are needed to study
early heart development in model animals by measuring changes in heart chamber
volume. Accurate segmentation of the complex shape of the ventricles after trabeculation
(transformation from early sponge like structure to smooth and solid shape) begins is
essential for analyzing heart function. However the time-consuming task of manually
segmenting the light-sheet fluorescent microscopy (LSFM) bioimages is infeasible when
processing high axial resolution data, as the number of images required is very large.
Recently, deep learning-based bioimage segmentation methods have shown accurate

segmentation of zebrafish hearts during the early stages of ventricular development.
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[8, 228].

3.4 Fish image analysis in aquaculture

Aquaculture industry provide ample food for human consumption and due to increasing
demand, it is facing pressure from the customers to increase the food supply. A decade ago,
fish farmers used manual methods for routine tasks like sorting fish by size, identifying
diseased fish, removing deformed or dead fish from healthy ones, and counting the
number of fish. These manual methods require significant technical effort and time, due
to which fish farmers were experiencing great challenges to run a farm with adequate
or optimal supply of the fish food. Nowadays, computer vision based image processing
techniques are used in aquaculture industries to overcome the challenges of manual and
laborious procedure. Although new in this field, computer vision based image analysis
methods are helping the fish farmers by speeding up their routinely tasks and at the
same time assisting the technicians and researchers in the aquaculture industry to

identifying and classifying the fish disorders/deformities.

3.4.1 Conventional image analysis methods and algorithms

To produce high quality fish, selective breeding programs are one such effort in which
genetically and phenotypically superior fish breeds are selected for the reproduction.
The most effective approach in the selective breeding involves the consistent collection
of individualized phenotype measurements throughout an organism’s life cycle [63].
Traditional manual methods for assessing fish growth are typically time-consuming,
expensive, and stressful for the animals. Even with the use of anesthesia and proper
husbandry practices, measurement remains a stressful event. For both cost and ethical
reasons, it should either be non-intrusive (i.e., without removing the fish from the
water) or performed as infrequently as possible [89]. In the work of [198], a study
has been conducted to emphasize the use of automated image analysis techniques for
understanding the individualized growth and population structure of Chinook salmon.
In the context of image analysis part, the fish’s contour is extracted, and 11 reference
points (landmarks) are placed on the contour to measure the body side area, fork length,
and body height of the fish. Initially the image analysis is performed using OpenCV’s
conventional thesholding method but subsequently replaced by MXNet-based [39] deep

learning models.
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Individual fish identification is crucial when it comes to tracking the fish fish be-
haviour. Since fishes are grown and reared in populations, individual fish tracking
become a challenging task due to overlapping of fishes in the tank. In [231], authors
implemented a conventional computer vision based method to segment the individual
fish in the tank. In the method, firstly the shape factor is employed to identify image
overlaps. Subsequently, corner points are extracted using the curvature scale space algo-
rithm, and a skeleton is generated using the improved Zhang-Suen thinning algorithm.
Finally, the method identifies intersecting points and effectively segments the overlapped
regions within the images. Authors also compared the method with other traditional
computer vision based methods such as watershed and Liu’s method and reported better
results. Another similar traditional computer vision based image processing technique is
employed in [46] to automatically measure the length of tilapia fish. In this work, image
segmentation is performed using image processing based morphological operation such
as dilation and erosion is applied after converting the image into binary image using
thresholding method.

Aquaculturists (or fish farmers) perform fish quality checks at regular intervals
in their fish farms. Various factors such as treatment, handling, storage, exposure to
pollutants, and climate variations, significantly influence fish quality. Distinctions in
quality are observed between fish raised in unpolluted freshwater environments and
those subjected to polluted or pesticide-affected waters. Pesticides pose a substantial risk
to both fish quality and human health. Detecting and identifying pesticide contamination
in fish pose a great challenge while using traditional intrusive checks that can lead
to high stress level in the fish. In the work of [167], a non-intrusive computer vision
based approach is applied to classify whether the fish is contaminated with pollutants or
healthy for human consumption. In this approach, pupil and eye of the fish are selected as
region-of-interest (ROI) to extract the discriminative features for the classification. First
the ROI is segmented using traditional thresholding methods. Then first order statistical
analysis is performed to extract features such as mean, standard deviation and variance
of the ‘S’ channel of HSV colour space. On these features, different types of classifiers
such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bays
Classifier and Random Forest (RF) are tested. Among all the classifers, authors reported
better results with RF classifier. Object identification or locating the region of interest
(ROI) from a digital image is generally performed using computer vision based image
segmentation methods. In [221], an improved k-means clustering algorithms is applied

for the extraction of contours of the fish followed by morphological operations such as
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dilation, erosion, opening, closing to separate the fish boundaries from the background.
The authors reported that algorithm offers improvements over the traditional K-means
approach and focuses on effectively separating fish from their background in images,
which is crucial for various applications in aquatic research and fisheries management.
Certain machine learning based image segmentation method are useful in fish counting
as well. In the work of [229] the study involves the segmentation of fish-connected regions
in top-view fish images, obtained through morphological image progressing operation.
Subsequently, four types of image features are extracted from each of these fish-connected
regions while removing the redundant features with principal component analysis (PCA).
Fish counting is then executed by applying image density grading using threshold
method based on the area of the connected area. This approach divides fish images into
several sub-images, each containing connected areas, and performs density grading on
each sub-image. This helps rectify the imbalance in the dataset of fish-connected area
sub-images, resulting in more precise and consistent fish counting. Finally fish counting
is performed using a fish-number prediction model, based on BPNN (Backpropagation
Neural Network) for the connected-area dataset at various density levels. The trained
model was then used to determine the fish count within each connected-area image. The

local counts is determine by combining each fish-connected area image.

Identification of disease in the farmed fish is a challenging task. Manual invasive
method involves picking the fish from the water and inspecting it by the expert for
the potential disease identification. These intrusive methods are not only tedious and
time consuming and require technical expertise but also put the fish under stressful
conditions. In [7] an ML based method is devised to automatically diagnose and identify
infection in the salmon fish. The approach is divided into two main components; 1. In the
initial phase, image pre-processing techniques is employed to reduce noise and enhance
image quality, 2. the second phase involves extracting relevant features to facilitate the
classification of diseases using the Support Vector Machine (SVM) algorithm with kernel
function. In [123], an artificial neural network (ANN) is used after feature extraction with
the FAST (Features from Accelerated Segment Test) algorithm. The proposed method
begins with image preprocessing, where images are converted to grayscale, contrast
is enhanced, noise is removed, and segmentation is performed. Next, discriminative
features are extracted using the FAST algorithm, and Principal Component Analysis
(PCA) is applied to reduce dimensionality for improved prediction. Finally, an ANN

classifier is employed on these features to identify diseases in the fish images.
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3.4.2 Deep learning based methods and algorithms

Conventional ML methods in the aquaculture research (as outlined in Section 3.4.1) are
being used for more than a decade, in which manually crafted features require a large
number of human effort and introduce additional uncertainty factors. Recently computer
vision based deep learning methods are becoming popular due its performance and easy
to use traits. Deep learning methods have the capability to automatically discriminate
both high and low level features from dataset itself, allowing for the detection of subtle
fish characteristics within images. It remains resilient against variations in lighting,
positioning, and orientation, rendering it well-suited for computer vision modeling [220].
Although new to aquaculture, CNNs are now getting helpful in various aquaculture
activities such as measuring the length of the fish, landmark detection, fish body part
segmentation.

In [194], a deep learning based method is proposed to automatically measure the
length and weight of Meagre fish in a non-invasive manner. In this work, fish stereo
images are first fed into a deep learning based ‘You Look Only Once’ (YOLO-v4) [152]
object detector to draw the bounding boxes over each individual fish. Subsequently, each
bounding box is utilized to extract the individual fish image, which is then processed
through pre-trained ResNet-101, a CNN optimized for image recognition. The last layer
of ResNet-101 is modified to detect two landmark positions on the fish namely the
snout tip and the base of the middle caudal rays. The landmark detection algorithm
measures the fish length in pixels by counting the distance between the two landmark
points. Finally, the pixel-based length was converted to centimeters using translation
information derived from the calibration phase involving chessboard target images.
Similar approach using advanced version of YOLO (YOLO-v5) is applied in [125] for the
measurement of the fish length combined with stereo-BRUVS calibration method, which
uses calibration cubes to ensure precision within a few millimetres in calculated lengths.
YOLO object detection combined with DeepSORT algorithm [217] is used for the fish
tracking and behaviour analysis in [83]. In this work YOLO-v5 is used to detect fish in
the image and drawing the bounding box over it, while DeepSORT algorithm is used
for fish tracking. In DeepSORT algorithm, first the previously predicted trajectory is
estimated using Kalman filter module then Hungarian algorithm is applied to assess the
level of correspondence between the current frame’s detected result and the predicted
track. Subsequently, any inaccurate tracks are removed to finalize fish tracking, and the

accurate tracks are updated through the Kalman Filter’s update module.

Selective breeding aimed at enhancing swimming abilities in fish might lead to
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morphological changes of their offspring. These changes, while benefiting industrial
productivity, also have implications for the welfare of the animals involved. To measure
the morphological changes in the body of the fish, shape analysis is performed by
placing important landmarks on the fish body in the images. Manually marking the
landmark points is laborious and requires technical expertise. In order to determine 10
morphological traits correlated with swimming performance in ‘juvenile large yellow
croaker’, a deep learning based CNN called high-resolution network (HRNet) is proposed
in [227] to automatically locate the anatomical landmarks points in bioimages of fish. To
get the scaling relationship from the pixel distance on the image to the physical distance
in the metric system, pixel length of the reference solid line on the image is detected and
divided it by the physical distance of the reference solid line of 10cm. In this paper, the
threshold segmentation method is used to detect the pixel length of the reference solid
line. First, RGB image is converted into gray-scale. Then, an appropriate threshold is set
to binarize the grays-cale image to segment the reference solid line. Finally, pixel length
of the reference solid line is computed after segmentation.

As discussed previously, fish disease is a prime concern that lead to increasing
deaths in the fishes and ultimately the potential reason for the economic loss. In the
work of [209], authors compared several CNN architectures such as AlexNet, ResNet18,
ResNet50, ResNet101 for the classification of fish diseases.

3.5 Fish bioimage analysis tools

After a comprehensive literature review of various conventional, machine learning (ML),
and deep learning (DL) methods used in biomedical and aquaculture research, this
section focuses on bioimage analysis tools that feature interactive user interfaces and

integrate ML or DL models as software packages.

3.5.1 EmbryoNet

EmbryoNet [30] is a deep learning based software tool to identify the phenotype de-
fects in the embryonic stage of the zebrafish. The aim of this approach is to bridge
the gap between observed phenotypic traits in embryos and the underlying molecular
signaling pathways responsible for those traits. These diverse set of observable traits
or phenotypes that researchers monitor during embryonic development include mor-

phological changes, cellular behaviors, or other features. In this work, a deep learning
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based convolutional neural network (CNN) called ’EmbryoNet’ is trained to classify the
phenotypic defects caused by loss of function of the seven major signaling pathways
relevant for vertebrate development using zebrafish signaling mutants combined with
a model of time-dependent developmental trajectories (see Figure 3.4). EmbryoNet is
a modified version of ‘ResNet18’ in which time stamp channel as additional input di-
mension is added, thus feeding four instead of three channels, and by replacing the last
classification layer with the current classification layer. EmbryoNet is trained on more
than 2 million images, comprising thousands of trajectories of normally developing and
signaling-defective zebrafish embryos. The Authors also apply the model to other fish
species such as medaka (Oryzias latipes) and three-spined stickleback (Gasterosteus
aculeatus) to test the generalizability of the approach. The approach enhances the ability
to predict developmental outcomes and understand the mechanisms driving embryoge-

nesis, making it a valuable resource for developmental biology and genetics research.
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Figure 3.4: Schematic representation of 7 types of embryo phenotypes (A). Classification
using ‘EmbryoNet’ at different stages: at sphere stage (B) and at 24 dpf (C). (source: [30])

3.5.2 QuantiFish

Quantifish [179] is a software tool, designed to measure and analyze the spread of patho-

logical conditions in zebrafish larvae. It is designed to quantify pathogen or bacterial load
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(infection) by measuring the spatial distribution of bacterial foci, specifically calculating
the number of bacteria per macrophage in zebrafish larvae. This represents the disease
severity by measuring four parameters, namely the number of fluorescent bacterial foci
that are responsible for 50% of the total fluorescence, the number of predefined grid zones
that contain the centre point of a bacterial focus, third the area of a polygon containing
the centre points of all foci and the maximum distance between any two foci. The authors
in the paper stated that the total bacterial load (integrated fluorescence intensity) and
the numbers of separate foci of bacteria detected using QuantiFish were significantly
higher in fish with more widely disseminated infection. The approach allows researchers
to systematically study disease dissemination, aiding in the understanding of disease
mechanisms and the evaluation of potential treatments. The graphical user interface
(GUI) of ‘QuantiFish’ software is depicted in Figure 3.5

& QuantiFish
(E QuantiFish i
- Zebrafish Image Analyser
Set Input Directory |Se|ect a directory to process
Generate File List Bit Depth:lAuto Detect V| Include Subdirectories
File List Filter Threshold (minimum intensity te count)
[ kKeyword: 60
Image Type Restriction: _I_I Use Threshold
0 64 128 192 256 =2 L=l
® None (Process all)
O Greyscale Only Dissemination Analysis
[] Analyse Foci Minimum Size: 1 Calculate Fluor50
(") RGB Only: | Detect .
Spatial Analysis Box Size: 50 Save foci data:|  foc  |.csv
Set Output Directory |Se|ect a directory in which to save the cutput file | | output |.c5\r
Fraszr Progress
Mot Ready
Run

Log:

Figure 3.5: Depiction of GUI of‘QuantiFish’ software tool for automated quantification of
fluorescent intensity in microscopy images of zebrafish. (source: [179])
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3.5.3 ZF-AutoML

ZF-AutoML [164] is a tool that is devised to detect macrophages anomalies from fluorescence-
labelled zebrafish. The tool is based on Google’s AutoML cloud platform [23] which is
used to train and evaluate custom machine learning models for detection and classifica-
tion tasks. The method automates the process of identifying irregularities in zebrafish
images, making it accessible even to users with minimal machine learning expertise. ZF-
AutoML is developed for the classification of normal phenotype (control) and abnormal
phenotypes (sorafenib-treated and wounded fishes for the angiogenesis and macrophage
experiments, respectively). The tool streamlines classification task by leveraging Google’s
AutoM] based advanced ML algorithms to analyze fluorescence patterns, enhancing the
efficiency and accuracy of identifying developmental or pathological abnormalities. This
tool is particularly useful for researchers in developmental biology and toxicology, en-
abling high-throughput and reliable analysis of zebrafish models. Figure 3.6 shows the

schematic representation of ZF-AutoML machine learning process.

Training set

Normal Abnormal Control

Training model

Normal or abnormal?
(a)

Figure 3.6: (a) Schematic representation of AutoML machine learning process. (b)
Images of Tg (kdrl:EGFP) a zebrafish strain at 96 h-post fertilization (dpf) with or
without sorafenib (0.5 pM). Sorafenib treatment was started at 24 hpf. The green color
indicates vasculature. (source: [164])
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New image
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3.5.4 ZFTool

ZFTool [33] is a software tool developed for automating the process of quantifying the
growth and progression of cancer cell masses within zebrafish embryos. The tool enables
researchers to track and measure tumor development over time with high precision,
facilitating the study of cancer progression in a non-invasive manner. The method starts
by injecting cancerous cells (HT'C116 cell line) into the embryo’s yolk, followed by a
72-hour incubation period to monitor cell proliferation. Each embryo is photographed at
two time points: immediately after injection (0 hours post-injection, hpi) and after 72
hours (72 hpi). The images obtained were then subjected to analysis using the ZFTool
software, with a focus on the green channel image. The aim of ZFTool is to quantifying
cancer mass evolution over time by measuring the number and mean value of GFP
(green fluorescent protein) pixels. This measurement is conducted by comparing images
taken at 0 hpi with those taken at 24, 48, or 72 hpi, depending on the specific experiment.
ZFTool removes the zebrafish autofluorescence through the computation of the area
with varying intensity thresholds. It does so by automatically calculating the auto-
fluorescence threshold for both the initial (0 hpi) and subsequent time points (24, 48,
or 72 hpi) and establishing a baseline threshold to eliminate auto-fluorescence from
zebrafish embryos. It quantifies the area occupied by marked cells (GFP) and their
intensity through threshold-based segmentation, providing a measure of proliferation
known as the proliferation index, which reflects the evolution of cancer mass in zebrafish.

Figure 3.7 show the segmentation over a sample image.

Figure 3.7: Depiction of segmentation over a characteristic image (zebrafish at 0 hpi
and 72 hpi) where the GFP value and the contour image are overlaid in green and red,
respectively. The white rectangle is the region of interest (source: [33])
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3.5.5 ZF-Mapper

ZF-Mapper [219] is a method to quantify the fluorescent intensities of the pixels in the
microscopic zebrafish images. The authors tested it with macrophage-specific enhanced
green fluorescent protein called EGFP and cancer cell xenograft, implanted in the body
of the zebrafish embryos. In the first experiment, the total fluorescence of zebrafish
expressing macrophage-specific EGPF at the developmental stage of 2-6 dpf as shown
in Figure 3.8 is quantified and results are compared with conventional softwares such
as Imaged for its reliability. In the second experiment, the cancer xenograft fluorescent
images of the zebrafish implanted with melanoma cancer cells was analysed. In this
experiment, they found that the intensity of the fluorescent regions in the body of
zebrafish has increased from day 2 to day 6 which highlights the increment in the
number of cancer cells in the body of zebrafish over the period of time. ZF-Mapper
is designed to be easy to use, allowing for the efficient processing and quantification
of fluorescence data without the need for complex or expensive software. The tool is
particularly useful for studies involving gene expression, protein localization, and other

fluorescence-based experiments in zebrafish analysis.

3.5.6 ZebraZoom

ZebraZoom [131] is a method for automatically analyzing zebrafish behavior by tracking
their movement within a well and identifying the maneuvers performed during episodic
movements. In this work, the authors categorized these maneuvers into three types:
slow forward swim, routine turn, and escape. They modeled the sequence of maneuvers
as a Markov chain between the two events. To track the core positions of the larvae,
the background image is first subtracted to create binary masks, and then the image is
eroded to determine the core and head direction of the larvae. A bending angle at the tip
is defined that separates the body axis from the line connecting the core and the tip of
the tail (see part C in Figure 3.9). For categorization, multiclass Support Vector Classifier
(SVC) with linear kernel was chosen. To track the full body position over multiple time
scale, the core that includes the head area and swim bladder and tail positions are
measured simultaneously for multiple larvae and global parameters such as tail bending
angle, mid-line position of tail and position of its core and head axis are extracted. These
global parameters along with some other local parameters such as amplitude of the
tail bending angle, instantaneous frequency over time is calculated. Figure 3.9 shows

larvae’s tail and detection of movements based on the tail-bending angle. ZebraZoom
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Figure 3.8: Typical images of tdTomato-labeled A375 xenograft zebrafish from day 1 to
day 6 after cell implantation. (source: [219])

allows researchers to efficiently monitor and categorize various behavioral patterns in
zebrafish, providing a streamlined approach to studying their activity and responses.
The software is capable of handling large datasets, making it ideal for research that
requires extensive behavioral analysis. By automating the process, ZebraZoom reduces
the need for manual observation, increases accuracy, and enhances the ability to conduct

large-scale behavioral studies in zebrafish models.

3.5.7 Fishlnspector

FishInspector [190] was developed to quantify the morphometric defects during develop-
mental toxicity screening in zebrafish embryos. It can analyze large numbers of embryos
to detect and quantify morphological abnormalities, which are indicative of develop-
mental toxicity. In this approach morphometric features are extracted and organized in
hierarchical manner using length and surface areas from contour information of different

parts of the zebrafish candidate. In order to detect certain features, the information
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Figure 3.9: Image processing for tracking of larvae’s core positions using tail-bending
angle. (A) Tracking of the larvae’s core positions. (B). Identifying the tip of the tail. (C)
Definition of the tail-bending angle (a) separating the body axis (pink) and the line
connecting the core and the tip of the tail (green). (D) Example of the tail-bending angle
over time with detection of movements indicated by the pink line. (source: [131])

about previously detected features should also be included. Finally, the detected features
are the boundary coordinates of the contours of the objects such eyes, head, swim bladder
etc. of embryos. Since the detection of some specific features are dependent upon the
other features, improper detection of one feature may cause a cascading effect upon
other features which may adversely affect the performance of the software tool. The
feature detection algorithms employed in the software are based on contour information
which is semi-automatic and no self learning algorithm has been used. Authors also
specified that, a jaw morphology analysis cannot be performed automatically using this
tool hence subject to manual annotation and correction by the user. The system allows
for high-throughput screening, making it a valuable tool for environmental and pharma-
ceutical research, where understanding the developmental impact of various substances
is crucial. Figure 3.10 shows the screenshot of FishInspector software showing an image

with detected regions of interest (ROIs) for each feature.

3.5.8 Stytra

Stytra [178] is an image analysis tool that enables real-time tracking and quantifica-

tion of zebrafish behavioral traits, including position, orientation, and eye motion. The
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Figure 3.10: Screenshot of the FishInspector graphical user interface showing an image
with detected regions of interest (ROIs) for each feature. (source: [190])

experiments utilize both freely swimming and head-restrained zebrafish larvae to ex-
amine their behavioral patterns in well-plates. Images or video frames are captured
using various supported camera models, such as XIMEA, AVT, and those compatible
with OpenCV. For behavior tracking of head restrained fish, curvature of the tail in
current position is compared with previous one and tail angle, position and orientation
is recorded. For Eye tracking, first elliptical regions of eye balls are segmented and
the absolute angle of the major axis of the ellipse is measured as eye angle. For freely
swimming fish tracking, the center of mass of the three objects namely two eyes and one
swim bladder is extracted from background and taken as center of the fish head. The
direction of the tail is measured by searching for the point with largest difference from
the background on a circle of half tail radius. The system is highly customizable and
user-friendly, making it accessible for a wide range of behavioral studies. By automating
complex experimental setups, Stytra enhances the efficiency and accuracy of behavioral
research, facilitating advanced studies in neuroscience and behavior. Figure 3.11 shows

the screenshot of the user interface of Stytra software tool.
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Figure 3.11: Stytra supports a range of behavioral paradigms, offering users a consistent
interface for experiment control. The top toolbar manages the experiment’s execution,
while a camera panel displays tracking results overlaid on the camera image. A cali-
bration panel allows for easy positioning and calibration of the stimulus display, and
a monitoring panel provides real-time plots of user-selected experimental variables.
(source: [178])

3.5.9 ZebrafishMiner

ZebrafishMiner [153] is an open-source software designed for the interactive analysis
of domain-specific fluorescence in zebrafish. Developed as an extension package for the
MATLAB Toolbox SciXMiner [129], it provides an image processing pipeline for the
automatic quantification of fluorescence in zebrafish embryos and larvae of different ages.
The software categorizes fluorescence data into user-defined domains such as tissue,
notochord, skin, eye, brain, yolk, and others. A brightfield and a reference fluorescent
channel consisting of multiple slices for segmentation is used to assign fluorescent signal.
Figure 3.12 shows screenshot of the "Tissue manager” to colour a tissue in embryo
images. For automatic fluorescent evaluation, embryos are detected in brightfield and
fluorescent images and compared with reference embryos with known domains. This
tool allows researchers to efficiently evaluate and quantify domain-specific fluorescence,

facilitating the study of gene expression and protein localization within zebrafish models.
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ZebrafishMiner offers a user-friendly interface and advanced visualization features,
making it easier to interpret fluorescence data and gain insights into developmental
and genetic processes. The software aims to enhance the accuracy and efficiency of

fluorescence-based experiments in zebrafish research.
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Figure 3.12: Tissue Manager (source: [153])

3.5.10 CNNTracker

CNNTracker [230] presents a method for tracking zebrafish using convolutional neural
networks (CNNs). The study develops a CNN-based approach to accurately track the
movement and behavior of zebrafish in video recordings. It tracks the individual fish in a
group of multiple fishes and maintains the correct identities of each fish after crossing
one another or if long time occlusion occurs. In this approach, the head feature maps of
each individual fish are first extracted (see Figure 3.13), and head point pairs between
successive frames are matched. Fish trajectories are then determined by linking these
corresponding head point pairs through inter-frame feature mapping. A collection of

head point pairs is created, where the first point is from the previous frame and the
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second point is from the current frame, resulting in trajectory segments for each fish. The
CNN network is trained using these trajectory segments, allowing it to map and identify
individual fish, as each segment corresponds to a unique fish identity. By leveraging deep
learning techniques, the method improves tracking precision and robustness compared
to traditional tracking methods. This advancement enhances the ability to analyze
zebrafish behavior and movement patterns, providing valuable insights for research in
developmental biology, neuroscience, and other fields where zebrafish are used as model

organisms.

Figure 3.13: The centre of the red square is the detected fish head then image patch
is extracted with the head point as the centre of the dashed red line. Head patch is
transformed into a binary bitmap and the coordinates of the white pixels in the binary
image are extracted. Orientation of the fish head is obtained and rotated to 0 degree to
get the final fish head feature map. (source: [230])
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3.5.11 DeepLabCut

DeepLabCut [127] is a generic software tool, designed to automatically detect user-
defined anatomical landmarks from the video frames of different animals. Its core work-
ing mechanism relies on deep learning based pre-trained CNNs, particularly ‘ResNet’
which acts as the backbone of many CNNs implemented in this tool for tracking the
body of the animal in the video. DeepLabCut is particularly useful in behavioral studies
across various fields, including neuroscience, biomechanics, and ethology, where accurate
and high-throughput tracking of animal movements is essential. One of its strengths
is its flexibility, allowing users to train models for tracking different species and body
parts, as well as its relatively user-friendly interface compared to traditional tracking
softwares. Although, DeepLabCut tool was initially invented for markerless pose estima-
tion in mammals, in [184], the authors explored the possibility of adopting this tool for
conducting markerless cardiac physiology assessment in an important aquatic toxicology
model of zebrafish. In this work, a high-definition videography of heartbeat data is
recorded at a frame rate of 30 frames-per-second (FPS). Next, 20 videos from different
individuals are used to perform convolutional neural network training by labeling the
heart chamber (ventricle) with eight landmarks. Using ResNet-152, a neural network
with 152 convolutional layers with 500,000 iterations, is trained that can track the heart
chamber in a real-time manner. Figure 3.14 shows the working of DeepLabCut tool for

the application of cardiac physiology assessment in zebrafish.

3.5.12 Icy

Icy [47] is an open-source image analysis software platform that boasts a range of key
features designed to facilitate scientific research and bioimaging. It supports multidi-
mensional images, including 2D, 3D, and time-series data, making it ideal for analyzing
complex biological samples. Its modular plugin architecture allows users to extend its
capabilities with custom or existing plugins for specific analyses. Icy includes a variety
of built-in image processing tools for filtering, segmentation, feature extraction, and
quantification, complemented by powerful visualization tools that enable interactive dis-
plays of data. The user-friendly graphical interface ensures accessibility for researchers,
even those with limited programming skills, while scripting capabilities facilitate batch
processing for large-scale studies. Additionally, Icy is compatible with various file formats
commonly used in microscopy, further enhancing its integration into existing workflows.

The active community surrounding Icy provides valuable support through documenta-
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Figure 3.14: The workflow, used to detect and label the heart chamber of zebrafish. On
top, the video of the animal model zebrafish is recorded for cardiovascular assessment.
Up to 20 videos of a heart beating with a duration of 1 min are collected. The bottom
section describes how DeepLabCut performs the training process for dataset and video
analysis, resulting in a labeled zebrafish ventricle heart chamber. (source: [184])

tion, tutorials, and forums, making it a versatile choice for image analysis across multiple
scientific disciplines. Figure 3.15 shows the applications of Icy software tool to zebrafish

research.

3.5.13 Cytomine

Cytomine [124] is a generic open source, web-based software for collaborative analysis of
multi-gigapixel imaging data. This software is designed to bring researchers from various
fields on one platform to analyse their imaging data in a collaborative and distributive
manner. It uses web development methodologies and machine learning in order to readily
organize, explore, share, and analyze (semantically and quantitatively) multi-gigapixel
imaging data over the internet. Its web based user interface allows researchers, students,

collaborators to create, organize, visualize, and edit all data and share projects through
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Figure 3.15: Applications of Icy tool in zebrafish research. (A) Quantitative analysis of
fluorescence lifetime with the Icy plugin ROI intensity evolution. (B) Unwrapping the
aorta tube with the TubeSkinner plugin (source: Icy)

authentication. It has all the advanced image processing tools to analyse, annotate and
manipulate multi gigapixels images from multiple sources. It includes designing efficient
workflows and creating advanced algorithms, such as deep learning and tree-based
machine learning models, to support content-based image retrieval, object detection,
recognition, and segmentation in extensive multimodal datasets. Emphasis is placed
on reproducible benchmarking of these algorithms across realistic datasets, particu-
larly within the biomedical domain, with a focus on digital pathology and multimodal

microscopy. Figure 3.16 shows the zebrafish imaging modalities handled by Cytomine.

3.6 Challenges in bioimage analysis tasks

The development and application of machine learning (ML) and deep learning (DL) mod-
els for bioimage analysis in morphometric studies encounter various complex challenges,

especially when focused on fish species in aquaculture and biomedical research. These
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Figure 3.16: Zebrafish imaging screen used in Cytomine for analysis
(source:research.cytomine.be)

challenges can be broadly classified into several categories, including issues related
to image acquisition, data quality, annotation subjectivity, diversity of modalities, and
the availability of common image analysis platforms. Some of the these challenges are

outlined in the sections blow:

3.6.1 Image acquisition complexity

Bioimage data in aquaculture and biomedical studies often come from diverse imaging
techniques, such as microscopy and radiography, which vary significantly in resolution,
lighting, contrast, and noise levels. These variations pose a significant challenge for
ML and DL models, which typically require consistent, high-quality data to perform
optimally. Noise and variability introduced during image capture, especially under

non-standardized conditions, can hinder model accuracy and lead to inconsistent results.

3.6.2 Lack of annotated bioimages

The limited availability of well-annotated bioimage data poses a significant challenge
when developing image analysis tools or methods for biomedical research, which rely on
annotated datasets for training, tuning, and validation. While natural image datasets are

readily accessible on various platforms as open-source resources, bioimage datasets are
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typically obtained using costly instruments under controlled laboratory conditions, mak-
ing them less accessible to the general public. Most bioimage datasets are derived from
either patients or model organisms and are often confined to specific labs or researchers.
Additionally, these datasets usually contain only a small number of images—ranging
from a few hundred to a few thousand—compared to natural image datasets, which can
feature millions or even billions of well-annotated images. This limited availability of
annotated images often proves insufficient for training deep-learning models, resulting
in subpar performance. Consequently, models trained on inadequate image data tend to
face difficulties, hindering analysts’ ability to utilize them effectively for image analysis
tasks.

3.6.3 Class imbalance

Many bioimage datasets, especially those dealing with specific anatomical structures or
rare phenotypes, are highly imbalanced. For instance, images where certain developmen-
tal features or disease markers are absent may vastly outnumber those where they are
present. This class imbalance can lead ML and DL models to become biased towards the
majority class, reducing sensitivity to rare but biologically significant features. Handling
class imbalance effectively is essential for reliable phenotype classification, segmentation,

and structure detection.

3.6.4 Annotation subjectivity and inconsistency

Accurate annotations are critical for training supervised ML and DL models, but these
annotations are often subjective, particularly in the biomedical domain where boundaries
between structures may be unclear or open to interpretation. Variability in expert
annotations can lead to inconsistencies in the training data, complicating model training
and evaluation. Furthermore, detailed, high-quality annotations are time-consuming
and labor-intensive to produce, and errors or disagreements among annotators may

introduce noise that models can inadvertently learn.

3.6.5 Structural overlaps and ambiguity in biological features

In images of fish larvae, anatomical structures can appear blurred, overlap, or lack clear
boundaries, making it difficult for models to distinguish them accurately. These ambi-

guities are especially problematic in tasks like segmentation and landmark detection,
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where precise identification of structure boundaries is critical. Overlapping structures
or low-contrast regions may lead models to misclassify or overlook important features,

affecting overall performance.

3.6.6 Tolerance to data corruption

Bioimage datasets can contain mislabeled or corrupted images due to errors during data
collection or annotation. DL models are often sensitive to such corruption, which can
negatively impact model performance. In some cases, models may even learn from these
errors, leading to poor generalization and reduced reliability. Developing models that can
tolerate or correct for corrupted data without extensive manual intervention remains a

major challenge in biomedical imaging.

3.6.7 Choice of image analysis methods and protocols

Traditional image analysis methods that rely on basic image processing functions and
hand-crafted features, work well for small datasets. However, as the amount of data
and its dimensionality increases, these methods become time-consuming and demand
significant human intervention and technical expertise for the analysis. In contrast,
deep learning methods, can significantly accelerate the analysis process by enabling
semi or fully automated workflows. Despite this advantage, training deep-learning-
based convolutional neural networks (CNNs) for high-content image analysis remains
a complex challenge, and effectively applying these techniques in biomedical image

analysis tasks continues to pose difficulties.

3.6.8 Need for a common image analysis platform

In contemporary bioimage analysis, the integration of deep learning models into a com-
mon image analysis platform is vital for streamlining workflows and enhancing research
outcomes. This platform serves as a centralized environment, where researchers can eas-
ily access, visualize, and analyze bioimages using sophisticated algorithms. The proposed
image analysis platform should be designed to facilitate the end-to-end processing of
bioimages, encompassing stages from image acquisition and preprocessing to model de-
ployment and result interpretation. By providing a user-friendly interface, the platform
allows researchers, even those with limited programming expertise, to utilize advanced

deep learning techniques without the need for extensive technical knowledge.
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3.7 Conclusion

This chapter provides a comprehensive review of common computer vision techniques,
encompassing both traditional methods and Al-driven machine learning (ML) and deep
learning (DL) algorithms and tools. It emphasizes their applications in biomedical and
aquaculture research, particularly in phenotype and morphometric studies related to
bone development. Additionally, it addresses the challenges encountered in bioimage
analysis, including the complexities of processing high-content and high-throughput
imaging data, the limitations of traditional analysis methods, the shortage of well-
annotated datasets, and the intricacies involved in implementing effective deep learning
architectures

Given the existing challenges in bioimage analysis for morphometric and pheno-
type studies, this thesis is motivated by the need to develop and implement novel deep
learning methodologies that can effectively address these issues. The goal is to create
robust, scalable solutions that streamline the analysis process, enhance the accuracy of
results, and improve accessibility for researchers across various disciplines. By focus-
ing on the development of automated image analysis methods tailored to aquaculture
and biomedical research, this work aims to contribute significantly to the field. The
integration of a common image analysis platform will empower researchers to leverage
advanced deep learning techniques without extensive technical expertise, promoting
collaboration and innovation in the study of biological processes. Ultimately, this re-
search endeavors to provide new insights into morphometric and phenotypic studies,
advancing our understanding of fish development and contributing to the broader field

of bioinformatics.
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Table 3.1: Image Analysis Tools and their specifications.
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Table 3.1: Image Analysis Tools and their specifications (cont.).
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CHAPTER

SEGMENTATION IN MICROSCOPY BIOIMAGES OF
ZEBRAFISH

As we discussed in chapter 1, biomedical research heavily uses Zebrafish (Danio rerio) as
a model to study developmental processes. In the earlier stage of their lifecycle, zebrafish
embryos and larvae are completely transparent, which greatly facilitates monitoring of
their developmental organs such as operculum and vertebral column using microscopy
techniques [56, 75, 130]. Biomedical researchers also rely on microscopy to study the
effects of various chemical compounds on the developing parts of the fish model in
toxicological studies [34]. Such analyses often involve segmenting different categories
of regions of interest (ROI) within images in order to quantify their morphological
changes. For example, the analysis of Head and Operculum (a series of bone) regions
of Zebrafish larvae and the quantification of the operculum-to-head ratio is considered
as a good marker of increased bone formation and mineralization and it is a validated
method to screen for bioactive compounds which have effects on bones [108, 189]. It also
gives an additional information on the possible toxicity of a compound at the organism
level. However, the visual examination and area quantification are a bottleneck and
prevent applying such a workflow at high throughput. In this chapter, supervised deep
learning strategies are proposed and evaluated to segment head and operculum regions,
as evaluation of such approaches has not been proposed previously.

Reference: This chapter is an adapted version of the work we published in "Navdeep
Kumar, Alessio Carletti, Paulo J Gavaia, Leonor M Cancela, Marc Muller, Pierre Geurts,

Raphaél Marée, “Deep Learning Approaches for Head and Operculum Segmen-
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tation in Zebrafish Microscopy Images", International Conference on Computer
Analysis of Images and Patterns (CAIP-2021)".

Demo server with Datasets: https://github.com/navdeepkaushish/S_Zebrafi
sh_Head_Operculum_UNet_Segmentation

4,1 Introduction

In this chapter, we propose variants of deep learning methods to segment head and
operculum of the zebrafish larvae in microscopic images. In the first approach, we used a
three-class model to jointly segment head and operculum area of zebrafish larvae from
background. In the second, two-step, approach, we first trained binary segmentation
model to segment head area from the background followed by another binary model to
segment the operculum area within cropped head area thereby minimizing the class
imbalance problem. Both of our approaches use a modified, simpler, U-Net architecture,
and we also evaluate different loss functions to tackle the class imbalance problem. We
systematically compare all these variants using various performance metrics.

Our methodology is detailed in Section 4.2, beginning with an overview of the image
acquisition settings and datasets in Section 4.2.1. The proposed deep learning strategies
and CNN architecture are then discussed in Sections 4.2.2 and 4.2.3, respectively. The
evaluation protocol for this work is outlined in Section 4.2.4, followed by the presentation

of results in Section 4.3.

4.2 Methodology

This section describes the image acquisition procedure and dataset, followed by two
deep learning strategies. Additionally, it provides details on the convolutional neural
network (CNN) architectures used to segment the head and operculum regions and the

experimental protocol we followed for this work.

4.2,.1 Image Acquisition and Dataset Description

Zebrafish larvae stained with alizarin red S were imaged using a MZ 7.5 fluores-
cence stereomicroscope (Leica, Wetzlar, Germany) equipped with a green light filter
(1ex=530-560 nm and 1lem=580 nm) and a black-and-white F-View II camera (Olympus,

Hamburg, Germany). Images were acquired using the following parameters: exposure

92


https://github.com/navdeepkaushish/S_Zebrafish_Head_Operculum_UNet_Segmentation
https://github.com/navdeepkaushish/S_Zebrafish_Head_Operculum_UNet_Segmentation

4.2. METHODOLOGY

time 1s, gamma 1.00, image format (1376 x 1032) pixels, binning (1 x 1). For morpho-
metric analysis, color channels of the RGB images were split. and red channel (8-bit)
images were used for further analyses.

We follow a supervised deep learning approach that requires original images and
corresponding head and operculum ground-truth masks to design and validate the ap-
proach. Our dataset consists of 8-bit single channel (red channel) fluorescence images of
zebrafish larvea at 6 days post fertilization (dpf). Red channel fluorescence images were
first transformed into greyscale images (with contrast and brightness enhancement) to
ease the manual annotations by experts of head and operculum areas. Manual anno-
tations (illustrated in Figure 4.1) consist of green and red contours of head area and
operculum area respectively. A total of 2293 zebrafish images of 1376 x1032 resolution
have been collected and manually annotated over a period of one year. The dataset
consists of 28 different sets of experiments using 5 different compounds, to analyse their
effect on the operculum of the zebrafish larvea. Each set has been acquired with the same
acquisition settings. Manual annotations are then imported into Cytomine open-source
software [124] to centralize data and ease binary masks creation to be further used as in-

puts of deep learning algorithms. In supervised learning setting, a segmentation method

(a) (b)

Figure 4.1: Image sample and its corresponding head and operculum annotations. (a)
Raw red channel image (b) manually annotated gray-scale version of the sample image.

requires segmentation masks as its label for learning. Therefore, it is necessary to create
the head and the operculum masks from their respective contours. Firstly, contours of
the head and operculum regions are extracted using OpenCV’s image processing function
indContours’, after that segmentation masks are created using "flood_fill" algorithm
[138] to fill the contour area with white pixels (255 value) and rest of the area is treated
as background and filled with black pixels (0 value). At the end of this procedure, we get

binary segmentation masks for head and operculum as shown in Figure 4.2.
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Figure 4.2: Images and ground truth masks. Left: Two greyscale images. Middle: contour
extraction of head and operculum areas. Right: binarized ground truth masks.

4.2.2 Two deep learning strategies

In this section, we explore two deep learning strategies, we implemented in this work.
The first strategy called "One-Step segmentation with a three class model" is design to
segment all the three classes namely head, operculum and background in one go. The
second strategy called "Two-step segmentation with two binary models" is designed to
firstly predict head with a binary class model and then operculum with another second
binary class model. The detailed description of the two strategies is discussed in the next

two sections.

4.2.2.1 One-step segmentation with a three-class model.

Following this strategy, original size images without cropping are used. Since typical
CNN networks require input images of small size (see below), original sized images are
first downsized to the size required by the network, keeping their original aspect ratio
to avoid any kind of distortions in the predictions, while upsizing the predicted masks.
Since our images are rectangular but network require square images, we padded the
rectangular images with zeros to make them square. A three-class output segmentation
model is then trained to segment both head and operculum from background areas as
illustrated in Fig. 4.3 (top).
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4.2.2.2 Two-step segmentation with two binary models.

In this approach, a first binary segmentation model is trained to segment the head from
the background in original full images downsized appropriately (as in the three-class
approach). A second binary segmentation model is trained to segment the operculum
area using resized cropped images (rectangular box around the head). At prediction
phase, the first model is applied to segment the head, then a rectangular bounding box is
automatically extracted. Using these box coordinates, we apply the second model to the
resized cropped images (around the head) to segment the operculum area. The two-step

approach is illustrated in Fig. 4.3 (bottom).

4.2.3 U-Net Implementation

For both approaches, the U-Net architecture [157], we discussed in section 2.4.4.3 has
been adapted to segment areas of the zebrafish larvea. As a reminder, the main idea of
U-Net is its two parts: the convolution (encoder) or contracting operations, and deconvo-
lutional (decoder) or expanding operations. In the first part, convolutional operations
are applied in successive layers with the max pooling operations at the end of each layer,
thereby contracting the input resolution. In the second part, an expanding resolution
path is adopted using upsampling or deconvolutional layers. The first part is considered
as a traditional stack of convolutional and max pooling layers to capture context informa-
tion within the image. In the second part, deconvolutional operations are applied along
a symmetric expanding path to capture the precise localized information. One more
important thing about this architecture is its symmetric concatenation of the previous
activations from the first part to the activations of the second part.

As preliminary results with the original U-Net architecture on the training set
were unsatisfactory (including a tendency to predict only the majority class, i.e. the
background), we implemented some modifications in U-Net architecture including the
input size and output size of the network and number of layers and filters. Fig. 4.4
shows our "modified U-Net" network architecture. In our experiments, we used two
versions of modified U-Net, one that accepts 512x512 images as input and another that
accepts 256x256 images. In both cases, the output size of the masks is the same as
the input size whereas in [157], authors used 572x572 inputs and 388x388 outputs.
The reason behind using two variants of the network is to assess whether using less
parameters will negatively impact recognition performance. Using smaller networks

indeed reduces execution times which can be useful in real-time applications. With the
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Figure 4.3: (A) One-step segmentation approach with three classes: head (yellow contour),
operculum (pink contour), background. (B) Two-step binary segmentation approach with

a first binary model (head vs background) followed by a second binary model (operculum
vs other).

(A)
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Encoder
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Figure 4.4: Modified U-Net architecture used in experiments for 512x512 sized images.

small size variant of the U-Net architecture (with 256x256 input size), we used fewer
filters in each convolutional block as compared to the larger network thereby reducing
the network size and the number of parameters by 5 folds. For better optimization, we
used "Adam" [98] optimizer and batch normalization in each convolutional block before
max pooling. Adam uses "gradient descent with momentum" combined with an adaptive
learning rate using exponential moving averages, which makes it more computationally
and memory efficient than "Stochastic Gradient Descent” used in the original U-Net
paper. During training, we also used data augmentation (random flips and rotations,
brightness, and contrast changes). We implemented these networks in Python using

Tensorflow and Keras [42].
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4.2.4 Experimental protocol

We first split the dataset into 2105 images for training and 188 images for final evaluation.
To assess variability, the set of 2105 images is split into five equally sized folds. Each
fold is used in turn as the validation set and the remaining folds as the training set. Five
models are trained independently on each training set for 1000 epochs and the five best
models on their corresponding validation set across the epochs are finally retained as
the final models. In addition, we used early stopping, which forces the training to stop
when there is no improvement in the training loss for 100 consecutive epochs. Another
callback called "model checkpointing" is also used in which current training model is
saved if it is better than the previous one on the validation set. We report in tables, the
average performance and standard deviation of these five models estimated on the test
set with 256 x 256 (see tables 4.2 and 4.1) and 512 x 512 (see tables 4.4 and 4.3) input

image resolution using three class and two step binary class settings.

In both approaches, we used deep learning based semantic segmentation approach in
which a model predicts the class of every pixel in the image (dense predictions). In such
a setting, we are faced with a problem of class imbalance as less than 2% of the image
area is occupied by operculum region while around 90% is background region. In such
situation, the contribution of the majority class (in our case, the background) in the loss
during training is more important than that of the minority class, which biases the model
in favor of the majority class while ignoring minority class. While the two-step approach
tends to reduce this phenomenon (by cropping then predicting operculum only within
the head region), a certain class imbalance still persists. Therefore, for both approaches
we propose to evaluate different loss functions during training to handle class imbalance.
Namely, we evaluated the Cross Entropy Loss, Dice Loss, Tversky Loss, Focal Loss and

Jaccard Loss [21]. We have discussed about these loss functions in Section 2.6.2.

4.3 Results and Discussion

Tables 4.1 and 4.3 show the results of the first (three-class segmentation) approach
whereas tables 4.2 and 4.4 of the second (two-step binary class segmentation) approach
using 256 x256 input size and 512x512 input size networks, respectively. In both variants,
we report several performance metrics that take into account class imbalance, namely
Precision, Recall, F'1 Score and Dice score, computed at the pixel level and averaged over

the 5 models. To get a single score with which to compare the models, the Dice score is
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further averaged over head and operculum. Its standard deviation over the 5 models is

also provided to assess variability.

Table 4.1: Segmentation results with the one-step, three-class approach using different
loss functions for input size 256 x 256.

Avg. scores with three-class output based segmentation
Loss function Class Precision | Recall | F1 Score | Dice Score+S.D.
Cross Bntropy |- et 08780 | 0926 | 09014 | O9412£0.0043
Toershy 1088 | G5oereutomn | 09086 | 09190 | gioz3s | 0947000017
Dicel055 |-G | 09120 | 09092 | 09106 | O-9462+0.0024
Jaccard Loss Opgi?l(lium 0'3.6078 0'3?089 0'3?033 0.49+0.0002
T MR e

Table 4.2: Segmentation results with the two-step, binary approach using different loss
functions for input size 256 x 256.

Avg. scores with two binary-class output based segmentation
Loss function Class Precision | Recall | F1 Score | Dice Score+S.D.
s iy [ Pt 09852 [OWOE 0998 | 000
Rty o | e 0303|0908 09818 | 150,00
Dice 055 | G5oereutom | 09175 | 09276 | nozas | O951140.0046
Jacoard Loss | eceituen | 09124 | 09355 | Oszas | 0901300012
otttk 098% 0018 1098 15,00

In the three-class approach, the tversky loss seems to better cope with the strong class
imbalance in both 512x512 and 256 x256 settings. The worst performer in the three-class
approach is Jaccard loss as it only predicts the majority class (90% background) and no
operculum area. This loss leads however to good predictions with the two-step binary
approach in both input size settings. In the two-step binary segmentation approach,
all losses are very close except cross entropy in 512x512 setting. Overall, the two-step

approach for 512x512 inputs with Jaccard loss has a slight edge over other losses. We
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Table 4.3: Segmentation results with the one-step, three-class approach using different
loss functions for input size 512 x 512.

Avg. scores with three-class output based segmentation
Loss function Class Precision | Recall | F1 Score | Dice Score+S.D.
Cross Bntropy | et o090 | 08934 | 095y | 0-9008+0.0064
Toershy 1088 | G5ereutomn | 09090 | 0908 | giongs | ©95+00011
Dicel055 |-Gt | 0.9085 | 0.9065 | 09074 | O9428+0.0043
Jaccard Loss Opg‘ii?um 0'3.6078 0'§i7089 0'3?033 0.49+0.0002
Pocal 1055 | G5oereutonn | 9078 | Osds | aimods | O964£0.007

Table 4.4: Segmentation results with the two-step, binary approach, using different loss
functions for input size 512 x 512.

Avg. scores with two binary-class output based segmentation
Loss function Class Precision | Recall | F1 Score | Dice Score+Std.
Cross BRtropy | oo 019114 | 08428 | oirar | 09189200158
Rty o B0 008 09 51,00
Dice 055 |-G ot | 09256 | 08947 | 0097 | 09424£00057
St [ Bt oote om0 0T 15101
pttnn | et 00097 05108 | 00

believe that the improved performance of the two-step approach is due to the fact that
the second segmentation model works with a cropped, head-focused, dataset. Because
of the cropping, the class imbalance is not as severe and the operculum image is not
downscaled as much as with the three-class approach. Predictions are thus more precise
and less influenced by the class imbalance. Regarding the two input sizes, we see that
they lead to almost identical performance in terms of Dice Score. Sample predictions from
the best performing models are shown in Figure 4.5. To further evaluate approaches with
respect to their actual intended use, Table 4.5 compares the ground truth and predicted
operculum-to-head ratios using the best performing models from both approaches. We

used four metrics: mean squared error, Pearson and Spearman correlations, and a fourth
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Input Image True Mask Predicted Mask

Figure 4.5: Sample predictions with best performer on test images with three class (top
row) and two-step binary class (last two rows). From the first to third column: input
Image, true mask, predicted mask.

custom metric P called proximity measure. We compute a proximity measure to see

how close our predicted ratios to the actual ratios for test images. Proximity measure is

Min(True_ratio,Predicted_ratio)
Max(True_ratio,Predicted_ratio))

and then taking the mean over all the test images. If that number is closes to 1 it means

calculated as first measuring fraction over each test image
that our predicted ratio is very close to actual one and if it goes far away then it signifies
the predictions are bad. One can see that the three-class approach performs better in
terms of Pearson correlation and MSE, while the two-step approach performs better in
terms of Spearman correlation. In terms of proximity measure P, both the approaches
are close to 1 which signifies that our model predictions are quite satisfactory. While
the two-step approach works better at the pixel level, this result suggests that further
validation is required to assess which one of the two methods will be the most appropriate

in the context of actual morphological studies.
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Table 4.5: Evaluation of operculum-to-head ratio predictions using best performing
models.

MSE Pearson Spearman P
Three-class approach 1.014e—-5  0.210 0.270 0.8577
Two-step approach 4.228e—-4  0.117 0.314 0.8468

4.3.1 Robustness to image acquisition with another microscope

In practice, microscopes with different acquisition settings might be used over time by
biomedical researchers, which raises the issue of robustness of segmentation models to
such variabilities, an issue known as domain shift [70] (also see Section 2.5). As a first
step towards robustness evaluation, we applied our best two-step binary approach on
additional, unlabeled, images acquired with another microscope namely Leica MZ10F
fluorescence stereomicroscope equipped with a green fluorescence filter (lex= 546/10
nm), a barrier filter (lem =590 nm) and a DFC7000T camera (Leica, Wetzlar, Germany)
with a different output image size (1920 x 1440). When run on these unprocessed new
images, we observe that the performance of our model declines, as illustrated by Fig. 4.6

(first row).

Input Image Predicted Mask

Figure 4.6: Robustness evaluation: Predictions from best model using two-step binary
class approach on a new image acquired with another microscope before pre-processing
(first row), and after pre-processing (second row).

We hypothesized that this is due to the fact that, in the new microscope setting,
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ROIs (fish head and operculum) are larger in proportion to the size of the full image as
compared to ROIs in the original training images. To address this issue, we applied a very
simple pre-processing step to reduce the scale proportion of ROIs in the image. First, we
downscaled the new images to the resolution of the original images (i.e., from 1920x1440
down to 1376x1032) keeping the same aspect ratio. We then centered the resulting
1376x1032 image into a 1920x1440 image, filling the new pixels with zeros. Figure
4 (second row) illustrates the positive effect of this pre-processing on the prediction.
Note that downscaling further the image in the first step does not seem to affect the
performance. We hypothesized that this is due to the use of pooling layers that makes
network features somewhat scale invariant (in the direction of a decrease of resolution at
least). In practice, this scale calibration step would require a human expert to manually
draw a rectangle around the head within a single image when a new microscope is used
to initiate the automatic rescaling for the whole set of new images (so that the bounding
box is rescaled down to the average size of the head in the learning set images). We

consider this manual intervention to be acceptable.

4.4 Conclusion

We have evaluated deep learning based semantic segmentation variants on a new dataset
of more than two thousands fluorescent microscopy images of Zebrafish larvae where the
goal is to quantify operculum-to-head ratio. The dataset and prediction code compatible
with Cytomine open-source web platform [124] is available to foster further research and
to enable biomedical experts to routinely use our developments and proofread predictions.
We plan to use such developments as the basis of large-scale morphological studies where
the effects of different concentrations of many compounds on bone formation and mineral-
ization will be evaluated thoroughly using various statistics (such as operculum-to-head
ratio) derived from predicted masks. In the future, it may be necessary to investigate
more advanced approaches for other image variations due to change of acquisition setting

but ours was sufficient on the new microscope used by our collaborators.
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CHAPTER

ANATOMICAL LANDMARK DETECTION IN FISH
BIOIMAGES

In numerous bioimage studies, identifying anatomical landmarks is an essential step
for conducting morphometric analyses and measuring the shape, volume, and size
characteristics of the organism being examined [84]. Landmarks are geometric keypoints
localized on an "object" and can be described as coordinate points in a 2D or a 3D space.
For example, in human cephalometric study, human cranium is analyzed for diagnosis
and treatment of dental disharmonies [133] using X-Ray medical imaging techniques.
In biomedical research where fish species such as Zebrafish (Danio rerio) and Medaka
(Oryzias letipes) are used as models, various morphometric analyses are performed to
quantify deformities in them and further identify cause and treatment for human related
bone disorders [91, 215]. Such studies require to analyze and classify deformities in the
vertebral column, jaws or caudal fin of the fish, which is addressed by first detecting
specific landmark positions in fish images. In aquaculture industry, food fish such as
gilthead Seabream suffer from bone related disorders due to the non-natural environment
in which they are reared and morphometric studies are carried out to quantify these
deformities [58, 205]. Such studies also require the researchers to select and mark some
important landmark locations on fish images in order to perform external shape analyses
[118]. In this chapter, we perform an empirical evaluation of variants of deep learning
methods to automatically localize anatomical landmarks in bioimages of fishes acquired

using different imaging modalities (microscopy and radiography). To our knowledge,
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our work is one of the first few attempts to implement a fully automatic end-to-end
deep learning based method for the task of landmark detection in heterogeneous fish
bioimages.

Reference: This chapter is adapted from our publication "Navdeep Kumar, Zachary
Dellacqua, Claudia Di Biagio, Ratish Raman, Arianna Martini, Clara Boglione, Marc
Muller, Pierre Geurts, Raphaél Marée, “Empirical Evaluation of Deep Learning
Approaches for Landmark Detection in Fish Bio-Images", European Conference
on Computer Vision Workshops (ECCV- 2022)."

Demo server with datasets: http://research.uliege.cytomine.org/ (user-

name: eccv2022bic password: deep-fish)

5.1 Introduction

Manual annotations of landmarks locations are very labour intensive and require ded-
icated human expertise. The emergence and heterogeneity of high-throughput image
acquisition instruments makes it difficult to continue analyzing these images manu-
ally. To address the problem, biomedical researchers began to use automatic landmark
localization techniques to speed up the process and analyze large volumes of data. Con-
ventional landmark detection techniques use image processing in order to align two
image templates for landmark configurations then applying some Procrustes analysis
[24]. Classical machine learning techniques such as random forest based algorithms
were also proposed in [177] [112] [202] to automatically localize landmarks in microscopy
images of zebrafish larvae.

Recently, landmark detection or localization has also been extensively studied in
the broader computer vision field, especially for real time face recognition systems
[94][218][71], hand-gesture recognition [151], and human pose estimation [162][12]. With
the advent of more sophisticated techniques such as deep-learning based Convolutional
Neural Networks (CNNs), the performance of computerized models for object detection
and classification has become comparable to human performance. While deep learning
models reach a high level of accuracy in computer vision tasks with natural images (e.g.
on ImageNet), there is no guarantee that these methods will give acceptable performance
in specific bioimaging applications where the amount of training data is limited. Indeed,
learning landmark detection models requires images annotated with precise landmark
positions while experts to carry out these annotations are few, the annotation task is

tedious and it must be repeated for every new imaging modality and biological entity.
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5.2. RELATED WORK

In this chapter, we want to evaluate state-of-the-art deep learning based landmark
detection techniques to assess if they can simplify and speed up landmark analyses
in real-world bioimaging applications, and to derive guidelines for future use. More
precisely, we evaluate the two main families of methods in this domain, namely direct
multivariate regression and heatmap regression, and we focus our experiments on the
identification of anatomical landmarks in 2D images of various fish species. Section 5.2
reviews prior research on anatomical landmark detection in bioimages. In Section 5.3,
we outline our datasets and image acquisition settings. Our methodologies, network
architectures, and evaluation protocol are detailed in Section 5.4. Finally, we present

and discuss the empirical results in Section 5.5.

5.2 Related Work

In biomedical image analysis, patch-based deep learning methods are proposed in which
local image patches are extracted from the images and fed to the CNN to detect the land-
mark locations [14, 172]. Patch-based methods are usually used to train one landmark
model for each landmark location making the whole process computationally very expen-
sive. These models often require plenty of memory storage to operate if the number of
landmark points to detect is high. Another drawback of using the patch-based methods is
missing global information about all the landmarks combined as local patches represent
only limited contextual information about the particular landmark.

Among end-to-end deep learning approaches, the first prominent solution is to output
directly the (x,y) coordinates of the landmarks using CNNs regressors [105]. These
direct coordinate regression based methods are very simple to design and faster to
train. However, to get optimal performances, this approach generally requires large
training datasets and deeper networks [81]. Another approach is to output heatmaps
corresponding to the landmark locations [55, 143, 144]. In this scenario, heatmaps are
generated from the labeled landmarks locations during training and CNNs are trained to
predict these heatmaps. These heatmaps encode per pixel confidence scores for landmark
locations rather than numbers or values corresponding to landmark coordinates. The
most common heatmap generation methods employ distance (linear) functions or some
non-linear gaussian or exponential kernels [223]. In [81] and [121], the authors proposed
a method that combines the heatmap based regressors with direct coordinate regressors
to automatically localize landmarks in MRI images of spine.

The data scarcity in biomedical image analysis is one of the biggest concerns as it is
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difficult to train a deep CNN from scratch with limited amount of images and ground
truths. To address this issue, the authors of [142, 172] explore transfer learning methods
such as using a pre-trained CNN as backbone and only training or fine-tuning its last
layers for the problem of cephalometric landmark detection. Transfer learning is also
used in animal behaviour studies in neuroscience where landmarks are used to aid
computer-based tracking systems. [127] devised a transfer learning based landmark
detection algorithm that uses pre-trained Resnet50 as backbone to automatically track
the movements in video recordings of the animals. To tackle the problem of limited data,
the authors of [154] proposed a method to train models on thousands of synthetically
generated images from other computer vision tasks such as hand recognition systems
and evaluate them on MR and CT images.

There are cases in which two landmark points are either very close to each other or
one is occluding another landmark. In these cases, a single CNN model is not sufficient
to achieve optimal performance in locating the landmarks. To handle these scenarios,
authors in [104, 196] proposed a combination of CNN regressor and Recurrent Neural
Network (RNN) in which RNNs are employed to remember the information for landmark
locations to further refine the predictions given by the CNN regressor. Although these
methods can lead to very good performance for landmark detection, they are very hard

to train on limited image data due to their complex architectural design.

5.3 Dataset Description

In this work, we use three datasets acquired using different microscopy and radiography
imaging protocols. These datasets contain images of three different fish species, namely
zebrafish (Danio rerio) and medaka (Oryzias latipes), used in biomedical research as
model fishes, and gilthead Seabream (Sparus aurata), used for aquaculture research.
The Zebrafish microscopy dataset is acquired from GIGA Institute at the University of
Liege whereas the Medaka microscopy and gilthead Seabream radiograph datasets are
acquired from the department of Biology, University of Rome, Tor Vergata. The summary

of each dataset and detailed dataset descriptions are given in Table 5.1 .

5.3.1 Zebrafish Microscopy Dataset

This dataset is composed of 113 microscropy images of zebrafish (Danio rerio) larvae at

10dpf (3mm length). Images were captured using an Olympus SZX10 stereo dissecting
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Table 5.1: Summary of the datasets used in our methodology

Number of Number of

R EIEELS images landmarks

Image modality Research area

Zebrafish 113 25 Microscopy Bio-medical Science
Medaka 470 6 Microscopy Bio-medical Science
Gilthead Seabream 847 19 Radiograph Aquaculture

microscope coupled with an Olympus XC50 camera with a direct light illumination on
a white background. The Olympus XC50 camera allows to acquire 2576 x 1932 pixel
resolution images. 25 landmarks are manually annotated by the experts around the
head of the zebrafish larvae as folows: 1 and 24: Maxilla; 2 and 23: Branchiostegal ray
2; 3 and 11: Opercle; 4,12,13 and 14: Cleithrum; 5 and 19: Anguloarticular; 6 and 25:
Ceratobranchial; 7 and 8: Hyomandibular; 9 and 20: Entopterygoid; 10:Notochord; 21,15
and 18: Parasphenoid; 17 and 22: Dentary; 16: showing anterior end marking. A sample

image and its annotations are shown in Figure 5.1.
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Figure 5.1: Zebrafish image and its annotations from Zebrafish Microscopy Dataset
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5.3.2 Medaka Microscopy Dataset

This dataset has 470 images of medaka juveniles (40 days after hatching) where each
image has size 2560 x 1920. Samples were in toto stained with Alizarin red and pho-
tographed with the Camera Axiocam 305 color connected to the AxioZoom V.16 (Zeiss)
stereomicroscope. A total number of 6 landmarks are manually annotated as follows: 1:
rostral tip of the premaxilla (if the head is bent, the landmark was located between the
left and right premaxilla); 2: base of the neural arch of the 1st (anteriormost) abdom-
inal vertebra bearing a rib; 3: base of the neural post-zygapophyses of the first hemal
vertebra (viz., vertebra with hemal arch closed by a hemaspine); 4: base of the neural
post-zygapophyses of the first preural vertebra; 5: base of the neural post-zygapophyses
of the preural-2 vertebra; 6: posteriormost (caudad) ventral extremity of the hypural 1.

Figure 5.2 shows a sample image from the medaka dataset with annotated landmarks.

Figure 5.2: Sample image of medaka and its annotations from Medaka Microscopy
Dataset

5.3.3 Seabream Radiography Dataset

In this dataset, the fish species is gilthead Seabream (Sparus aurata), sampled at 55 gr
(average weight). A total of 847 fish were xrayed with a digital DXS Pro X-ray (Bruker)
and 19 landmarks are manually annotated on variable image sizes, as follows: A: frontal
tip of premaxillary; B: rostral head point in line with the eye center; C: dorsal head point
in line with the eye center; D: dorsal extremity of the 1st predorsal bone; E: edge between
the dorsal 1st hard ray pterygophore and hard ray; F: edge between the dorsal 1st soft
ray pterygophore and soft ray; G: edge between the dorsal last soft ray pterygophore and
soft ray; H: dorsal concave inflexion-point of caudal peduncle; I: middle point between the
bases of hypurals 2 and 3 (fork); L: ventral concave inflexion-point of caudal peduncle;

M: edge between the anal last pterygophore and ray; N: edge between the anal 1st ray
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pterygophore and ray; O: insertion of the pelvic fin on the body profile; P: preopercle
ventral insertion on body profile; Q: frontal tip of dentary; R: neural arch insertion on
the 1st abdominal vertebral body; S: neural arch insertion on the 1st hemal vertebral
body; T: neural arch insertion on the 6th hemal vertebral body; U: between the pre- and
post-zygapophyses of the 1st and 2nd caudal vertebral bodies. Sample images from the

dataset with annotated landmarks are shown in Figure 5.3.

Figure 5.3: Seabream image and its annotations from Seabream Radiography Dataset

5.4 Method Description

We evaluate two deep learning-based regression approaches: direct coordinate regression
and heatmap-based regression, which are discussed in detail in Sections 5.4.1 and
5.4.2, respectively. A comprehensive description of the training and prediction phases
is provided in Section 5.4.3. Section 5.4.4 covers the CNN architectures used in our
methodology, and in Section 5.4.5, we outline the implementation of the experimental

protocol.

5.4.1 Direct coordinates regression

Direct coordinate regression is a technique commonly used in anatomical landmark
detection, where the model is trained to predict the precise coordinates (typically in
the x, y, and possibly z dimensions) of each landmark in an image. Unlike heatmap-
based approaches (see Section 5.4.2) that predict the likelihood of each pixel being

a landmark and then derive coordinates based on the most probable region, direct
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coordinate regression bypasses this intermediate step. Instead, it directly outputs the
coordinates of each landmark, streamlining the detection process. In the direct regression
approach, the output is designed to predict (N x 2) numbers, where the first (resp. last)

N numbers correspond to x (resp. y) coordinates of the landmarks.

5.4.2 Heatmap-based regression

The second approach is based on outputting the heatmaps (one per landmark) instead
of directly predicting the coordinate points for landmark locations. Each heatmap gives
information about the likelihood for each pixel of being the location of a particular
landmark. At training, the heatmap is constructed to associate to every pixel a score that
takes its highest value (1) at the exact location of the landmark and vanishes towards 0
when moving away from the landmark. The size of the region of influence of a landmark
is controlled by a user-defined dispersion parameter 0. More formally, and following
[223], we have implemented and compared two probability functions to generate these
heatmaps, namely a Gaussian function F; and an Exponential function Fg, defined

respectively as follows:

1

foten A-exp (g (-p+ (r-m, ).
log(2

Fp(x,y)= A'eXp(— Og((j )(Ix—ux|+|y—uy|))),

where x and y are the coordinates of a pixel in the image, u, and u, are the coordinates
of the landmark under consideration, o is the spread of the distribution, and A is a
normalizing constant that gives the amplitude or peak of the curve.

To fix the highest score value as 1 at the exact location of the landmark, we set
the normalizing constant A to 1, since it corresponds to the maximum value of the
gaussian and exponential functions. Figure 5.4 shows the original landmarks on the
image (first column) and their corresponding heatmaps, as the superposition of the

heatmaps corresponding to each landmark (second and third columns).

5.4.3 Training and prediction phases

In the training phase, original images are first downscaled to 256 x 256 to be fed into
the network. Since the original images are rectangular, we first downscale the image
to a size of 256 along the largest dimension while keeping the aspect ratio unchanged.

Padding is then added to the smallest dimension to produce a 256 x 256 square image.
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Figure 5.4: Original landmarks on the images (first column), their corresponding Gaus-
sian heatmaps (second column) and Exponential heatmaps (third column)

For direct regression, the output of the model consists of N x 2 real numbers, with N the
total number of landmark, representing landmark coordinates rescaled between 0 and 1.
For heatmap regression, the output is composed of N heatmap slices, each corresponding

to one landmark and constructed as described in the previous section.

The prediction phase for direct regression based approach is simply predicting the
N x 2 numbers and then upscaling them to the original sized image (i.e., multiplying
them by the original image width and height after padding is removed). In the case of the
heatmap based approach, heatmap slices are first predicted by the network and then, as
a post processing step, each heatmap is converted to its corresponding landmark location
by taking the argmax of the heatmap over all image pixel values. The argmax function
returns the 2D coordinates of the highest value in a heatmap slice. The corresponding
landmark coordinates are then upscaled to the size of the original image to produce the

final model predictions.
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5.4.4 Network Architectures

To evaluate our methodology, we implement state-of-art CNNs used in various image
recognition, segmentation, and pose estimation tasks. Following are the CNN architec-
tures we implement in both the multivariate and the heatmap regression based output

network models.
* Heatmap based CNN architectures:

— U-Net architecture: U-Net architecture as described in 2.4.4.3 is a two phase
encoder and decoder network in which the encoder module is made up of
conventional stack of convolutional layers followed by max-pooling layer and
the decoder module consists in a stack of up-sampling layers. In this work,

the last layer of the network is modified to output the N heatmaps.
— FCNS8 architecture: In FCN8 as described in 2.4.4.2, the initial layers are

made up of stack of convolutional layers followed by maxpooling whereas
later layers are upsampling layers that consist in the fusion of intermediate
convolutional layers as shown in Figure 2.12. In this work, the last layer is

modified to output N probability heatmaps.
— ResNet50 backbone: ResNet50 is a state-of-the-art image recognition CNN

model described in 2.4.4.1 and also successfully used in pose estimation [127].
It is made up of deeper convolutional layers with residual blocks and is capable
of solving the vanishing gradient problem in deeper networks by passing the
identity information in the subsequent layers. We use the upsampling layers
in the decoder part to achieve the same resolution as that of the input size.
We use ResNet50 pretrained on ‘ImageNet’ [49] dataset for our evaluation
methodology (see section 2.5 for transfer learning). Note that heatmap-based
regression with this architecture is very close to the DeepLabCut[85] approach

and, thus, can be considered as a reimplementation of this latter method.

— HRNet: The deep High Resolution Network architecture is one of the state-of-
the-art architectures for the task of human pose estimation [183]. It maintains
the high resolution from end to end and uses other subnetworks in parallel to

exchange information between and within the stages (see Figure 2.14).

* Multivariate regression based CNN architectures: To implement multivariate
regression that directly regresses coordinate points, we investigate two types of

strategies. In the first case, the encoder part of the U-Net architecture is used for
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learning feature representations. In the second scenario, we explore a transfer
learning based approach where a ResNet50 network pretrained on ImageNet is
used for learning representations. In both scenarios, a fully connected layer is
added at the end of the network to output N x 2 numbers that correspond to (x,y)
coordinates of each landmark location, where N is the total number of landmark

locations.

5.4.5 Experimental Protocol and Implementation

To evaluate method variants, we follow a 5-fold cross validation scheme in which each
dataset is divided into 5 equal parts. In each iteration, one part is used as test set
while the other four parts are merged and shuffled and used as training and validation
sets, with a 3:1 ratio. Here the validation set is used for choosing the best model from
the number of epochs during training. In each fold, one model is trained for maximum
upto 2000 epochs. Mean error is then measured as first upscaling the predictions to
the original sized images then taking the Root Mean Square Error (RMSE) (i.e., the
Euclidean distance) between original ground-truth landmark locations and upscaled
predicted locations for each test image, then calculating the mean over all the test images.
The final error is reported by taking the mean error and standard deviation (Std.) over
5-fold cross validation. In all the evaluation protocols, we applied RMSProp optimizer
with initial learning rate as 0.001 and Mean Square Error (MSE) as the loss function.
To induce variability in the training set, we use data augmentation (scale, shift, rotate,
shear, horizontal flip, random brightness, and contrast change) for all methods. We also
use some callbacks such as Early stopping in which training is stopped when the loss
does not improve over 400 epochs and Learning rate scheduler in which learning rate is
reduced by the factor of 0.2 if validation loss is not improving over 200 epochs. We use
Tensorflow [3] as the deep learning library and Python as programming language. We
have trained the CNNs models on a cluster of roughly 100 NVIDIA’s GeForce GTX 1080
GPUs.

5.5 Results and Discussion

Baseline: We evaluate a first baseline, called ‘Mean model’, that simply predicts for each
landmark the mean positions computed for each landmark over original sized images of

the training and validation sets. In Table 5.2, we report the mean error (and standard
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deviation) of this model across 5-folds for our three datasets. As expected, the errors are
very high, showing that landmarks positions are highly variable given the uncontrolled

positioning and orientation of the fishes.

Table 5.2: Mean RMSE for 5-fold cross validation for the baseline ‘Mean model’

Dataset Mean error+S.D.
Zebrafish Microscopy 77.54+8.74
Medaka Microscopy 184.96+19.11

Seabream Radiography 50.14+1.27

Direct multivariate regression: Mean errors and standard deviations over 5-fold
cross validation scheme for direct multivariate regression are reported in Table 5.3. As
expected, very significant improvements can be obtained with respect to the Mean model.
The only exception is U-Net on the Zebrafish Microscopy dataset that obtains a higher
error than the baseline. We hypothesize that this could be due to the significantly lower
number of images (113) in this dataset and the fact that U-Net, unlike ResNet50, is not
pretrained, which makes this model more difficult to train. U-Net remains however a
better model than ResNet50 on the other two, larger, datasets.

Table 5.3: Mean RMSE for 5-fold cross validation for direct multivariate regression

Mean Error+S.D.
U-Net(31M) ResNet50(30M)
Zebrafish Microscopy  121.24+5.38 26.31+6.42
Medaka Microscopy 16.65+2.35 20.44+7.61
Seabream Radiography 7.71+0.2 9.65+2.34

Dataset

Heatmap regression: Heatmap regression requires tuning an additional hyper-
parameter, the dispersion 0. We carried out some preliminary experiments on the
Zebrafish Microscopy Dataset to analyse the impact of this parameter with both heatmap
generation strategies. Table 5.4 shows how the RMSE error, estimated using the vali-
dation set of a single dataset split, evolves with o in the case of the U-Net architecture.
The best performance is obtained with o =5 with the Gaussian heatmap and o = 3 with
the Exponential heatmap. We will therefore set o to these two values for all subsequent

experiments. This will potentially make our results on the Zebrafish Microscopy Dataset
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a bit positively biased but we expect this bias to be negligible as the errors in table 5.4
remain very stable and essentially independent of o as soon as ¢ is higher than 3. Note
also that better results can be potentially obtained on all problems by tuning ¢ using

some additional internal cross-validation loop (at a higher computational cost).

Table 5.4: Effect of o values using Zebrafish microscopy validation data with U-Net

o RMSE Error (in pixels)
Gaussian  Exponential

1 1202.64 118.87

2 1417.18 1198.1

3 36.38 19.35

4 20.66 19.76

5 19.23 20.06

6 23.52 19.64

7 20.73 19.68

8 19.58 19.58

9 20.15 20.73

10 20.47 20.11

Table 5.5: Mean Error (in pixels) from 5-fold cross validation for heatmap regression

Mean Error + S.D.
U-Net(31M) FCN8(17M) RestNet50(51M) HRNet(6.5M)
Zebrafish Microscopy 13.43+3.14 13.82+2.01 13.77£2.97 13.16+2.93
Gaussian Medaka Microscopy  10.36+2.45 10.56+1.85 10.18+1.17 10.69+2.52

Heatmaps Datasets

Seabrean Radiography 5.69+0.28  5.74+0.15 6.13+0.31 6.40+0.63

Zebrafish Microscopy 11.29+0.84 14.28+2.35 13.08+3.24 12.62+2.66

Exponential  Medaka Microscopy 9.34+1.06 10.12+1.60 9.36+1.05 9.54+1.59
Seabream Radiography 5.31+0.13 5.70+0.16 5.47+0.18 5.90+0.64

Table 5.5 reports the performance of the different architectures, with both Gaussian
and Exponential heatmaps. We observe that CNNs having more parameters tend to
perform better in most of the cases (except HRNet with gaussian heatmap) but at the
cost of computational efficiency and memory requirements. In particular, U-Net is better
in terms of accuracy though second largest in size. Pretrained ResNet50 comes next
with comparable performance with the largest size among all the models. Exponential
heatmap outperforms Gaussian heatmap in almost all situations, although the difference

is not very significant.
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Comparing Table 5.5 with Table 5.3, it can be observed that heatmap based regression
clearly outperforms direct multivariate regression on all datasets. From this investiga-
tion, we can conclude that, for the problem of landmark detection in Fish bioimages at
least, heatmap based regression, with U-Net and Exponential heatmap, is the preferred
approach, especially when the dataset is small.

It is interesting to note that because of the downscaling of the input image and the
upscaling of the predictions, one can expect that the reported errors will be non zero
even if the heatmap is perfectly predicted by the CNN model. We can thus expect that
our results could be improved by using higher resolution images/heatmaps, at the price
of a higher computational cost.

Hit rate: To further measure the performance of the model in terms of how many
landmarks are correctly predicted, we define a prediction as a hit if the predicted
landmark location is within some tolerance distance § from the actual landmark location.
The hit rate is then the percentage of landmarks in the test images that are having a
hit. We choose the best performing method from Table 5.5 (exponential heatmap based
U-Net model) and hit rates with different distance thresholds, estimated by 5-fold cross-
validation, are shown in Table 5.6, with the baseline § set at the ratio between the
original and heatmap resolutions. As expected, there are not many hits at 6, except on
the third dataset. At 2 x § however, all landmarks are perfectly detected, which suggests
that heatmaps are very accurately predicted (2 pixels error in the downscaled resolution)
and further supports the idea that better performance could be expected by increasing

the resolution of the network input images and heatmaps.

Table 5.6: Hit rate from the three dataset using best performing models

o Hit rate (in %)
Dataset
(in pixels) ¢ 2x0
Zebrafish Microscopy 10 20.0 100
Medaka Microscopy 10 16.66 100
Seabream Radiography 8 94.73 100

Per landmark error: To further assess performances hence derive guidelines for
practical use in real-world application, we computed mean error per landmark on test
sets across 5-folds in order to quantify which landmarks are hard to predict by the
models. Figure 5.5 shows per landmark mean error using the best performing method

(exponential heatmap based U-Net model) for all the three datasets. We can observe
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that in the case of the Zebrafish Microscopy dataset, landmarks 4, 16, and 21 are the
most difficult to predict. We hypothesized that these points are largely influenced by
their position on the structure which they marked on. These structures exhibit some
variability (shape, thickness, overlapping, missing or partially missing). In the case
of Seabream Radiography, landmarks G, M, and T are difficult to predict due to their
position which is somehow matched with background (see Figure 5.3). Lastly, in the
case of the Medaka Microscropy dataset, landmark 3 (see Figure 5.2) is badly predicted.
That might be attributed to the variability of the position it is marked on. As model
predictions might vary greatly between landmarks, we believe these approaches should
be combined with user interfaces for proofreading to make them effective. In practice,
experts would mostly need to focus and proofread badly predicted landmarks, an hybrid
human-computer approach which is expected to be much less time consuming than a

completely manual approach.

/ Zebrafish Microscopic Dataset
175 (A)
o

Medaka Microscopic Dataset

() [©

Seabream Radiograph Dataset

Figure 5.5: Mean error per landmark with Exponential heatmap regression based U-Net
on Zebrafish (A), Medaka (B), and Seabream (C) datasets

Finally, in Figure 5.6, we illustrate the predictions from the best models using one

image from the test set of each dataset.
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Original Image Predicted (red dots) and ground truth landmarks (blue dots)
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Figure 5.6: Sample predictions on one image from each of our three datasets (Zebrafish,
Medaka and Seabream) using best performing models (exponential heatmap based U-
Net). First column: Original image. Second column: image with predicted landmarks
(red dots) and ground truth landmarks (blue dots)

5.6 Conclusions

We have evaluated two types of regression based landmark detection strategies combined
with four CNN architectures on two microscopy and one radiography imaging datasets
of different types of fish species with limited ground truths. The winning strategy
(heatmap-based regression with Exponential generation function and U-Net architecture)
is a simple end-to-end deep learning methodology where a single model is able to

predict all the landmarks in a single run. Datasets and codes are distributed using open
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licenses and integrated into Cytomine [124]'. End-users can train models and proofread
model predictions, then export all statistics for their morphometric studies. Preliminary
experiments have showed that this approach works also well on images of butterfly wings
(http://hdl.handle.net/2268.2/14509) and we expect our work will ease landmark
detection in future bioimaging studies.

1Code: https://github.com/cytomine-uliege. Demo server with datasets: http://research.u
liege.cytomine.org/ username: eccv2022bic password: deep-fish
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CHAPTER

UNCOVERING THE BONE STRUCTURES IN ZEBRAFISH
LARVAE: A DEEP LEARNING APPROACH IN
MICROSCOPY

As discussed in Chapter 1, the zebrafish (Danio rerio) is widely regarded as an ideal
model for studying vertebrate biology in biomedical research. Its transparent body during
larval stages and a genetic similarity of over 75% with humans make it especially useful
for genetic and molecular studies focused on bone biology. Bone structures in developing
zebrafish (at 9 — 10 dpf) are typically observed by staining wildtype/untreated and
mutant/treated larvae with calcium-binding dyes, like alizarin red or calcein, followed by
microscopic imaging. Examining the development of bone structures in zebrafish larval
microscopy images is essential to accurately analyze skeletal development and bone-
related anomalies. Missing structures or gaps in imaging data, whether due to imaging
limitations, staining inconsistencies, or structural irregularities from mutations can
hinder accurate assessment of bone phenotypes. Deep learning techniques, specifically in
image segmentation, can offer promising solutions for identifying and even reconstructing
missing and occluded bone structures in zebrafish larval images. Using a deep learning
model for semantic segmentation can enable precise identification and segmentation of
bone regions across microscopy images, even when parts of the structure are weak, faint
or occluded. In this chapter, we present a deep learning-based semantic segmentation
approach to uncover the missing, weak, faint and overlapping bone structures from two

microscopy image datasets of 9-day post-fertilization (dpf) zebrafish larvae, acquired
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from lateral and ventral views respectively.

6.1 Introduction

Skeletal development in zebrafish is a dynamic and tightly controlled process, with
individual elements developing in a predetermined sequence and timing [44, 54, 97].
Most studies in zebrafish focus on the head skeleton, as it is the first to mineralize,
and the most prominent structure to be analyzed is the operculum, later covering the
gills [103, 189]. However, assessing the entire head skeleton reveals that individual ele-
ments may respond differently to a stimulus [5, 6], thus assessment of the entire cranial
skeleton is required. Key phenotypic outcomes include overall changes in mineralization
levels [43, 150, 195] and deformities or absence of specific bone elements resulting from
disruptions in morphogenic pathways [13, 28, 31]. Inter-individual variability, as well
as variability in experimental conditions and timing require that comparisons between
mutant/treated larvae with their wild type/untreated controls are always performed in
parallel and on a sufficient number of animals. These studies provide insights into the
molecular basis of bone diseases, aiding in diagnosis, and facilitating drug screening.
Such research contributes to finding improved treatments for conditions associated with
aging, including osteoporosis, osteopetrosis, osteoarthritis, and various bone injuries
[40]. Analyzing developing bone structures from microscopy images of control and mu-
tant/treated larvae is a crucial but time consuming task. In the process of analysing the
bone structures, experts need to visually inspect each bone structure meticulously in
order to specify the presence or absence of the bone structure, and its shape and size.
Especially in ventral view, several structures are overlapping in 2d images (see Figure
6.1 (D)) and it is challenging to delineate the boundaries of each structure manually.
Moreover, certain structures are either absent or have very unclear/weak boundaries
(see Figure 6.1 (B) and (C)), posing challenges for biologists in objective visual observa-
tion. Nowadays, biomedical researchers are taking the assistance of computer vision
based automatic image processing tools to reduce human error and streamline the time

consuming manual annotations of the developing bone structures in the model fish.

In Section 6.2, we describe the image acquisition process and the image datasets
used in our approach. Section 6.3 is dedicated to specifying the methodology, network

architecture and evaluation protocol used and we present our results in Section 6.4.
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Figure 6.1: Image samples of zebrafish larvae depicting cases of present, missing, blurred,
and occluded structures. The top row displays the original images, while the bottom
row shows a magnified section (indicated by a blue square). In column (A), both Br2a
and Br2b structures are visible. In column (B), Br2a is missing, while Br2b is faintly
visible. In column (C), both Br2a and Br2b are absent. In column (D), Cb1 and Cl1 are
overlapping with unclear boundaries.
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6.2 Image acquisition and dataset description

In this work, we use two types of datasets, acquired using the same microscopy setting,
but different views of the alizarin red stained, 3-dimensional head skeleton, namely a
"lateral view" and a "ventral view". In the lateral view, euthanized larvae are placed in a
side view such that the eyes and most symmetrically paired elements overlap, while the
vertebral bodies are clearly visualized (see Figure 6.3 (a)). In the ventral view, the larvae
are placed horizontally with the bottom (ventral) facing towards the objective of the
microscope. In that view, all elements of the head skeleton are clearly observed, albeit
some are again overlapping (see Figure 6.3 (b)). In the original study [150], two different
mutant lines were used, carrying insertion mutations in the col10ala (zfin Id: ulg076) or
the fbin1 (zfin Id: ulg075) gene coding regions, respectively, that inactivate the encoded
protein. Only images from the col10ala mutant line is used in this chapter. For each line,
three genotypes were obtained by crossing heterozygous mutant parents: homozygous
(hom) carrying both copies of the mutant alleles, heterozygous (het) carrying one copy
each of the mutant and WT alleles, and WT carrying only the intact alleles (controls).

All larvae were sacrificed at the same age of 9 days post-fertilization (dpf), stained for

125



CHAPTER 6. UNCOVERING THE BONE STRUCTURES IN ZEBRAFISH LARVAE: A
DEEP LEARNING APPROACH IN MICROSCOPY

calcified structures by alizarin red, and imaged as described previously in [150] using
a dissecting microscope (Olympus SZX10, Tokyo, Japan, cell B software version 3.4).
Annotations were carried out by experts, while genotyping of all individual larvae was
performed after all image analysis was finalized as described in [150]. Two datasets were
formed: the "lateral view" dataset and the "ventral view" dataset. In the lateral view
dataset, visible vertebral bodies are annotated, whereas in the ventral view dataset, all
visible bone structures of the head of the zebrafish larvae are annotated. Since in both
datasets, some structures are either missing or not clearly visible, the total number of
structures varies from image to image.

Figure 6.2 shows sample images from both datasets and their corresponding masks.
In both cases, the original image resolution is 1932 x 2576. The lateral view dataset
contains 117 images, and the ventral view dataset contains 192 images. Images in the
lateral and ventral dataset originate respectively from 36 and 38 different fish. For each
fish, multiple images (on average 3 and 5 per fish, respectively for the lateral and ventral
views) are present in the dataset that correspond to different views of the fish in terms
of focus or orientation. Some images have also been annotated several times by different
annotators. We decided to incorporate them all in the dataset, as they reflect natural
diversity in the data collection protocol. We took care, however, of not incorporating
images from the same fish in both the training and test set to avoid any bias in the

evaluation (see Section 6.3.4 for the experimental protocol).

6.2.1 Annotation description

In the lateral view dataset, visible bone structures (vertebral bodies) of the vertebral
column are annotated and all are termed as "VB”, a short form of vertebral body. In
the ventral view dataset, an image has a maximum of 24 bone structures if none is
missing. The names of the structures are as follows: Branchiostegal ray 1 (Brla, Brlb),
Branchiostegal ray 2 (Br2a, Br2b), Ceratobranchial (Cb1, Cb2), Ceratohyal (Ch1l, Ch2),
Cleithrum (Cl11, C12), Dentary (D1, D2), Entopterygoid (Enl, En2), Hyomandibular
(Hm1, Hm2), Maxilla (M1, M2), Notochord (N), Occipital (Ocl, Oc2), Opercle (Opl,
Op2), Parasphenoid (P). Out of 24 structures, 22 structures are in 11 bilateral pairs,
while two axial structures are single (N, P). Apart from structural annotations, we have
also annotated the full fish larvae in ventral view to be used for automatic cropping
in our experiments. Image samples from lateral and ventral view datasets with their
corresponding annotated bone structures are shown in Figure 6.3.

While visualizing the ventral view dataset, we observe that the boundaries of some
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Figure 6.2: Sample images from lateral view dataset (first row) and ventral view dataset
(second row) with their corresponding segmentation masks. The scale bars correspond to
500 pm.

structures are either blur or unclear due to overlapping with other structures. As shown
in Figure 6.1 (B), Br2b is very weak but present and in Figure 6.1 (D), the boundaries
of Cb1 and Cl1 are not clear due to overlapping. Because of these limitations in visual
perception, structures may not get accurate annotations, potentially inducing subjectivity

in manual annotations by the experts and resulting in the possibility of mislabeled data.

6.3 Method Description

To identify and segment missing, faint and occluded bone structures in microscopy
images, we employ a "binary semantic segmentation" approach, where each pixel is

classified as either positive (1) or negative (0). Clusters of positive pixels (1) represent
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Figure 6.3: Sample images with annotations from (a) lateral and (b) ventral view dataset.

regions of interest (ROIs ie. segmented bone structures), while clusters of negative pixels
(0) represent the background. We evaluate the model on test images by determining
the overlap between the predicted segmented structures and ground truth masks (we
discuss in detail about training and prediction phases in Section 6.3.3). Two distinct
binary segmentation U-Net models, with modifications at the output layer, are trained

separately for the lateral and ventral view datasets.

In the lateral view dataset, a binary segmentation U-Net model with a single output
layer is trained to segment all "VB” structures within the vertebral region of zebrafish
larvae. The use of a single output layer is appropriate due to the lack of structural
overlap. Furthermore, full-size images are utilized without cropping, and they undergo
resizing and padding during the training process (refer to Section 6.3.3 for details on the

training phase).

For the ventral view dataset, the approach involves first training a binary segmenta-
tion U-Net model to segment the entire larval body from full-sized images. The resulting
segmentation masks are then used to automatically crop the images. This cropping step,
applied to the ventral view dataset is intended to increase the proportion of positive class
pixels by reducing the background (negative class pixels), thereby partially addressing

the issue of class imbalance (we discuss the class imbalance problem later in this section).

As described in Section 6.2, ventral images contain 24 structures, of which 22 form 11
pairs with symmetrical shapes (e.g., Brla and Brlb or M1 and M2 are symmetrical). Two
structures (N and P, shown in Figure 6.3) are unpaired, as they are located along the
medial axis. Additionally, some structures overlap (e.g., D1, M1, and Cb1, Cl1, Ocl, and

N, as seen in Figure 6.3), which complicates the segmentation task for a binary model
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with a single output mask. Furthermore, the dataset is affected by class imbalance,
as the average ratio of positive pixels to background pixels per image (and thus per
mask) is below 0.3, a problem that could worsen if separate output masks are used
for each structure. To tackle both these issues, we create the final ground truth masks
by combining each symmetrical pair of structures into a single mask, while structures
without symmetry are kept as separate masks. This approach helps mitigate class
imbalance and addresses the overlap issue by merging symmetrical structures into one
mask. We then stack these masks along the third axis to produce a multi-layer output
mask with dimension H x W x 13 where H and W are the height and width of the input
image, and 13 is the total number of output masks (11 paired and 2 unpaired structures).
If a structure is absent in the ground truth, the combined mask contains only background
pixels (all values set to 0), while any present structure is marked with positive class
values (1s) in its respective locations. If all structures in a mask are missing, then
we get a fully negative mask (all values as 0) along the third dimension, ensuring a
consistent number of masks (i.e. 13) at the output layer. Figure 6.2 shows example images
from both lateral and ventral views with their corresponding segmentation masks. For
visualization, all ventral masks are merged into a single mask. Note that only head
structures from the ventral view dataset are used in this methodology. Figure 6.4 depicts
the end-to-end methodology we use for the lateral view (above) and ventral view (below)

datasets.

6.3.1 CNN architecture

We implemented a CNN architecture called U-Net for both image datasets. Originally
introduced in [157] (and discussed in Section 2.4.4.3), U-Net is a deep learning model
designed for semantic segmentation in biomedical images. It utilizes an encoder-decoder
structure, where the encoder comprises conventional blocks of convolutional layers
followed by max-pooling layers. The max-pooling layers reduce the resolution of the acti-
vation maps, enhancing spatial invariance of the features. The decoder block, composed
of upsampling or deconvolutional layers, restores the original image resolution. Each con-
volutional block’s activation maps are added to the corresponding deconvolutional block,
transferring feature information from the encoder to the decoder during upsampling.
This transfer aids the learning process by addressing vanishing gradients. Additionally,
batch normalization is applied throughout both modules to enable more efficient network

training. Figure 6.5 shows the exact U-Net architecture used in our methodology.
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6.3.2 Loss functions

To handle the problem of class imbalance, we use ‘focal loss’ as CNN’s cost function. Focal
loss is a generalized version of cross-entropy (CE) loss that tries to focus more on ’hard
to classify’ (FN) examples and down-weigh the ’easy to classify’ (TN), thus reducing the
overhead of the class imbalance problem. To investigate the robustness of the model
against "hard to annotate" structures (e.g. Br2a, Br2b, M1, Cb1, Cl1 etc.) in some images,
we experiment with a model using ‘bi-tempered logistic loss’ combined with ‘focal loss’

(see Section 2.6.2 for detailed description about these loss functions).

6.3.3 Training and prediction phases

In the training phase, original images are first downscaled to 512x512 to be fed into the
network for both datasets. Since the original images are rectangular, we first downscale
the image to a size of 512 along the largest dimension while keeping the aspect ratio
unchanged. Padding (with zeros) is then added to the smallest dimension to produce a
512 x 512 square image. Following this procedure, in lateral view dataset, the output of

the model consists of a single mask of dimension H x W with H and W corresponding to
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Figure 6.5: UNet architecture (with modifications at last layer) used in our experiments

the height and width of the input image respectively, while in ventral view dataset, the
output of the model is composed of 13 masks with height and width equal to those of the
input image.

In the prediction phase, all the VB structures are predicted with a single output
mask in case of lateral view dataset and then this mask is upscaled to the original image
size to be compared with the original ground truth masks. This upscaling is performed
by first removing the padding, then resizing it to the original height and width of the
image. The same upscaling steps are applied to upscale all the output masks in the
ventral image dateset as well. In ventral view dataset, the third dimension (depth) of
the output mask is 13, hence each slice of the output mask either corresponds to paired
structures or single structure. During prediction phase, we may get some blobs of false
positives along with ROIs (i.e. true positives) in the slices of the predicted mask in both
the lateral and ventral view images. For mask slices having single structure (i.e. P and N),
in our experiments blobs of false positives are removed by considering only the potential
predicted structures that have pixels count of more then 70 (as it was observed on our
dataset that P and N structures have more than 1000 pixel average area). False positives
blobs from paired structure slices of the predicted mask are removed by considering only

the blobs for potential predicted structures that have more then 25 pixel count.
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6.3.4 Experimental protocol and implementation

To evaluate the models in both image datasets, we adopt a K-fold cross validation
strategy where the dataset is partitioned into K folds of (approximately) equal sizes.
In each iteration, one fold serves as the test set, while the remaining K — 1 folds are
combined, shuffled, and split into training and validation sets. Here the validation set is
used to select the best model for predicting the structures. This approach allows every
image in the dataset, the opportunity to serve as a test image when its corresponding fold
is designated as the test set. Following this rule, we choose the value of K =5 for both
the lateral view and the ventral view dataset. Care was taken to put all the images of
the same fish in the same fold to avoid any bias in the evaluation. For each fold training,
the model is trained for 2000 epochs and is saved at the current checkpoint (using
checkpoint callback) if the loss at current epoch is improved over the loss at previous
epoch. Model training on the current fold is stopped, and moves to next fold, if the
training at the current fold does not see any performance improvement in validation loss
for the next 300 epochs (using early stopping callback). We select precision, recall and
dice score as metrics for the evaluation of the model. The Dice score represents the area
of overlap between the predicted structures and the ground truth masks and ignoring
the background, which is also equivalent to the F'1 score (see Section 2.6.1.2). It directly
assesses how much the predicted and actual areas align, without taking into account
the background pixels. Precision measures the fraction of pixels predicted as positive by
the model that are truly positive (True positive/(True positive + False positive)). Recall
measures the fraction of truly positive pixels that are correctly predicted by the model
(True positive/(True positive + False negative)).

In case of the lateral view dataset, we first calculate precision, recall and dice
score per structure at the pixel level and then average them to compute the average
precision, recall and dice score per test image. The final precision, recall and dice scores
are computed by averaging them over all the folds. We then quantify performance at the
structure and image level. To reduce tiny false positives in the predictions, we establish
a criterion wherein regions (i.e. blobs of predicted positive pixels) within the predicted
mask must contain a minimum of 25 pixels to be considered a potential candidate for
structure predictions. We choose this values as there is no structure which has an area
of less than 50 pixels in the original full size ground-truth masks. We first determine
image level accuracy, which is calculated as the proportion of images in which all
ground truth structures are correctly predicted by the model, relative to the total number

of images in the dataset. A ground truth structure is deemed predicted correctly if the
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dice score is at least 0.5 with one of the predicted structures. Next, we compute the
structure level accuracy, defined as the proportion of the ground truth structures
across all images in the dataset that are correctly predicted.

For the ventral view dataset, we first train a single output layered U-Net with a
full larval body mask in order to automatically crop the images around the body of the
zebrafish larvae. After creating the cropped dataset of ventral images, we proceed with
the training and evaluation of the multi-layered output version of the U-Net architecture.
We first compute the average precision, recall, and Dice score (i.e. F'1 score) score for
each structure at pixel level across 5 folds. Then, we also quantify the performance
at the image level. As for the ventral view dataset, we set a criterion that a region
(blob of positive pixels) must contain more than 25 positive pixels to be considered a
candidate structure for prediction. The selection of this value is based on the observation
that the structures in the ventral images do not contain fewer than 70 pixels (40% of
70 = 25). We then compute the number of false positive and false negative predictions
at the image level for each structure separately. A false positive is an image where the
structure is missing in the ground truth but there is at least one predicted structure
somewhere in the image. A false negative is an image where the structure is present
in the ground truth but no predicted structure has a dice score above 0.4 with respect
to that structure. A lower Dice score threshold is used for the ventral view due to the
subjectivity in expert annotations for certain structures that may appear weak, blurred,
or overlap with other structures. The overall image level accuracy for a given structure

is then the percentage of images that are neither false positive nor false negative.

6.4 Results and Discussion

We first evaluate our model on the "lateral view" dataset using 5-fold cross validation
without cropping. In Table 6.1, we report at pixel level, the average precision, recall and
Dice score with standard deviation (S.D.) across 5 folds. Next, we proceed with computing
the accuracies at image and structure level mentioned in Section 6.3.4. They are reported
in Table 6.2.

Following the protocol mentioned in Section 6.3.4, we evaluate our multi-output mask
U-Net model using 5 fold cross-validation on the "ventral view" dataset. The average
precision, recall and Dice score (F'1 score) for each structure at ‘pixel level’ across 6-folds
are reported respectively in the second, third and fourth columns of Table 6.3. The total

number of missing structures in ground truth images is mentioned in the fifth column
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Table 6.1: Pixel-level precision, recall and dice score, averaged over all test images, using
5-fold cross validation on the lateral view dataset.

Metric Score + S.D.
Precision (at pixel level) 0.8658 + 0.027
Recall (at pixel level) 0.8382 + 0.018
Dice score (at pixel level) 0.8494 + 0.023

Table 6.2: Accuracy at image level and accuracy at structure level for the lateral view
dataset, using 5-fold cross-validation.

Metric Score

Accuracy (at image level) 0.88
Correct predictions
(Out of 117 images)

103

Accuracy (at structure level) 0.97
Correct predictions
(Out of 664 structures)

648

of Table 6.3. Next, we report in the same table the number of false positive and false

negative images and the image level accuracy, as described in Section 6.3.4.

Discussion. From the results in Table 6.2, we infer that for lateral view dataset, our
model performed well in predicting the VB structures from the tail part of the fish. By
visually inspecting the predictions, we observed that our model did not predict some
structures which are present in ground truth annotations primarily due to the fact that
these unpredicted structures are only very weakly visible in the images. In some of these
cases, different annotators might reasonably have omitted marking the vertebral bodies
that our model missed (see Figure 6.6). Irrespectively of the quality of the prediction
of individual structures, the model correctly predicted the exact number of vertebral
bodies in 101 of the 117 images (86.3%). In the remaining images, the difference between
the predicted and the actual counts was minimal: 11 images showed a difference of 1, 4
showed a difference of 2, and 1 image showed a difference of 3. With only one exception
(the image with a difference of 3), all counting errors were underestimations. Given the
limited size of the dataset, we believe these results are very satisfying.

For the ventral view dataset, Table 6.3 shows that structure 'P’ is predicted with 100%

accuracy across all folds. This high accuracy is due to its large area, distinct boundaries,
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Table 6.3: Average scores per structure (at pixel level) across 5-fold cross validation
(Precision, Recall and F1 score) and number of correctly predicted (as present or missing)
for ventral view dataset

Number of Correct |Prediction
Structures | Precision + S.D. | Recall + S.D. F1 Sf:ore +8S.D. missing Fz'll'se Fals'e predictions | accuracy
(Dice score) positives | negatives i
structures (out of 192) (in %)

Brla 0.75 + 0.01 0.58 + 0.06 0.58 + 0.07 1 1 0 191 99
Brlb 0.59 + 0.08 0.73 £ 0.04 0.73 £ 0.02 3 2 6 184 97
Br2a 0.56 + 0.13 0.53 + 0.13 0.54 + 0.13 137 5 42 145 76
Br2b 0.52 £ 0.13 0.52 £ 0.13 0.52 £ 0.13 132 3 48 141 73
Cb1 0.67 + 0.15 0.62 + 0.13 0.64 + 0.14 9 9 3 180 94
Cb2 0.64 +£0.15 0.66 + 0.14 0.63 +0.14 5 5 1 186 97
Chl 0.68 + 0.15 0.59 + 0.14 0.60 + 0.14 9 5 22 165 86
Ch2 0.64 + 0.12 0.55 + 0.08 0.56 + 0.07 8 1 13 178 93
c1 0.56 + 0.04 0.54 + 0.03 0.55 + 0.03 0 0 2 190 99
C12 0.44 +0.13 0.49 + 0.10 0.46 + 0.11 0 0 2 190 99
D1 0.51 + 0.04 0.51 + 0.07 0.50 + 0.04 0 0 0 192 100
D2 0.53 + 0.14 0.56 + 0.12 0.54 + 0.12 0 0 0 192 100
Enl 0.67 £ 0.11 0.66 + 0.04 0.64 + 0.05 0 0 0 192 100
En2 0.53 + 0.09 0.52 + 0.10 0.51 + 0.09 0 0 0 192 100
Hm1 0.84+ 0.07 0.79 + 0.07 0.81 + 0.07 0 0 0 192 100
Hm2 0.80 + 0.07 0.77 + 0.07 0.78 + 0.07 0 0 0 192 100
M1 0.55 + 0.06 0.54 £ 0.10 0.52 + 0.08 10 1 24 167 87
M2 0.59 + 0.08 0.53 + 0.09 0.53 + 0.07 5 1 24 167 87
N 0.89 + 0.01 0.84 + 0.04 0.85 £+ 0.03 0 0 0 192 100
Ocl 0.60 + 0.09 0.48 + 0.06 0.51 + 0.06 32 8 24 160 83
Oc2 0.54+ 0.05 0.46 + 0.03 0.48 £ 0.01 38 9 25 158 82
Opl 0.84 + 0.06 0.83 + 0.04 0.83 + 0.04 2 2 0 190 99
Op2 0.78 £ 0.07 0.76 + 0.05 0.75 £ 0.05 0 0 192 100
P 0.89 + 0.03 0.90 + 0.01 0.89 + 0.02 0 0 0 192 100

lack of overlap with other structures (see Figure 6.3), and also to its presence in all
images. Similarly, structures 'N’, ’Hm1’, ' HmZ2’, ’D1’, ’D2’, ’En1’, and ’En2’ also achieve
perfect accuracy, mainly because they have clear, non-overlapping boundaries and appear
consistently in all images. ’Op2’ is perfectly predicted as well, but there are two false
positives in the case of ’'Op1’. ’Cl1’ and ’CI2’ that are present in all images are very well
predicted but are wrongly undetected in two images. Unsurprisingly, the remaining
structures that have an overlap with others, small size, blurred boundaries and/or a
faint presence are more challenging to detect for the model and their prediction accuracy
is inversely proportional to the number of images where the structure is missing. ’Cb1’
and ’Cb2’ present a prediction accuracy of about 95%, ’M1’ and 'M2’ of about 85%. The
most difficult structures are ’Oc1’ and ’Oc2’ (~ 80% accuracy) that have a small size and
a strong overlap with ’Cb1’/Cb2’ and ’C11’/C12’ and 'Br2a’ and 'Br2b’ (~ 75% accuracy)
that are missing in more than 70% of the images. Note that a majority of the errors are

false negatives, i.e. structures that are present in the ground truth but not detected. The

135



CHAPTER 6. UNCOVERING THE BONE STRUCTURES IN ZEBRAFISH LARVAE: A
DEEP LEARNING APPROACH IN MICROSCOPY

Image GT Mask Pred Mask

250 250 4 250
500 500 500
750 750 750
1000 it 1000 - B0 1000 o¥0

10 ! M e : M e : M
1500 L 1500 L = 1500 L

1750 17501 1750

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

750 750 750
S o =000 »
11, O.WJW[M Vg
1000 1000 1000
4 1250

1500 4 1500 1500

1750 4 1750 1 1750

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Figure 6.6: Two cases of bad predictions from the lateral view dataset. The first row
shows the case where unpredicted structure is very small. The second row contains the
case where unpredicted structures are slightly visible and subjectively annotated. The
first column represents the original full-size images, the second column shows the ground
truth annotations of the full-size images, and the third column displays the full-size
predicted annotations.

Dice score at the pixel level is not perfectly correlated with the prediction accuracy at
the image level, as some perfectly detected structures have low dice score (e.g., ’D1’ and
'D2’%). This translates the fact that some structures have blurred boundaries, but are not

difficult to detect.

Impact of the genotype on bone development. One of the objectives of the orig-
inal study [150] was to identify relationships between fish genotype and the pres-
ence/absence of some structures. To illustrate this downstream task, we conducted
chi-square tests for each structure to detect significant dependencies between geno-
type and structure presence/absence. The genotype was divided into two categories
(homozygous vs {heterozygous,wild-type}). We performed these tests using ground truth
annotations first and then, our model’s predictions obtained by 5-fold cross-validation.
Table 6.4 reports p-values of both tests for all structures such that at least one of the
two tests yielded a p-value below 0.05. The results reveal that the relationship between
the genotype and the presence/absence of structure 'M1’ is confirmed by both the ground

truth and the predicted structures. The dependence of ’Ocl’ is considered significant
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Table 6.4: P-values for a chi-square test, performed at the image level, comparing the
genotype with the presence/absence of a structure, with the ground truth annotations
(second column) and the model predictions obtained by 5-fold cross-validation (third
column). Only the structures for which at least one p-value is lower than 0.05 are shown.

Structures | P-value Ground-Truth | P-value Predictions
M1 0.000025 2.51e-11
Ocl 0.000196 0.1175249
Chl 0.359584 0.0300473
M2 0.417581 8.43e-11

Table 6.5: P-values for a chi-square test, performed at the fish level, comparing the
genotype with the presence/absence of a structure, with the ground truth annotations
(second column) and the model predictions obtained by 5-fold cross-validation (third
column). Only the structures for which at least one p-value is lower than 0.05 are shown.

Structures | P-value Ground-Truth | P-value Predictions
M1 0.008917 0.006183
Brlb 0.049183 0.851399
M2 0.231883 0.000270

when using the ground truth but it is not confirmed using the model predictions. On the
other hand, the model predictions highlight a significant link between ’Ch1’ and 'M2’ and
the genotype that is not observed using the ground truth.

Since several images are from the same fish, the p-values in Table 6.4 are too opti-
mistic. We also performed the same tests but this time at the fish level. The genotype was
also encoded into the same two categories. The structure presence/absence information
was encoded into three categories: 0 if the structure is missing in all fish images, 1 if it
is present in all fish images and 2 otherwise. Table 6.5 compares the p-values of both
tests for all structures such that at least one of the two tests yielded a p-value below
0.05. At the fish level, only ‘M1’ is deemed significant by both tests. 'Br1b’ is significantly
linked with the genotype when using the ground truth annotations but not when using
the predicted ones, while the opposite is true for 'M2’. Given the symmetry between 'M1’
and 'M2’, it makes sense that both are linked with the genotype and this connection was
also reported in [150] based on a different manual re-annotation of the fish.

Overall, Tables 6.4 and 6.5 show that tests based on predicted structures do not lead
to exactly the same conclusions as tests based on manual annotations. This discrepancy

was anticipated given that model predictions do not perfectly align with ground truth
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(as shown in Table 6.3). Note however that the manual annotations are not expected
to be flawless either, given the difficulties discussed previously. As a consequence, we
believe that the significant genotype associations identified through model predictions
certainly deserve further investigation. Machine learning-based predictions may actually
capture more systematic patterns than manual annotations, and, like the ground truth
annotations, they are expected to be free from potential bias since they were generated

without any consideration of the genotype information.

6.5 Experiments with mislabeled data

Lastly, we conduct experiments using artificially ‘mislabeled/corrupted’ data. The primary
goal of this experiment is to evaluate the robustness of the model when trained with
mislabeled images and to check the impact of different training losses on this robustness.
As discussed in Section 6.1, annotations can be subjective and may result in mislabeling
errors by experts due to the challenges associated with visual observations (see also
Figure 6.1). In this experiment, we focus on the ventral view dataset and we deliberately
corrupt it by mislabeling some structures in the images. Mislabeling is applied only to
structures that are difficult to annotate, such as those that are missing in some images
or have small, weak, faint, or overlapping boundaries, i.e. M1, M2, Br2a, Br2b, Cl1,
Cl12, Ocl, Oc2, Cbl, Cb2. Perturbations involve omitting annotations for very weak but
labeled structures (e.g. M1 and M2), and subjectively annotating structures when they

overlap or are missing (e.g. Ocl, Oc2, Cb1, Cb2) (see Figure 6.7).

Image Mask

Figure 6.7: Random perturbations applied to different structures. M1 and M2 are visible
in the image but omitted in the mask. Oc1, Oc2, Cb1 and Cb2 are absent in the original
ground truth but subjectively annotated in the mask.
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Following this protocol, we first divide the dataset in train, validation and test sets
into 70:15: 15 ratio respectively. As in the previous experiments, the test set contains
(30) images from (6) fish that are not present in the train and validation sets to avoid
any bias. Then, we corrupt 10% of the training set while keeping the validation and test
set unaltered. More precisely, for each structure in the above list, we randomly pick 10%
of the training images where the structure is present and we remove it from the ground
truth. We then randomly select 10% of the images where the structure is missing and we
manually and subjectively add an annotation in the images at the position where the
structure should have been. The model is then trained on the resulting corrupted training
set for 3000 epochs in a single run using three loss functions: focal loss, bi-tempered loss,
and a combination of bi-tempered and focal loss called focally weighted bi-tempered
loss. The first two losses are described in Section 2.6.2.2. The third one is novel and
detailed below. This results in three separate models, each trained with a different loss
function. We also train models using the uncorrupted original training set with the same

loss functions for comparison. The results are reported and discussed in Section 6.5.1.

Focally weighted bi-tempered loss. For the experiments in this section, we imple-
ment a novel loss function, called *focally weighted bi-tempered loss’, which is a hybrid
version of the focal and bi-tempered losses. The basic idea of implementing this loss
function is to design a loss that can handle class imbalance and mislabeling simultane-
ously. We define the focally weighted bi-tempered loss function for binary classification
problems as follows:

LrpT = LFL % LBi-Tempered (6.1)
where the focal loss Lz, is defined in Equation 2.50 of Section 2.6.2.2.5 and the bi-
tempered loss £B;_Tempered is defined in Equation 2.54 of Section 2.6.2.2.6. The resulting
loss thus depends on the tunable hyper-parameters of both losses, i.e. @ and y for the focal
loss and the two temperatures 71 and T'e for the bi-tempered loss. In all our experiments,
we set a to 0.8, y to 2 (default), T'; to 0.8 and T2 to 1.8.

6.5.1 Results

We present preliminary experimental results with the focal loss, the bi-tempered loss,
and the combination of both, using the original training set and a training set with 10%
‘mislabeled/corrupted’ data in Tables 6.6 and 6.7 respectively.

From Table 6.6, we can see that the focal loss performs better than the bi-tempered

and the focally weighted bi-tempered losses in terms of structure predictions. This might
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Table 6.6: Results on test images using various loss functions for original training dataset

Focal Bi-tempered Bi-tempered +
Structures Total Focal
structures Dice score Correct Mistakes Dice | Correct Mistakes Dice | Correct Mistakes
predictions | False |False score | predictions | False |False score | predictions | False |False
(out of 30) | positive | negative (out of 30) | positive | negative (out of 30) | positive | negative

Brla 30 0.79 30 0 0 0.81 30 0 0 0.79 30 0 0
Brilb 30 0.56 30 0 0 0.76 29 0 1 0.72 30 0 0
Br2a 17 0.60 25 1 4 0.65 24 1 5 0.66 28 2 3
Br2b 17 0.44 19 0 11 0.51 25 0 5 0.52 28 1 4
Cb1 30 0.62 29 0 1 0.59 26 0 4 0.58 27 0 3
Cb2 30 0.61 28 0 2 0.57 27 1 2 0.65 29 0 1
Ch1l 30 0.81 30 0 0 0.81 30 0 0 0.81 30 0 0
Ch2 30 0.69 30 0 0 0.80 30 0 0 0.80 30 0 0
Cl1 30 0.58 27 0 3 0.59 26 0 4 0.55 26 0 4
Cl2 30 0.60 30 0 0 0.63 29 1 0 0.61 30 0 0
D1 30 0.70 30 0 0 0.70 29 1 0 0.73 29 0 1
D2 30 0.82 30 0 0 0.83 29 0 1 0.77 30 0 0
Enl 30 0.72 30 0 0 0.75 30 0 0 0.76 30 0 0
En2 30 0.69 30 0 0 0.79 30 0 0 0.72 30 0 0
Hm1 30 0.84 30 0 0 0.85 30 0 0 0.81 30 0 0
Hm?2 30 0.83 30 0 0 0.81 30 0 0 0.74 30 0 0
M1 28 0.62 26 1 3 0.65 28 0 2 0.53 29 1 1
M2 29 0.57 29 1 0 0.61 30 0 2 0.52 29 1 1
N 30 0.82 30 0 0 0.85 29 0 1 0.82 29 1 0
Ocl 20 0.63 30 0 0 0.56 27 3 0 0.55 27 3 0
Oc2 20 0.62 30 0 0 0.55 29 0 1 0.57 29 1 0
Opl 30 0.90 30 0 0 0.90 30 0 0 0.86 30 0 0
Op2 30 0.88 30 0 0 0.88 30 0 0 0.85 30 0 0
P 30 0.91 30 0 0 0.91 30 0 0 0.87 30 0 0

Total 671 27 33 28

be due to the fact that bi-tempered loss is specifically built to handle mislabeled/corrupted
data. Since in this case our dataset is neither mislabeled nor corrupted, at least explicitly,
we might expect some errors using the bi-tempered loss and its variant. On the other
hand, by looking at Table 6.7, where we use dataset with 10% mislabeling, the focal
loss has more prediction errors (35 mistakes) as compared to bi-tempered (22 mistakes)
and bi-tempered and focal loss combined (only 16 errors). We believe the improved
performance with bi-tempered and focal loss combined is due to the dual challenges
present in the dataset: mislabeling and class imbalance. bi-tempered loss effectively
addresses the mislabeling issue, while focal loss tackles the class imbalance, collectively
enhancing the model’s performance. More surprisingly, models trained on the corrupted
dataset with the bi-tempered and the focally weighted bi-tempered losses perform better
than the models trained on the original dataset. This might be caused by the data
corruption showing the effect of a data augmentation step. These preliminary results
come from a single train-validation-test split and additional experiments are necessary

to confirm these promising findings.

140



6.6. CONCLUSIONS

Table 6.7: Results on test images using various loss functions for a training dataset with
10% corruption.

Focal Bi-tempered Bi-tempered +
Structures Total Focal
structures Dice score Correct Mistakes Dice | Correct Mistakes Dice | Correct Mistakes
predictions | False |False score | predictions | False |False score | predictions | False |False
(out of 30) | positive | negative (out of 30) | positive | negative (out of 30) | positive | negative

Brla 30 0.79 29 0 1 0.75 29 0 1 0.80 30 0 0
Brlb 30 0.68 30 0 0 0.80 29 0 1 0.76 30 0 0
Br2a 17 0.57 22 0 8 0.72 27 0 3 0.67 27 1 2
Br2b 17 0.43 15 0 15 0.57 25 0 5 0.47 22 0 8
Cb1 30 0.70 29 0 1 0.66 28 0 2 0.68 29 0 1
Cb2 30 0.68 29 0 1 0.65 28 0 2 0.65 30 0 0
Chl 30 0.81 30 0 0 0.83 30 0 0 0.81 30 0 0
Ch2 30 0.83 29 0 1 0.81 30 0 0 0.74 30 0 0
Cl1 30 0.49 29 0 1 0.62 27 0 3 0.63 29 0 1
Cl2 30 0.52 30 0 0 0.65 30 0 0 0.60 30 0 0
D1 30 0.73 30 0 0 0.72 30 0 0 0.62 30 0 0
D2 30 0.82 30 0 0 0.74 30 0 0 0.67 30 0 0
Enl 30 0.77 30 0 0 0.74 29 0 1 0.75 30 0 0
En2 30 0.78 30 0 0 0.66 30 0 0 0.70 30 0 0
Hml 30 0.84 30 0 0 0.85 30 0 0 0.82 30 0 0
Hm?2 30 0.86 30 0 0 0.84 30 0 0 0.84 30 0 0
M1 28 0.59 26 0 4 0.66 30 0 0 0.55 30 0 0
M2 29 0.53 29 0 1 0.61 30 0 0 0.54 30 0 0
N 30 0.86 30 0 0 0.85 29 0 1 0.84 30 0 0
Ocl 20 0.62 29 1 0 0.60 28 2 0 0.56 29 1 0
Oc2 20 0.61 29 1 0 0.61 29 1 0 0.41 28 2 0
Opl 30 0.90 30 0 0 0.89 30 0 0 0.87 30 0 0
Op2 30 0.89 30 0 0 0.83 30 0 0 0.86 30 0 0
P 30 0.91 30 0 0 0.91 30 0 0 0.88 30 0 0

Total 671 35 22 16

6.6 Conclusions

We have implemented a semantic segmentation-based approach for uncovering the
missing, occluded, faint and weak bone structures of zebrafish larvae (9 dpf) from two
microscopy image datasets. For the lateral view dataset, we are able to achieve around
98% accuracy (at structure level) in identifying the target bone structures from the test
images. In the ventral view dataset, the performance seems more objective as there are
overlapping, blur, noisy structures that may lead to subjectivity in the manual annota-
tions. Our approach uses a simple end-to-end deep learning methodology in which the
presence or absence of missing structures are automatically reported by the model while
simultaneously segmenting faint, small, and overlapping structures. This mitigates the
challenges faced by experts during manual visual observation. Preliminary experiments
have also shown that the approach can tolerate a number of 'mislabeled/corrupted’ an-
notations if trained with bi-tempered loss function, possibly allowing for the experts to

reconsider their previous annotations. We expect that our work will ease the problem of
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identifying missing, weak, faint and occluded bone structures in future bone related or

morphometric studies even in the presence of mislabeled or corrupted datasets.

142



CHAPTER

CONCLUSIONS AND FUTURE PERSPECTIVES

This thesis provides a thorough exploration of current image analysis methods and
advanced machine learning (ML), specifically deep learning (DL) models to address

morphometric and phenotype studies in aquaculture and biomedical research.

In Chapter 2, we laid out the key concepts and components of ML and DL, covering
supervised learning techniques and their relevance to our research. By delving into
optimization strategies, loss functions, CNN architectures and transfer learning methods,
we provided a robust foundation for implementing deep learning models that can be
optimized for specific bioimage analysis tasks.

By reviewing the existing image analysis tools, algorithms, and methodologies in
Chapter 3, we established a foundational understanding of the state-of-the-art techniques
available for tasks such as image segmentation, phenotype classification, anatomical
landmark detection, and behavior tracking in various fish species. This background
informed the development and application of novel automated methods for analyzing

fish bioimages, focusing particularly on bone development studies.

Building on these principles and practices and noting the lack of tools for specific
tasks of the biomedaqu project partners, we implemented bioimage segmentation meth-
ods in Chapter 4, focusing on segmenting the operculum and head regions in red-channel
microscopy images of zebrafish larvae. This segmentation allowed for accurate mea-
surement of the operculum-to-head ratio, providing a quantitative metric for studying
mineralization in bone development. By addressing class imbalance issues through ad-

vanced loss functions and a two-step segmentation process, our end-to-end segmentation
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approach offers a significant advancement for automated morphometric analysis.

Chapter 5 extended this work by applying deep learning for anatomical landmark
detection across multiple datasets of fish species. We evaluated and compared different
regression strategies, demonstrating that heatmap-based regression with an exponential
generation function and U-Net architecture yielded the most accurate results across
datasets. This approach provides a reliable, scalable solution for bioimage analysis,
applicable to both biomedical and aquaculture research settings.

In Chapter 6, we focused on detecting and segmenting weak, faint, overlapping, and
missing structures in 2D lateral and ventral bioimages of zebrafish larvae. By employing
U-Net variants with single and multi-output masks, we demonstrated that deep learn-
ing models effectively segment bone structures, particularly in lateral views. Despite
challenges such as blurred boundaries and the subjectivity of manual annotations, our
model delivered promising results in identifying missing structures while accurately
segmenting faint, blurred, weak, and overlapping structures. Additionally, it exhibited
resilience to mislabeled data. This ability to automatically detect missing bone structures
and segment weak, blurred, and overlapping ones has the potential to significantly en-
hance future bone development studies by reducing manual effort and ensuring greater

consistency in analysis.

7.1 Future perspectives

This thesis offers a comprehensive foundation in automating bioimage analysis for mor-
phometric and phenotype studies related to fish bone development. The work presented
here opens several avenues for future research and practical applications that could fur-
ther advance bioimage analysis methodologies and their applications in aquaculture and
biomedical research. In this section, we outline potential directions and improvements
for future studies.

Enhancing model robustness and generalizability: Although our segmentation
and landmark detection models demonstrated promising performance across multiple
fish species, increasing their robustness on more diverse datasets would enhance their
applicability in wider aquaculture and biomedical settings. Future research could inte-
grate domain adaptation techniques [69] more extensively, allowing models trained on
specific species or imaging conditions to generalize effectively across new species, imaging
modalities, or laboratory setups. Additionally, further exploration of robust, lightweight

models for field deployment could enable practical applications in aquaculture monitoring
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systems.

Addressing annotation and dataset quality: Given the challenges faced in accu-
rately annotating biomedical images, as discussed in Chapter 6, future studies should
explore semi-supervised or self-supervised (unsupervised) learning approaches [80] to
alleviate the need for extensive, high-quality annotations. Developing techniques that
tolerate or even utilize noisy annotations and corrupted datasets could help improve
model performance and reliability, especially when expert-annotated datasets are limited

or inconsistently labeled.

Advancements in Multi-task and Multi-output models: The multi-output seg-
mentation methods used for detecting missing structures in the ventral view (Chapter 6)
demonstrated the potential of deep learning to perform complex analyses within a single
framework. Future studies might expand on this approach by integrating multi-task
learning such as discussed in [68], where segmentation, classification, and landmark
detection tasks are handled simultaneously. This could result in more efficient processing
pipelines and reduce computational costs, making real-time applications more feasible

in biomedical and aquaculture environments.

Incorporating advanced data augmentation and synthetic data: To further
mitigate the effects of class imbalance and limited data, future work could leverage
synthetic data generation techniques, such as Generative Adversarial Networks (GANSs)
or foundational Models [212], to create additional, diverse training samples. Augmenting
training datasets with realistic synthetic images may help address underrepresented
classes in bioimage segmentation and anatomical landmark detection, potentially im-

proving model accuracy and resilience to variations in real-world applications.

Exploring transfer learning in greater depth: As discussed in Chapter 2, transfer
learning holds promise to reduce training time and resource requirements. Future work
could test transfer learning frameworks more extensively, particularly across species
with similar morphometric features. Investigating the impact of pre-trained models from
related domains or even from other medical imaging tasks could provide useful insights
and accelerate the adoption of these tools in new or emerging areas of bioimage analysis.

A thorough literature survey of transfer learning in medical imaging is found in [95].

Real-world application and validation in aquaculture: Validating these models
in operational aquaculture environments presents a valuable next step. Deployment
trials, where these algorithms are tested on real-world aquaculture data [119], would
enable practical validation and refinement of the proposed methods. Such trials could

lead to adaptive, user-friendly tools for aquaculture practitioners, especially in areas like
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automated disease detection, behavioral tracking, and population health monitoring etc.

Multimodal capabilities (e.g., ChatGPT-like models): This thesis explores vision-
based deep learning methods, specifically convolutional neural networks (CNNs), devel-
oped before the rise of more advanced foundational models like ChatGPT and Vision
Transformers (ViTs) [15]. These large-scale models, trained on extensive datasets using
unsupervised or self-supervised learning techniques, are designed to be general-purpose
and can be refined or adapted for various applications with minimal additional training.
Although their multimodal capabilities enable them to handle diverse downstream tasks
without requiring training from scratch, these models should be applied carefuly in
medical image analysis, considering the specific requirements of each use case. While
CNNs have demonstrated strong performance in specialized bioimage analysis tasks,
general-purpose multimodal foundational models like ChatGPT are still not yet flexible
enough for complex bioimage analysis applications where fine-grained structures have to
be detected, such as bioimage segmentation and anatomical landmark detection covered
in this thesis.

Using additional collected datasets: Some datasets collected by our collaborators
(see Introduction chapter) were not exploited during this thesis. These datasets are openly
available on a web-based collaborative platform [124]. Future research may leverage
them to further improve Al-driven automation in bioimage analysis, particularly for

studies related to bone development in both model and aquaculture fish species.

7.2 Final Remarks

In conclusion, this thesis advances the field of automated bioimage analysis for fish
morphometric and phenotype studies by developing adaptable, accurate methods that
address key challenges in segmentation, landmark detection, and structure identification.
The automated methodologies presented here not only streamline the analytical workflow
but are expected to also reduce dependency on labor-intensive manual annotations, which
should make bioimage analysis more efficient and scalable. Future studies could extend
these methods to other species and imaging conditions, and apply these tools in real-world
aquaculture and biomedical research environments. By pursuing the future directions,
researchers could enhance the impact of automated bioimage analysis in morphometric
studies, making these tools more accessible, accurate, and applicable to a broader range
of species and research goals. Ultimately, these developments have the potential to

enhance and expand bioimage analysis, contributing to both sustainable aquaculture
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practices and advancements in biomedical research.
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