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ABSTRACT

Biomedical research on skeletal disorders increasingly relies on small fish models like
zebrafish and medaka to investigate conditions such as osteoporosis and fibrous dys-
plasia. These models provide insights into human skeletal pathologies and broader
disorders like cancer and arthritis. Meanwhile, in aquaculture, farmed fish frequently
develop skeletal deformities in the jaw, operculum, and vertebral column, compromising
fish welfare, performance, and product quality. These anomalies result in significant
economic losses due to manual culling. Understanding the underlying mechanisms of
skeletal development in fish is crucial for improving both human health and aquaculture
sustainability. This thesis explores the application of deep learning methodologies in
bioimage analysis, focusing on morphometric and phenotypic studies in biomedical and
aquaculture research within the framework of EU funded BioMedAqu project.

A thorough literature review in Chapter 3 identifies the current state-of-the-art
(SOTA) image analysis methods, including conventional techniques and emerging ap-
proaches like convolutional neural networks (CNNs). Despite the advancements in these
methods, significant challenges persist, including the processing of high-content and
high-throughput imaging data, the limitations of traditional image analysis protocols,
and the scarcity of well-annotated datasets. The thesis systematically addresses these
challenges through the development and implementation of innovative deep learning
models tailored for various tasks.

Chapter 4 focuses on segmenting the operculum and head regions in flourescence
microscopy images of zebrafish larvae using deep learning based Convolutional Neural
Networks (CNNs). This segmentation enables precise measurement of the operculum-
to-head ratio, serving as a quantitative metric for assessing bone mineralization. By
mitigating class imbalance with advanced loss functions and employing a two-step
segmentation process, our end-to-end approach significantly enhances automated mor-
phometric analysis.

Chapter 5 employs deep learning methods for the detection of anatomical landmarks
in various data sets of fish species in both biomedical and aquaculture research. In this
chapter, various regression based strategies combined with different CNN architectures
are evaluated for detecting anatomical landmarks. The implemented methods provide a
robust and scalable solution for bioimage analysis, enhancing landmark detection in fish
species for applications in both biomedical and aquaculture fields.

Chapter 6 focuses on detecting and segmenting weak, faint, overlapping, and missing
structures in 2D lateral and ventral bioimages of zebrafish larvae. Using U-Net vari-
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ants with single and multi-output masks, we demonstrated that deep learning models
effectively segment bone structures, particularly in lateral views. Despite challenges in
ventral views, like blurred boundaries and subjective manual annotations, our model ac-
curately identified missing structures and segmented weak, faint, and overlapping ones
while showing resilience to mislabeled data. This automated approach enhances bone
development studies by reducing manual effort and improving analytical consistency.

Incorporating advanced deep learning techniques, the research outlines the com-
plexities of designing effective neural network architectures while emphasizing the
importance of preserving spatial information in biomedical images. The findings indicate
that existing models often struggle with class imbalance and the subjective nature of
expert annotations, hindering their performance. This research is motivated by the
need to create scalable, automated solutions that can facilitate bioimage analysis while
improving accessibility for researchers across disciplines.

This thesis relies on a common web based open source image analysis platform to
integrate the implemented methodologies, fostering collaboration and improving result
reproducibility, offering valuable insights that could benefit both aquaculture practices
and biomedical research.
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INTRODUCTION

1.1 Context

In the realm of biomedical research, model fish species like zebrafish (Danio rerio), and

medaka (Oryzias latipes) are highly regarded as valuable vertebrate models. They are

extensively used in a variety of biomedical applications, encompassing drug testing,

morphometric screening, genome editing, toxicology assessments, and behavior analysis

in vertebrates [25, 27, 117, 120, 145, 156, 165, 166]. These model fish exhibit significant

genetic and metabolic pathway similarities with both fish and mammals, sharing over

70% of their genes with humans [9, 75, 148, 180]. Notably, zebrafish and medaka models

are particularly advantageous due to their ease of maintenance and reproduction. These

model fish are raised in a controlled environment at a facility or designated labora-

tory, with conditions that replicate their natural habitats. Along with other technical

advantages such as their small size, typically 4.5-5.5 mm at 10 days post-fertilization

(dpf) [96, 107], low maintenance cost, high fecundity, and compatibility with genetic

engineering tools, these fish are popular among scientists of their suitability for in vivo

imaging [175, 236] (we discuss more about imaging methods in Section 3.2 of Chapter

3). The embryonic and larval stages of these animals are translucent, allowing for the

application of advanced imaging technologies to observe biological processes in a living

animal. This property bears great potential for biomedical research when combined with

the availability of transgenic and mutant lines that allow modeling human skeletal

diseases and tracking specific organs and cell types with fluorescent markers [52]. Ac-
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cording to the Business Research Insights website [2] (accessed on 2 January, 2025),

the global zebrafish model services market size was USD 434.4 million in the year 2022

and is projected to reach USD 618.23 million in 2031, with a compound annual growth

rate (CAGR) of 14.4% during the forecast period.

Also, fish is recognized as a valuable source of high-quality protein and essential

nutrients that are integral to a healthy human diet. Within the aquaculture industry,

fish holds a primary position as the predominant source of cultivated seafood for human

consumption. According to the European Commission’s Ocean and Fisheries website,

marine and freshwater fish constitute approximately 49% of total aquaculture produc-

tion. Commonly consumed food fish species include gilthead seabream (Sparus aurata),

meagre (Argyrosomus regius), and salmon (Salmo salar), which are saltwater species,

while rainbow trout (Oncorhynchus mykiss) is a freshwater counterpart. In their natural

habitats, such as the sea or rivers, healthy fish thrive without external interventions

in terms of food and care. However, in fish farms, fish are reared within controlled or

artificial environments, such as ponds, tanks, or cages, which require external care and

provisioning of food. Given the escalating global demand for aquaculture products, the

industry faces significant pressure to enhance its supply. To meet this demand, fish

farmers adopt intensive production practices, which can result in challenges like dete-

riorating water quality, higher fish density per unit of water volume, and limited food

availability for the fish. These factors may contribute to stressed fish, the development

of physical abnormalities, and susceptibility to serious diseases [126].

To detect and classify deformities in the farmed (cultured) or the model fish, manual

inspection or analysis is employed, which requires significant time and technical effort.

In addition, direct physical interaction with the fish can induce fear or stress that

may reflect on its behavior. Due to abnormal behavior or stress, fish can not swim or

take proper diet, which can lead to poor health of the fish [126]. To improve animal

welfare both in aquaculture and biomedical research, scientists are looking for methods

requiring minimal manual interaction with the animals, with more focus on their health

and quality of life.

Computer vision, as a non-invasive technology, is increasingly adopted by fish farmers

and biomedical researchers to monitor health and behavioral changes in animals and

fish with little to no physical interaction. Nowadays, computer vision based techniques

employ artificial intelligence methods such as machine learning (ML) or deep learning

(DL), which not only speed up the diagnosis but are also helpful in improving the accuracy

of the detection. Deep learning represents a cutting-edge AI approach that empowers
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computers to learn from data and perform tasks on par with human capabilities (we

discuss deep learning in detail in Section 2.4 of Chapter 2). Computer vision and image

processing techniques can also be helpful to speed up other routine procedures such as

animal feeding [78], animal sorting, and animal counting by automatizing these tasks

and with minimal physical interaction with the animals. According to the website [187]

(accessed on 12 January, 2025), the top 10 AI and software start-up companies for the

aquaculture industry have raised USD 282 million in the past 5 years, illustrating the

enthusiasm for AI-based smart farming in aquaculture.

1.2 Project BioMedAqu

This thesis was carried out within the framework of the project Aquaculture meets
Biomedicine: Innovation in Skeletal Health research (1 August 2018 - 31 Jan-
uary 2023) abbreviated as BioMedAqu. It was a Marie Sklodowska-Curie Innovative

Training Network (MCSA-ITN) with the aim of creating an innovative expertise, com-

bining research in skeletal biology of aquaculture and model fish species. Aquaculture

commonly referred to as fish farming is a highly valued industry, producing quality

seafood for human consumption. However farmed fish often suffer from severe skeletal

deformities in their jaw, operculum and vertebral column as sketched in Figure 1.1.

These skeletal anomalies usually affect fish welfare, performance and product quality. In

order to secure future markets and value, without the expansion of production efforts,

fish farmers and businesses are focusing on improving the morphological quality of their

current production. In fact, major economic losses are directly related to the develop-

ment of skeletal disorders altering the external shape of reared fish, i.e. opercular and

vertebral column deformities. Fish with such deformities are rejected by the potential re-

tailers or customers thereby representing a significant economic loss for the fish farmers

[115, 205]. Such deformities require tedious technical effort and time to manually cull

out deformed fish from the productive cycle; which should be done as early as possible in

order to not waste resources on growing sub-optimal fish. By finding solutions to avoid

the development of these deformities, fish health can be improved and economic losses to

fish farmers can be reduced to substantial extent.

Meanwhile, our aging population is affected by human skeletal pathologies (such as

Osteoporosis and Fibrous dysplasia) at an alarming rate which has triggered research

using the tools offered by small fish models such as zebrafish (Danio rerio) or Japanese

rice fish also known as medaka (Oryzias latipes). These fish species are the predominant
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CHAPTER 1. INTRODUCTION

Figure 1.1: (A) Three mostly affected skeletal parts of a fish due to bone related deformi-
ties. (B) Vertebral and Jaw deformities in Gilthead Seabream (first column), vertebral
deformity in Medaka (second column)

choice to be used as an animal model in the field of biomedical research to discover the

potential causes of various human disorders such as development of cancer or arthritis

[41, 110]. In other biomedical research areas, such as drug discovery, these model fish are

used to test drugs and assess their effects on the human body [35]. Within the framework

of the project, the primary focus in this biomedical research is to use these small fish

models, cell culture and artificial intelligence (AI) to target the biological mechanisms

that underline the development of bone disorders.

The long term goal of this project is to discover new and practical knowledge about

the skeletal system of aquaculture and model fish species also enhancing the potential

research for the diagnosis and treatment of bone related skeletal anomalies in human

beings as well. BiomedAqu aims to bring together the expertise and research approaches

from the aquaculture field and the biomedical sector using aquaculture and model fish

species.
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1.3 Thesis objective

The main objective of this thesis is to develop computer vision and AI-based deep learning

algorithms tailored to automate various bioimage analysis tasks. These algorithms are

designed for researchers in the biomedical and aquaculture fields, particularly for mor-

phometric and phenotypic studies aimed at improving fish skeletal health. To accomplish

this, we explore various deep learning techniques for bioimage analysis, focusing on

tasks like image segmentation, anatomical landmark detection, and identification and

segmentation of missing, weak, faint and overlapping bone structures. These methods

are developed and evaluated with collaborators of the BioMedAqu project, which seeks

to streamline the analysis of bioimages from multiple fish species such as zebrafish and

medaka for biomedical research, and gilthead seabream for aquaculture applications.

The algorithms are designed to support in the future fish farmers and biomedical re-

searchers by providing faster, more accurate bioimage analysis, significantly enhancing

efficiency over traditional manual methods.

1.4 Thesis structure

This thesis is organized into several chapters, the first two chapters cover the introduction

and background, while the subsequent three chapters present our contributions to this

work. The remainder of this manuscript is structured as outlined below:

• Chapter 2 – Machine learning and Deep learning background

This chapter provides an in-depth exploration of the foundational concepts under-

lying machine learning and deep learning as subfields of artificial intelligence. The

primary emphasis of this chapter is on deep learning methods employed in our

image analysis endeavors. While not delving into exhaustive details, the objective

is to provide enough background information for readers not possessing a funda-

mental understanding of deep learning (especially from biological background),

facilitating comprehension of the contributions made in this context

5



CHAPTER 1. INTRODUCTION

• Chapter 3 - Literature Review

This chapter provides a comprehensive review of current state-of-the-art computer-

vision-based methods and tools, both automatic and semi-automatic, applied in

image analysis for morphometric and phenotypic studies of aquaculture and

biomedical model fish. It also emphasizes the primary challenges encountered

in implementing these methodologies. This chapter is based on the journal paper

P2, listed in Section 1.5

• Chapter 4 – Segmentation in microscopy bioimages of zebrafish

This part of the dissertation describes research work done for automatic segmen-

tation of head and operculum parts of the zebrafish larvae from single channel

microscopy image dataset for the task of morphometric analysis. This chapter is

based on the conference paper P4, listed in Section 1.5

• Chapter 5 - Anatomical landmark detection in fish bioimages

This chapter contains the research work performed for the evaluation of various

deep learning methods for the task of anatomical landmark detection on three

bioimage datasets of different fish species within the framework of the BioMedAqu

project. This chapter is based on the conference paper P3, listed in Section 1.5

• Chapter 6 - Uncovering the Missing Zebrafish Larval Bone Structures: A
Deep Learning Approach in Microscopy

This part of the thesis describes the deep learning based segmentation protocol for

identifying or uncovering the missing, faint, weak and occluded structures in the

lateral and ventral brighfield microscopy images of zebrafish larvae. This chapter

is based on the paper P1 (in preparation for publication), mentioned in Section 1.5

• Chapter 7 - Conclusion and future perspeftives

The thesis ends with this chapter, highlighting the key points from the research

we carried out and discussion of some future work

1.5 Publications and Oral talks

This thesis is based on the following publications and oral talks delivered in various

international conferences and Journals:
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1.5. PUBLICATIONS AND ORAL TALKS

P1. Navdeep Kumar, Ratish Raman, Marc Muller, Pierre Geurts, Raphaël Marée,

“Uncovering the Bone Structures in Zebrafish Larvae: A Deep Learning
Approach in Microscopy” (in preparation)

P2. Navdeep Kumar, Raphaël Marée, Pierre Geurts, Marc Muller, "Recent Advances
in Bioimage Analysis Methods for Detecting Skeletal Deformities in Biomed-
ical and Aquaculture Fish Species", Journal paper, Biomolecules, 2023

P3. Navdeep Kumar, Zachary Dellacqua, Claudia Di Biagio, Ratish Raman, Arianna

Martini, Clara Boglione, Marc Muller, Pierre Geurts, Raphaël Marée, "Empirical
Evaluation of Deep Learning Approaches for Landmark Detection in
Fish Bio-Images", Conference paper, European Conference on Computer Vision

Workshops (ECCV- 2022)

O1. Navdeep Kumar, Marc Muller, Pierre Geurts, Raphaël Marée, "Building Artificial
Intelligence Tools for Automatic Recognition and Classification of Bone
related Deformities in Aquaculture Fish", Oral presentation in Aquaculture

Europe 2022, Rimini Italy

O2. Navdeep Kumar, Marc Muller, Pierre Geurts, Raphaël Marée, "Deep learning
based multi-modal image analysis in fish skeletal research". Oral presenta-

tion at Interdisciplinary Approaches in Fish Skeletal Biology, (IAFSB-2022) Olho,

Algarve, Portugal.

P4. Navdeep Kumar, Alessio Carletti, Paulo J Gavaia, Leonor M Cancela, Marc Muller,

Pierre Geurts, Raphaël Marée, "Deep Learning Approaches for Head and
Operculum Segmentation in Zebrafish Microscopy Images", Conference

paper, International Conference on Computer Analysis of Images and Patterns

(CAIP-2021)

O3. Navdeep Kumar, Zachary Dellacqua, Arianna Martini, Clara Boglione, Marc Muller,

Pierre Geurts, Raphaël Marée, "Towards Setting up of an Automatic Recogni-
tion System for Vertebrae and Opercular Anomalies in Reared Gilthead
Seabream (Sparus aurata)" Poster presentation in Aquaculture Europe 2021,

Funchal Madeira Portugal
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1.6 Code and models

The code and models are open source and are publicly available under permissive

licenses:

C1. Chapter 4: https://github.com/navdeepkaushish/S_Zebrafish_Head_Opercu

lum_UNet_Segmentation (code and models)

C2. Chapter 5: https://github.com/navdeepkaushish/S_Deep-Fish-Landmark-P

rediction (code and models)

C3. Chapter 6: https://github.com/navdeepkaushish/S_Deep-Zebrafish-Bone-S

tructures-Segmentation-V (Code)

1.7 Contributions to the datasets collected and
annotated related to the thesis and the
BioMedAqu project

During this research work, we have also contributed to the collection and annotation of

the following data sets except D2, which is produced by GIGA research at University of

Liège. Within the framework of the BioMedAqu project and according to its guidelines,

these datasets are publicly available on ULiège research instance of Cytomine [124], a

collaborative web-based platform developed in our team and used with collaborators

from the BioMedAqu to annotate and share images. All datasets used in this thesis can

be accessed using username: biomedaqu and password: BioMed$Aqu2025

D1. BIOMEDAQUE-GIGA-ZEBRAFISH-MICROSCOPIC (https://research.cytom

ine.be/#/project/153858703/images) : Collected by Ratish Raman, annotated

by Ratish Raman and Navdeep Kumar and used for identifying and segmenting

the bone structures of zebrafish (Danio rerio) larvae in Chapter 6

D2. LANDMARKS-ULG-ZEBRA (https://research.cytomine.be/#/project/6

555554/images) : This dataset is produced by GIGA research at University of

Liege and is used in Chapter 5 for anatomical landmark detection in microscopy

bioimages of zebrafish (Danio rerio) larvae.
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RELATED TO THE THESIS AND THE BIOMEDAQU PROJECT

D3. BIOMEDAQUE-LESA-SAURATA-XRAYS-ZACH (https://research.cytomine.

be/#/project/434321374/images) : This dataset is collected by Zachary Dellac-

qua, annotated by Arianna Martini and Navdeep Kumar and used in Chapter 5 for

anatomical landmark detection in radiography bioimages of Gilthead seabream

(Sparus aurata)

D4. BIOMEDAQU-LESA-MEDAKA (https://research.cytomine.be/#/project/5

49112638/images) : This dataset is collected by Claudia Di Biagio, annotated by

Arianna Martini and Navdeep Kumar and used for anatomical landmark prediction

in microscopy bioimages of Medaka (Oryzias latipes) fish in Chapter 5

D5. BIOMEDAQU-CCMR-FLORESCENT-ZEBRA-LARVEA-ALLESSIO (https://re

search.cytomine.be/#/project/144022238/images) : This dataset is collected

by Alessio Carletti, annotated by Alessio Carletti and Navdeep Kumar and is

used in Chapter 4 for segmenting the head and operculum areas from red channel

microscopy bioimages of zebrafish

D6. BIOMEDAQU-CCMR-SUNIL-SEABREAM-MICRO (https://research.cytomin

e.be/#/project/542666357/images) : This dataset is collected by Sunil Poudel,

annotated by Sunil Poudel and Navdeep Kumar and can be used in future projects

related to identifying the skeletal deformities in Gilthead seabream (Sparus aurata)

D7. BIOMEDAQU-IPMA-AREFULL-MICRO-LETICIA (https://research.cytomin

e.be/#/project/535271535/images) : This dataset is collected by Leticia Luján

Amoraga, annotated by Leticia Luján Amoraga and Navdeep Kumar and can be

used in future projects related to identifying skeletal deformities in microscopy

bioimages of Meagre (Argyrosomus regius) fish

D8. BIOMEDAQU-UGENT-XRAYS-VERTEBRAE MEASURMENTS-LUCIA (https:

//research.cytomine.be/#/project/527989586/images) : This dataset is

collected by Lucia Drábiková and annotated by Arianna Martini and Navdeep

Kumar. The dataset can be used in future studies related to finding the vertebral

deformities in radiography bioimages of Salmom (Salmo salar) fish
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2
MACHINE LEARNING AND DEEP LEARNING

BACKGROUND

This chapter provides a basic overview of AI, with a focus on key concepts in machine

learning (ML) and deep learning (DL) as they relate to this research. Specifically, we

emphasize deep learning techniques in computer vision, particularly convolutional neural

networks (CNNs), implemented in this thesis. Rather than covering the entire AI field,

this chapter summarizes relevant topics and includes references for those seeking more

technical details on ML and DL. Additionally, it introduces the notation used throughout

the thesis.

In Section 2.1, we start by providing brief definitions of AI and its subfields ML

and DL and introducing some notation and terminologies we use in this chapter. Next,

Section 2.2 covers various types of learning methods and their categories. Section 2.3 is

related to protocols used for model evaluation and selection. We introduce deep learning

(DL) in Section 2.4. Section 2.5 is dedicated to transfer learning and domain adaptation.

Finally, Section 2.6 ends the chapter with a discussion of the metrics and loss functions

used throughout this thesis.

2.1 What is Artificial Intelligence?

Artificial Intelligence (AI) is the ability of the digital computers or robotic machines

to perform tasks comparably to human beings. In its simplest form, it is programmed
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to execute actions and take decisions with minimum human intervention. Its more

sophisticated form possesses the ability to learn from extensive datasets, whether labeled

or unlabeled, and to generalize its learning experiences. This enables AI algorithms to

make inferences, reason about specific situations, and autonomously engage in problem-

solving [159]. Although AI is a broad field that has many sub-domains, in this thesis, we

focus on statistical machine learning and deep learning concepts that are related to our

research work. Figure 2.1 shows the relationship between AI, ML and DL.

Figure 2.1: Relationship between Artificial Intelligence, Machine learning and Deep
learning (source: Unite.AI).

2.1.1 Machine learning

Machine learning (ML) is a sub-field of AI in which computers are trained to optimize a

performance criterion using example data or past experience. An ML model is established

with specific parameters and the learning process involves executing a computer program

to refine these parameters based on training data or prior experiences. The model can

serve a predictive function, making future predictions, or a descriptive one, extracting

knowledge from data, or even both [10].

Technically, an ML model learns from an experience E with respect to some class

of tasks T and performance measure P if its performance at tasks in T, as measured

by P, improves with experience E [132]. Thus Machine learning is about building

programs that improve their performance on certain tasks as they gain experience,
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usually in the form of exposure to data. These tasks belong to a particular class, indicating

a specific domain or category of problems the program is learnt to tackle. Machine

learning leverages statistical principles to construct mathematical models, primarily

focusing on drawing inferences from a sample. The involvement of computer science in

this domain is twofold. Firstly, during the training phase, there is a requirement for

streamlined algorithms to address optimization challenges, along with the capability to

handle and analyze substantial volumes of data. Secondly, after a model is acquired, the

representation and algorithmic approach for inference must be optimized for efficiency.

In specific scenarios, the effectiveness of the learning or inference algorithm, including

its space and time complexity, can be just as crucial as its predictive accuracy [10].

2.1.2 Notations and terminologies

In the context of supervised learning (see Section 2.2.1), the output can be either quanti-
tative (numerical) or qualitative (categorical). Categorical variables are often encoded

numerically, particularly in binary classification tasks (e.g., "true" or "false," "survived"

or "died"), typically using 0 and 1 or sometimes −1 and 1 [72]. These numeric represen-

tations are referred to as targets. For multi-class classification with K categories, a

common approach is the use of dummy variables, where each category is represented

by a K-dimensional binary vector with only one active bit.

Input variables are typically denoted by symbol X . If X is a vector, its elements can

be accessed using subscripts X j. We denote quantitative outputs as Y and qualitative

outputs as C (for category). Uppercase letters such as X , Y , or C are used when referring

to the general aspects of a variable. Lowercase letters are used for observed values; thus,

the ith observed value of X is denoted as xi (where xi is again a scalar or vector). Matrices

are represented by bold uppercase letters; for instance, a set of N input p-vectors xi,

i = 1, ..., N would be expressed as the N × p matrix X. Typically, vectors will not be

represented in bold unless they consist of N components. This practice differentiates a

p-vector of inputs xi for the ith observation from the n-vector x j, which encompasses all

observations on variable X j. As a standard assumption, all vectors are considered to be

column vectors. Consequently, the ith row of X is denoted as XT
i , representing the vector

transpose of xi.

Given an input vector X , the goal of supervised learning is to predict an accurate

output Y , represented as Ŷ (pronounced "Y -hat"). For real-valued outputs, Ŷ ∈R, while

for categorical outputs, the predicted class is denoted as Ĉ. Most of the classification

methods however first output a prediction of the class conditional probability estimates
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Ŷ in the range [0,1] that is then compared to a threshold to get a predicted class Ĉ (e.g.,

ĉ = 1 if ŷ> 0.5, ĉ = 0 otherwise). This methodology extends to K-level qualitative outputs,

where K represents the number of categories.

2.2 Overview of learning methods

A learning algorithm in machine learning refers to the method used to train a model by

adjusting its parameters, based on data. The goal of a learning algorithm is to identify

patterns in the data and generalize them to make predictions or decisions on unseen

data. Learning algorithms can be categorized based on the type of learning they facilitate.

The process of constructing a model using a learning algorithm is termed the training

phase. Subsequently, when this trained model is applied to new data, it transitions to

the inference phase. In the succeeding subsections, we describe about types of learning

methods used in Machine learning.

2.2.1 Supervised learning

In supervised learning (SL), the learning algorithms begins with a dataset comprising

training examples, paired with their corresponding ground truth labels. For instance, in

the context of learning to categorize handwritten digits, a supervised learning algorithm

analyzes numerous pictures of handwritten digits, each accompanied by a label indicating

the correct numerical value represented in the image. The algorithm will then learn the

relationship between the images and their associated numbers, and apply that learned

relationship to classify completely new images (without labels) that the machine has

not seen before [122]. In another image classification task, where the objective is to

assign a label to a given image, a typical example involves determining whether an

image contains a cat, a dog, or another type of animal. In this context, the images

are represented as integer values assigned to each image pixel, and the input space

encompasses all possible color or pixel values: X ⊂Nw×h×c where w, h and c respectively

denote the image width, height, and number of channels (typically 3 for RGB color

images). The output space Y (containing all possible target values) comprises the three

labels of interest: {cat,dog,other}. The model takes an image X ∈X as input and outputs

ŷ, representing one of the predefined labels. It is important to note that this predicted

label ŷ might be incorrect, constituting a mistake by the model. To distinguish the correct

label denoted as y (also known as ground truth) from the output label (predicted) ŷ, a
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performance measure, denoted as P can evaluate the accuracy of the output label.

Formally, given a set of N training examples of the form {(x1, y1), ..., (xN , yN)} where

xi ∈X represents the feature vector of the ith example and yi ∈ Y is its true label (or

class), a learning algorithm tries to discover a function f :X →Y , where X is the input

space and Y is the output space.

The function f is typically fit so as to minimize a "distance" metric, commonly referred

to as the loss function, that measures how far the predictions provided by f are from

the true output. In "regression" tasks, loss functions such as the squared error or

absolute error are typically used to compute the error between the actual and predicted

values. Conversely, "classification" tasks often rely on log-based loss functions, such as

cross-entropy (CE) loss function. Loss functions are discussed in detail in Section 2.6.2.

In this thesis, we mainly focus on supervised learning based on DL methods, which

will be introduced in Section 2.4. In the following sections, we explore some popular

supervised learning approaches commonly applied to various machine learning tasks.

Although these methods are not implemented in our thesis, they are included to provide

readers with background information about previous techniques used for tasks similar

to those we address using DL based approaches.

2.2.1.1 Linear regression

Linear regression stands as a supervised machine learning algorithm designed to de-

termine the linear association between a dependent variable and one or multiple inde-

pendent features. When there is only one independent feature, the algorithm is referred

to as Univariate Linear Regression. Conversely, if there are more than one features

involved, it is termed as Multivariate Linear Regression. Formally, given a vector of

inputs X= (X1, ..., X p), a regression model tries to predict the output Y as:

Ŷ = θ̂0 +
p∑

j=1
X jθ̂ j (2.1)

where Ŷ is called target variable, θ̂0 is the intercept also called bias in machine learning.

Together with θ̂0, θ̂ j are called the coefficients of Equation (2.1) (or parameters) of the

regression model. A linear model approximating the relationship between the dependent

and independent variables is called a regression line. This model is illustrated in Figure

2.2.
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Figure 2.2: Linear regression line showing the relationship between independent variable
X and dependent variable Y

2.2.1.2 Tree-based approaches

Decision tree learning [72] is a popular non-parametric supervised learning algorithm

used for both classification and regression tasks. It represents a predictive model by a

tree-like structure, similar to a flowchart, where each internal node is labeled with a test

based on the input features, each branch corresponds to one of the outcomes of the test

present in the branch’s source node, and each leaf (terminal) node contains a value of

the output, either a class in the case of classification or a numerical value in the case

of regression. A prediction is computed from the tree by retrieving the value associated

with the leaf reached by the test example when propagated in the tree from the root

node, following the outcomes of the tests met at each internal node. An example of a

classification tree is shown in Figure 2.3.

A decision tree is constructed by recursively splitting the training set into subsets

until all leaf nodes contain training examples with the same value of the output (the leaf

is pure) or of the inputs (no further splits are possible). At each node, the best split is

found by locally maximizing some score function (based, e.g., on class entropy in the case

of classification or output variance in the case of regression) measuring the quality of the
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split. Fully grown trees, however, often lead to overfitting, due to the fragmentation of

the data. To mitigate this, pruning is often employed to reduce tree complexity. Pruning

comes in two flavors: pre-pruning, which stops splitting a node when some criterion is

met (e.g., node depth is above some threshold or there are too few examples reaching the

node) or post-pruning, which removes nodes from a fully grown tree so as to optimize its

performance on an independent validation set. While pre-pruning is computationally

more efficient, post-pruning is more effective in finding the optimal trade-off between

underfitting and overfitting (see Section 2.3.2).

Figure 2.3: Decision tree structure for the binary classification problem of determining
whether the patient is at high or low risk of a heart attack.

2.2.1.3 Ensemble methods

Ensemble methods [232] are machine learning algorithms that combine the outputs of

multiple base learners in order to produce a new learner, potentially better than the

individual base learners. The majority of ensemble methods employ a single base learning

algorithm, producing an homogeneous ensemble of models all of the same type. On the

other hand, some methods, such as stacking, use different types of learning algorithms to

produce heterogeneous ensembles. Two popular families of (homogeneous) ensemble

methods are averaging methods and boosting methods. Averaging methods build the

models within the ensemble independently of each other by introducing randomization

in the training procedure. The prediction of the individual models are then combined by
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a simple arithmetic average in regression or majority vote in classification. The main

effect of averaging methods is to reduce variance. Boosting methods on the other hand

build the models within the ensemble sequentially, with each model focusing on the

errors done by the previous models in the sequence. They are capable of turning weak,

highly biased, learners (ie., marginally better than random guess in classification) into

strong learners by iteratively reducing their bias.

Among popular averaging methods, one notable algorithm is random forests, which

constructs an ensemble of decision trees. The random forests algorithm trains each

tree of the ensemble from a bootstrap sample of the original training set. Each tree is

furthermore learned using a modified decision tree learning algorithm that selects the

best split from a subset of only k features drawn at random at each node, a technique

known as feature subsampling [155]. This random selection of features at each split

reduces the correlation between individual decision trees, thus enhancing the overall

ensemble performance by mitigating the risk of overfitting [37, 90]. Additionally, random

forests operate efficiently on large datasets and handle high-dimensional feature spaces

well, making them robust to noisy or missing data [22]. The extremely randomized trees
(ET) algorithm [62] represents a variation of random forests, introducing an additional

randomization for decorrelation. The ET algorithm constructs an ensemble of unpruned

decision or regression trees following the conventional top-down approach. Its primary

distinctions from random forests are twofold: it randomly selects cut-points for node

splitting, and it utilizes the entire learning sample to grow the trees instead of a bootstrap

replica. Its explicit randomization of cut-points and attributes, coupled with ensemble

averaging, aim to more effectively reduce variance compared to the other less randomized

strategies, while the prime motivating factor to use original learning sample rather than

bootstrap replica is to minimize the bias. Due to the simplicity of the node splitting

procedure, the computational efficiency is also smaller compared to other ensemble-based

methods that locally optimize cut-points.

Boosting methods include many variants such as Gradient Boosting [60], AdaBoost
(Adaptive Boosting) [59], and XGBoost (Extreme Gradient Boosting) [38]. While generic,

most boosting methods employs weak learners typically in the guise of decision trees

of small depth, mostly for computational efficiency reason. In the case of Adaboost, the

initial tree is trained on observations with uniform weights. Subsequently, each tree

in the ensemble is trained on observations with increased (resp. decreased) weights

when they are poorly (resp. correctly) classified by the preceding trees in the ensemble.

Gradient boosting can handle any differentiable loss function. It builds an additive model
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where each term is trained to approximate the inverse of the current gradient of the

loss function. XGBoost is a specific implementation of gradient boosting with decision

trees, which significantly enhance both speed and performance. XGBoost incorporates

regularization techniques to prevent overfitting and enhance generalization. It also

provides support for parallel processing and distributed computing, making it scalable to

large datasets.

2.2.2 Unsupervised learning

Unsupervised learning (USL) is a machine learning approach where algorithms analyze

and interpret data without predefined labels or categories. Unlike supervised learning,

which relies on labeled datasets for training, USL discovers hidden structures and

patterns within raw, unorganized data.

The primary objective of unsupervised learning is to explore the underlying distribu-

tion of data and group similar instances based on shared characteristics. The algorithm

autonomously identifies clusters, associations, or anomalies without prior knowledge of

correct outputs. This makes USL particularly useful in scenarios where manual labeling

is impractical or costly.

In computer vision, unsupervised learning is widely used for tasks where labeled

data is scarce, expensive, or difficult to obtain. Here are some real-world applications:

• Clustering for Image Segmentation: In this approach, image segmentation is

performed by grouping the image pixels into separate regions based on their colour

or intensity values. This approach is used in medical image segmentation, satellite

imaging and object background separation tasks.

• Dimensionality reduction and feature extraction: Unsupervised dimensional-

ity reduction techniques in computer vision streamline image data by reducing its

dimensions (image compression), enhancing model performance and interpretabil-

ity. The goal is to condense image features into a more manageable size while

preserving critical information. Commonly applied during data preprocessing, this

technique, for instance, is employed in autoencoders [208] to eliminate noise and

redundant information from visual data, thus enhancing picture quality.

• Synthetic image generation: Unsupervised learning is employed in Generative

Adversarial Networks (GANs) [67] to construct realistic or synthetic images from

random noise for creating synthetic samples when real-world data is scarce or
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expensive to collect. In context to medical imaging research, synthetic images are

produced that enhance the performance of medical AI models by generating rare

disease samples for training.

2.2.3 Semi-supervised learning

Semi-supervised learning (SSL) techniques become particularly valuable when acquiring

a substantial quantity of labeled data proves to be challenging or costly, while obtaining

significant amounts of unlabeled data remains comparatively easy. In these situations,

neither fully supervised nor unsupervised learning approaches offer satisfactory solu-

tions. Training with few labeled examples implies the algorithm has to deal with labeled

datapoints differently than with unlabeled datapoints. For labeled points, the algorithm

will use traditional supervision to update the model weights; and for unlabeled points,

the algorithm minimizes the difference in predictions between other similar training

examples. Formally, the given dataset X= (x1, ..., xn) is divided into two parts: the set of

points Xl = (x1, ..., xl) (with l < n) represents instances for which corresponding labels

Yl = (y1, ..., yl) are provided, while the set Xu = (xl+1, ..., xl+u) (with l+u = n) comprises

points having no labels [36].

Semi-supervised learning depends on specific assumptions regarding the unlabeled

data employed for training the model and the relationships between data points belonging

to different classes. An essential requirement for the implementation of semi-supervised

learning is that the unlabeled examples used in model training should be related to

the task the model is being trained for. In more formal terms, SSL necessitates that

the distribution p(x) of the input data encompasses information about the posterior

distribution p(y|x), signifying the conditional probability of a given data point x belonging

to a specific class y [234]. To illustrate this, if unlabeled data is employed to enhance

the training of an image classifier distinguishing between cats and dogs, the training

dataset must include images of both cats and dogs; images of unrelated objects such as

horses or buses would not contribute to the learning process. Generally speaking, any

semi-supervised learning algorithm relies on one or more of the following assumptions

being explicitly or implicitly satisfied [233]:

• The cluster assumption states that data points within a specific cluster, defined

as a group of data points sharing greater similarity among themselves than with

other available data points, are likely to belong to the same class.
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• The continuity assumption states that if two data points, x and x′, are close to

each other in the input space (the set of all possible values for x), then their labels,

y and y′, should be the same.

• The data are positioned approximately on a manifold with a significantly lower

dimension than the input space. This assumption enables the use of distances and

densities defined specifically on the manifold.

2.3 Model selection and evaluation

Evaluating a model is a fundamental principle in machine learning, which aims to

understand how well the model generalizes to unseen data and whether it meets the

requirements of the problem at hand. It is the process of assessing the performance

and effectiveness of a machine learning model using various metrics and techniques. In

Section 2.3.1, we discus about the basic criteria for assessing the model performance.

Bias-variance trade-off for effective evaluation is described in Section 2.3.2 and Section

2.3.3 is dedicated to discussing some of the practical considerations and current practices

involved while performing model evaluation.

2.3.1 Empirical risk minimization

In the realm of supervised learning, empirical risk minimization (ERM) is a principle

that guides the process of model training by minimizing the empirical risk, which is

essentially the error or discrepancy between the predictions made by a model and the

actual observed outcomes in the training data [203]. Directly minimizing the expected
risk also called generalization error is not feasible due to the unavailability of true

distributions. It is more practical to devise an unbiased estimator of empirical risk or

estimated risk, which is assessed using the provided supervised training set, D. In ERM,

the goal is to find the model parameters that minimize a certain objective function, often

referred to as the loss function. This function quantifies how well the model performs on

the training data.

Remp (θ)= 1
N

N∑
i=1

L (yi, fθ(xi)) (2.2)

where θ are model parameters, N is number of samples in the training data. The

training example (xi, yi) comes from the training set D, where xi is the input and yi is

the corresponding true output label. fθ(xi) is the output produced by the model with
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parameters θ given input xi and L is the loss function that measures the discrepancy

between the predicted output fθ(xi) and the actual output label yi.

While ERM aims to minimize the empirical risk on the training data, the ultimate

goal is to develop models that generalize well on unseen data. Generalization refers to

the ability of a model to perform accurately on new, unseen examples beyond the training

set. Ensuring good generalization involves not only minimizing the empirical risk but

also controlling the model’s complexity to prevent overfitting [197, 207].

2.3.2 Bias variance trade-off

Bias-variance trade-off refers to the term that addresses the issue of balancing the

two sources of errors (i.e., bias and variance) while assessing the performance of ML

model. Bias refers to the error introduced by approximating a real-world problem with a

simplified model. A model with high bias tends to make strong assumptions about the

underlying data distribution, leading to systematic errors [206]. High bias results in

underfitting, where the model fails to capture the complexity of the underlying data

distribution and performs poorly both on the training data and unseen data. Variance

refers to the model’s sensitivity to fluctuations in the training data. A model with

high variance is overly sensitive to the training data and captures noise or random

fluctuations in the data. High variance results in overfitting, where the model learns

to fit the training data too closely, capturing noise and irrelevant details that do not

generalize well to unseen data.

If a model is too simple (high bias), it may not capture important patterns in the

data, leading to underfitting. However, increasing model complexity to reduce bias may

lead to higher variance and overfitting. Achieving good model performance involves

finding the right balance between bias and variance, resulting in optimal performance

on unseen data. Techniques such as regularization, cross-validation, and model selection

help manage the bias-variance trade-off by controlling model complexity and tuning

model parameters. Figure 2.4 shows the classical depiction of bias-variance trade-off.

2.3.3 Model selection and evaluation practices

Evaluating a model based on the bias-variance trade-off may not be effective in practical

scenarios, as the evaluation of these terms is non trivial and computationally intensive.

Instead, one uses an independent test set, a subset of data reserved exclusively for

evaluating a trained model, to estimate its true generalization performance. Two key
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Figure 2.4: Illustration of bias-variance trade-off (source: [204])

tasks are involved in this process: model selection and model evaluation. Model

selection involves choosing the best-performing model from a set of candidates based

on their ability to generalize well to unseen data. Model evaluation, on the other hand,

focuses on measuring the performance of the selected model using the independent test

set. Various approaches can be employed to address these tasks effectively.

The first approach involves splitting the entire dataset into training and test sets

in proportions, that ensure the training set is sufficiently large to train the model to

an optimal level, while the test set is large enough to reliably evaluate the model. For

large datasets, this may seems plausible. But in many real world problems such as in

biomedical research, where the datasets are small, using this approach does not work

well. To handle the small datasets, another popular approach called cross validation
is applied for selecting and evaluating the model. In this approach, dataset is divided

into multiple subsets, known as folds, where the model is trained on all folds except

one and evaluated on the remaining fold. This process is repeated multiple times, with

each fold serving in turn as test set in different iterations. The most common type of

cross-validation is k-fold cross-validation, where the dataset is divided into k equal-sized

folds. The specific way these folds are used depends on the task at hand. In a typical

setting, the data is first split into k equally sized folds. In each iteration, one fold is

used as the test set, while the remaining k−1 folds are merged and shuffled to form

the training and validation sets, often split in a (k−2) : 1 ratio. The validation set is
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used to select the best model, and the test set for that iteration is used to evaluate the

model’s performance. Once all k iterations are completed, the final score is computed by

averaging the test scores from each iteration. This approach ensures that every sample

in the dataset gets the opportunity to serve as a test sample, thereby reducing potential

bias and providing a robust estimate of the model’s generalization performance.

2.4 Deep Learning

Deep learning is is a sub-field of Artificial Intelligence in which learning is achieved

from the data itself using artificial neural networks. In contrast to conventional machine

learning methods where hand-crafted features are explicitly provided to the learning

algorithm for model training, deep learning generates its own set of features for learning

through the provided data and its labels (in case of supervised deep learning). In this

section, we explore advanced deep learning concepts particularly relevant to our research

work. In Section 2.4.1, we introduce the concept of ’Artificial Neural Network’ (ANN) and

its basic components. In Section 2.4.2, we discuss about ’Convolutional Neural Networks’

(CNNs) and its fundamental working mechanisms. Parameter optimization and the

learning processes of CNNs is discussed in Section 2.4.3. In Section 2.4.4, we discus

about various CNN architectures used for vision tasks relevant to our thesis.

2.4.1 Neural networks and its components

An artificial neural network (ANN) is an interconnected system of artificial neurons,

somehow inspired by biological neurons. Each artificial neuron can be thought of as a

computational unit that receives inputs, processes them, and produces an output. The

connections between neurons, known as synapses, are assigned weights that determine

the strength and nature of the connection. A positive weight represents an excitatory

connection, while a negative weight indicates an inhibitory connection. In an ANN,

neurons are organized into layers, where each layer receives inputs from the preceding

layer and passes its outputs to the next.

Mathematically, an ANN model can be defined as a parameterized approximation

function f : X →Y , where X is the input space (typically Rp) and Y the output space

(typically Rd for some integer d ≥ 1). A neural network function, denoted as f (x;θ), is

constructed by composing other functions g(l)(x;θ(l)), where l = (1, ...,L) represents the

number L of layers. The learnable parameter set θ contains all the learnable parameters
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of the neural network [222]. A typical ANN, also called Multilayer perceptron (MLP)
consists of one input layer, one or more hidden layer(s) and one output layer as shown in

Figure 2.5. The process of passing the data through the NN to infer a model prediction

is called forward propagation. In the forward propagation, the pre-activation value,

noted zl
j, of the jth neuron in layer l is computed from the previous layer as follows:

z(l)
j =

nl−1∑
i=1

w(l)
ji a(l−1)

i +b(l)
j (2.3)

where nl is the number of neurons in layer l, w(l)
ji is the weight, connecting the ith neuron

of layer l−1 to the jth neuron in layer l. a(l−1)
i is the (post) activation value of neuron i

of layer l−1 and b(l)
j is the bias term for jth neuron in layer l.

The activation of the jth neuron of layer l is then obtained as follows:

a(l)
j =φ

(
zl

j

)
(2.4)

where φ (z) is a pre-defined activation function such as hyperbolic tangent, sigmoid,

softmax or rectifier function. Activation functions are discussed in Section 2.4.2.4.

For the entire layer, the computations can be vectorized as:

z(l) =W(l)a(l−1) +b(l) (2.5)

a(l) =φ
(
z(l)

)
(2.6)

where W(l) (∈Rnl×nl−1) and b(l) (∈Rnl ) are the weight matrix and the bias vector of layer

l, and z(l) and a(l) represent respectively the pre (weighted sum) and post (outputs)

activation values.

The forward propagation is initialized by taking a(0) equal to the input vector x. The

output layer takes as input the activation values of the last hidden layer z(L) and produces

the final model prediction. It takes a similar form as a hidden layer with as many neurons

as there are outputs, with parameters WL+1 and bL+1, and an activation function that

depends on the nature of the output, often the identity function in regression and a

softmax activation in classification (see Section 2.4.2.4).

The trainable parameters of the networks are thus the weight matrices and bias

vectors of the L hidden and the output layers:

θ =
{(

W(1),b(l)
)
, l = 1, . . . ,L+1

}
.
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Figure 2.5: A typical ANN with one input layer x, two hidden layers (g1, g2) and one
output layer (g3).

2.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are similar to ordinary Artificial Neural Net-

works (ANNs) in that they are composed of neurons with weights and biases. However,

CNNs include one or more convolutional layers that may be followed by pooling layers

(discussed in Section 2.4.2.3), which reduce the spatial dimensions of feature maps

while retaining important information. Pooling operations also contribute to making

the network invariant to translations, enhancing its robustness in recognizing features

regardless of their position in the input. CNNs are generally employed in vision-based

tasks such as image classification, segmentation and object detection but are also used

outside vision, eg., for time series analysis or language translation. CNNs share the

weights across neurons that makes it possible to have less number of parameters as

compared to fully connected ANNs, thus considerably reducing the complexity of the
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model. Unlike ANNs, where neurons are fully connected to each other, in CNNs, the

neurons are locally connected with a small portion of the input image. Multiple filters

slide through the image to learn different features of the input image. The input to

CNNs is usually a volumetric data such as images (height×width×depth) where the

convolutional operation is performed across the last dimension (depth or channels). A

typical CNN is composed of different types of layers and components that are described

in the next section.

2.4.2.1 Convolutional layer

Convolutional layers consist of a number of filters, also called kernels, that perform

convolution operations over the images and produces the feature/activation maps. A

filter is a small matrix of weights which slides over the image from left to right and top

to bottom for convolution operation. Its dimension and numbers are specified manually,

thus representing a hyperparameter of the CNN. As an example, a convolution operation

can be defined on an image I with dimension M×N with filter K= ( k11 k12
k21 k22

)
of dimension

2×2 as an element-wise multiplication followed by sum. For the (i, j)th position in the

output feature map Z, the value is computed as:

z[i, j] =
2∑

p=1

2∑
q=1

K [p, q] ·I [i+ p−1, j+ q−1] (2.7)

For every pixel I[i, j] in the original image I, the surrounding pixels centered around the

image kernel is re-estimated and this pixel neighborhood is convolved with the kernel

K resulting in a singular output value z[i, j]. The kernel can be moved across the larger

image, sliding from left to right and from top to bottom, as shown in Figure 2.6.

During training, the weights of the kernels are generally randomly initialized. Cur-

rent practices use some specific initialization strategies such as "xavier initialization"
[64] or "he initialization" [73]. Apart from number of kernels and initialization, a kernel

has other hyperparameters which are chosen or tuned manually.

• Dimension of a filter- A filter of size F ×F applied to an image of size I × I ×C
has the volume of F ×F ×C (shown in Figure 2.7) that slides over the image and

produces the feature or activation map of O×O×1 (we discus about output volume

O later in this section).

• Stride- The stride is the number of pixels by which a filter moves over the image

after one operation (shown in Figure 2.8). Stride is used in ’convolution’ and ’pooling’

operations.
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Figure 2.6: Illustration of convolution operation on an image of size 6×6 with a filter of
size 3×3 [146]

Figure 2.7: Illustration of K filters of size F ×F ×C [1]

Figure 2.8: A 1d stride of 2, operations over 7 pixels of the image.

• Padding- Padding is the process of adding P zeros to the sides of the boundaries

of the input image to make it customizable to the network. A Valid padding means

no padding (P = 0) and the last convolution is dropped if dimensions do not match.

A Same padding is performed in such a way that the output feature map has size⌈ I
S
⌉

where I is image dimension and S is the stride. A Full padding is applied

where it is important for the network to apply full convolutions on the limits of the

input. In the Full mode, the filter sees the inputs from end-to-end.

The output dimension of a feature map O depends upon the above mentioned hyperpa-

rameters. Considering I the length of the input volume size, F the length of the filter,
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P the amount of zero padding, S the stride, then the output size O of the feature map

along that dimension is given by:

O = I −F +Pstart +Pend

S
+1 (2.8)

In Equation (2.8), Pstart and Pend refer to how much padding (zero-valued pixels) is

added to the beginning (top/left) and end (bottom/right) of the input matrix, respectively,

before applying the convolution operation in CNNs. In practice, it is usually considered

Pstart = Pend = P in which case we can replace Pstart +Pend by 2P in Equation 2.8.

2.4.2.2 Transpose convolution

Transpose convolution also know as deconvolution is an operation in the convolution layer

that act as a reverse of convolution operation. Unlike standard convolution where output

feature maps has reduced dimensions, transpose convolution is applied to upsample

the feature maps. Transpose convolution is used to increase the spatial resolution of

feature maps. This is particularly useful in tasks such as image segmentation or image

generation, where finer details need to be preserved or generated [116]. Mathematically,

a transpose convolution with 2×2 kernel on an input image I of dimension M ×N is

computed for pixel (i, j) in the output image O as:

O[i, j] =
2∑

p=1

2∑
q=1

K [p, q] ·I
[⌊

i− p
s

⌋
,
⌊

j− q
s

⌋]
(2.9)

where p and q are the indices of the kernel K and s is the stride, typically 1 in case of

transpose convolution.

Transpose convolution has the learnable parameters along with tunable hyperparam-

etes such as padding, stride to customize the output feature maps. In practice, transpose

convolution is followed by regular convolution to mitigate the artifacts of the upsampled

output feature maps. It is mainly used in computer vision problems where the goal is to

recover the original spatial resolution of the input images.

2.4.2.3 Pooling layer

Another basic component of CNN is Pooling layer which is often applied after convolu-

tional layer and has no learnable parameters. Pooling layer is crucial to preserve spatial

information and at the same time also responsible for reducing the dimension of the

feature map, resulting in a compressed representation of the input feature maps. Pooling

layer divides the input data into small non overlapping regions called pooling windows
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and applies aggregation operation such as Max or Average of the values for each pooling

window, thus reducing the size of the input feature maps. During pooling operation only

height and width of the input data is reduced while depth remains unchanged. Figure

2.9 shows the ’Max’ operation of the pooling layer.

Figure 2.9: Illustration of Max pooling operation of pooling layer with filter size 2×2 and
stride (2,2)

Pooling Layers provide a form of translation invariance by extracting the most

relevant features from different spatial locations, making the model more robust to

variations in the position of the features. Model complexity is significantly reduced by

using pooling layers as they aid in reducing the number of parameters of the network.

Moreover, a form of regularization is achieved by pooling layers as they aggregate the

important information from the local regions while ignoring the minor variations.

2.4.2.4 Activation layer

The activation layer employs a non-linear activation function on or before the pooling

layer’s output. This mechanism introduces non-linearity into the model, facilitating

the learning of more complex representations of the input data. Activation function is

generally applied right after the convolution operation and before pooling layer. Following

are popular activation function used in CNNs:

• ReLu- Rectified linear unit known as ’ReLu’ is a non linear activation which

quashed out negative values from the input feature maps. ReLu and its variants

are shown in Figure 2.10:

• Sigmoid- Sigmoid is a non linear activation function applied after convolution

operation to squash the incoming values between 0,1. The output probability

values are summed to 1 making it a frequent choice at the output layer of the

neural network for binary classification problems. In modern days, sigmoid is not
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Figure 2.10: Description of rectified linear unit ‘ReLu’ and its variants

used as an activation function in the middle layers of the neural network due to

its propensity to produce small gradient even for large input values, thus slowing

down the training with vanishing gradient problem [76] in large and deep

networks. Mathematically, sigmoid function is expressed as:

σ (x)= 1
1+e−x (2.10)

• Softmax- Softmax is a non-linear activation function which squashes the values of

incoming vectored input data between 0,1 and so that they sum to 1. It is generally

applied at the last layer of the network to output probability values between 0 and

1 for multi-class classification problems. Mathematically, if the vector x of size c is

the input of the Softmax layer, its output, also of size c is computed as

p =


p1

p2
...

pn

where pi = exi∑n
j=1 exj

. (2.11)

2.4.2.5 Fully connected layer

A fully connected layer, also known as a dense layer, is a layer that connects each neuron

to all neurons in the previous layer, thus forming a subnetwork of dense connections in

the CNN. It is typically applied at the end of the network and is designed to capture the

global patterns of the input data. In the context of a CNN, the input to a fully connected
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layer is typically the output of the preceding convolutional and pooling layers, flattened

into a one-dimensional vector. Since every connection has a weight associated with it,

a fully connected layers has maximum number of parameters which are learnt during

training. Fully connected layers are responsible for learning high-level features and

patterns in the input data, which are essential for making predictions or classifications.

By connecting every feature from the previous layers to the subsequent layers, fully

connected layers enable the network to learn complex relationships and make predictions

based on the learned representations [17].

2.4.3 Optimization in Convolutional Neural Networks

Parameters (θ) in CNNs are randomly initialized in the beginning, meaning that they

are not optimized and the performance of the network is also initially random. In order

to optimize the performance of the network, these parameters need to be fine-tuned

carefully so that the model gives the results as per needed. In the paradigm of supervised

learning, optimization or learning is performed with a training set which contains data

examples and their labels. The training data is provided to the network which has a ’loss

function’ that is used to minimize or maximize some objective function. Loss function is

usually a mathematical function that measures the discrepancy between the predicted

output of a model and the actual target value. It provides a way to quantify how well

the model’s predictions align with the true labels or expected outputs. For example the

loss function of the form: L ( f (xi;θ) , yi)= ∥ f (xi;θ)− yi∥2 is used in linear regression and

many other algorithms (we discuss about loss functions in detail in Section 2.6.2).

Since it is challenging to determine the optimal parameters analytically, gradient
descent based numerical solutions come handy in case of optimizing CNN parameters.

The goal of gradient descent is to minimize the loss function by iteratively updating the

model’s parameters in the direction of negative gradient of the loss function. Gradient

descent start with the initial parameter set (θ0) (weights and biases) of the network. The

algorithm iteratively computes the gradient of the loss function with respect to each

parameter. The gradient indicates the direction and magnitude of the steepest increase

in the loss function. The parameters should thus be updated in the opposite direction of

the gradient to reduce the loss. In the simplest form of gradient decent, this update is

performed iteratively using the following formula:

θt+1 = θt −η ·∇L(θt), (2.12)

where t represent the current iteration, ∇L denotes the gradient of the loss function with
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respect to θ and η, known as the step size or the learning rate, is a hyperparameter

that must be manually tuned.

During training of CNNs, choosing the appropriate learning rate is a challenging task.

Setting this hyperparameter with large value makes the algorithm to diverge; setting it

with very small value slows down the convergence [66]. In practice, stochastic gradient

descent makes the learning rate a decreasing function ηt of the iteration number t,
giving a learning rate schedule, so that the first iterations cause large changes in the

parameters, while the later ones do only fine-tuning [174].

The gradient descent algorithm keeps on iterating training data over and over again

until it reaches some convergence. Due to the high-dimensional nature of training data,

it is highly unlikely that gradient descent will lead to a global minimum of the less

function. Instead, it converges towards a local minimum. The standard batch mode

gradient descent algorithm calculates gradients over the entire training set before

updating the model parameters, which can be computationally expensive for large

datasets. To address this issue, the Stochastic Gradient Descent (SGD) method updates

the model parameters after computing the gradients for a single random sample from

the training set in each iteration. Another computationally efficient strategy is to use

mini batch, in which gradient descent algorithm computes the gradients of a small

batch of samples from the training set before updating the model parameters. The bath

size is a model hyperparameter, which has to be set manually.

Stochastic gradient descent with momentum is an improved version of regular SGD

optimizer that dynamically fine-tune the model parameters during training, thus helps

the algorithm converge faster while minimizing some predefined loss function. In the

context of SGD optimizers, the notion of momentum refers to the idea to keep tracks of

the direction of the past gradients with the help of exponentially moving averages
and to use this information to update the parameters [158]. Mathematically, in SGD

with momentum, the update rule for the parameters θ at iteration t is given by:

vt =β ·vt−1 −η ·∇L (θt) , (2.13)

θt+1 = θt +vt, (2.14)

where:

• vt is moment at iteration t,

• β is a moment parameter (typically between 0 and 1),
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• ∇L (θt) is the gradient of the loss function with respect to the parameters θ at

iteration t,

• η is learning rate or step size.

In this formulation, the momentum term vt is updated at each iteration by taking

a weighted average of the previous momentum vt−1 and the current gradient. This

weighted average acts as a memory of past gradients’ directions, allowing the optimizer

to continue moving in the same direction if gradients consistently point in that direction.

This momentum-based update helps to smooth out the oscillations in the gradient

updates. Instead of the optimizer making large, erratic jumps in the parameter space,

the momentum term causes it to move more smoothly and steadily. Additionally, this

smoothing effect can accelerate the convergence of the optimization process, especially

in scenarios with high curvature or noisy gradients. In these challenging optimization

landscapes, the momentum term can help the optimizer navigate more effectively and

reach the optimum more quickly [185].

The other most widely used optimizers are RMSProp (Root mean squared propaga-

tion) [193] and Adam (adaptive moment estimation) [98] which are considered further

improved versions of stochastic gradient with moment. The RMSProp optimizer works

by exponentially decaying the learning rate every time the squared gradient is less

than a certain threshold. This helps reduce the learning rate more quickly when the

gradients become small. In this way, RMSProp is able to smoothly adjust the learning

rate for each of the parameters in the network. The RMSprop algorithm utilizes ex-

ponentially weighted moving averages of squared gradients to update the parameters.

Mathematically, the update rule for RMSprop at iteration t for parameter θ is given by:

vt =β ·vt−1 +
(
1−β) · (∇L (θt))2 , (2.15)

θt+1 = θt − ηp
vt +ϵ

·∇L (θt) , (2.16)

where:

• vt is the exponentially decaying average of past squared gradients for parameter θ

at iteration t,

• β is a decay rate parameter (typically set to a value close to 1, e.g., 0.9),

• ∇L (θt) is the gradient of the loss function with respect to parameter θ at iteration

t,
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• η is learning rate and ϵ is s small constant for numerical stability.

Adam optimizer can be thought of as a combination of RMSProp and SGD with

momentum. It uses the squared gradients to scale the learning rate like RMSprop, and

it takes advantage of momentum by using the moving average of the gradient instead of

the gradient itself, like SGD with momentum. This combines dynamic learning Rate and

smoothing to reach the convergence. Mathematically, an adam optimizer is described as:

mt =β1 ·mt−1 +
(
1−β1

) ·∇L (θt) , (2.17)

vt =β2 ·vt−1 +
(
1−β2

) · (∇L (θt))2 , (2.18)

m̂t = mt

1−βt
1

, (2.19)

v̂t = vt

1−βt
2

, (2.20)

θt+1 = θt − ηp
v̂t +ϵ

· m̂t, (2.21)

where:

• mt and vt are the first and second moment estimates of the gradients for parameter

θ at iteration t,

• β1 and β2 are decay rate parameters (typically close to 1, e.g., 0.9 and 0.999

respectively),

• ∇L (θt) is the gradient of the loss function with respect to parameter θ at iteration

t,

• m̂t and v̂t are bias-corrected estimates of the first and second moments respectively,

• η is learning rate and ϵ is s small constant for numerical stability.

2.4.3.1 Backpropagation

All gradient descent variants discussed so far require to be able to compute the gradient

of the loss function ∇L (θ) with respect to all model parameters θ, i.e. all weights and

biases in a neural network. This is achieved in the context of neural networks using the

backpropagation algorithm [158] (for backward propagation). This efficient algorithm

is instrumental for the training of neural networks and its existence is one of the

fundamental reasons behind their popularity.

35



CHAPTER 2. MACHINE LEARNING AND DEEP LEARNING BACKGROUND

Each individual component of the gradient, ∂L/∂wl
i j, of a loss L measures the sensi-

tivity of the function value (output value) with respect to a change in its argument wl
i j

(input value). In the case of MLPs or CNNs, model predictions, and consequently also

the loss, are formulated as several nested function compositions, one per network layer

(see Sections 2.4.1 and 2.4.2). The computation of the gradient is based on a repetitive

application of the chain rule [216] that expresses the derivative of the composition of two

functions f and g as follows:

d
dx

(g ( f (x)))= dg
d f

· d f
dx

. (2.22)

Backpropagation exploits the chain rule and the layered structure of the network to

efficiently compute all components of the gradient ∇L (θ) in a single pass through the

network from the last to the first layer. The resulting algorithm avoids duplicate compu-

tations and has a computational complexity linear with respect to the number of model

parameters. The full mathematical derivation of the algorithm is out-of-scope of this

introductory chapter but details can be found for example in [72, 147].

Backpropagation is a fundamental algorithm for training neural networks, efficiently

computing gradients using the chain rule to update weights and minimize loss. Although

introduced in the early 1980s, it remains the fundamental mechanism powering modern

deep learning, allowing neural networks to approximate increasingly complex functions.

It may however face challenges such as vanishing and exploding gradients, which can

hinder training. These issues can however be mitigated through strategic choices of

activation functions, proper weight initialization techniques, advanced optimization

algorithms or specific network architecture. Despite its low computational complexity

in theoretical term, its application to large-scale neural networks can be very costly.

Fortunately, implementation on specialized hardware such as GPUs can accelerate the

computation, making the training of sophisticated models practically feasible.

2.4.3.2 Batch normalization

Batch normalization [86] layer is applied in a CNN to optimize the training. It normalizes

the activations of each layer by adjusting and scaling them and is typically applied after

the convolution and activation layers but before pooling layers. During training, batch

normalization computes the ’mean’ and ’variance’ for each mini-batch and uses them to

normalize the activations. As an example, suppose, we have a mini-batch of activations

X = {
x(1), x(2) · · ·x(m)} where m is the size of mini-batch, given an activation x(i), the first
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step is to normalize the mini-batch as:

x̂(i) = x(i) −µp
σ2 +ϵ

, (2.23)

where µ, σ2 is the mean and variance of the mini-batch respectively and ϵ is a small

constant for numerical stability.

After normalizing, two learnable parameters γ and β for scaling and shifting respectively

are applied to the normalized activations x(i) as:

y(i) = γx̂(i) +β. (2.24)

During training, the population statistics (mean and variance) are updated using expo-

nentially moving averages as:

µnew =αµold + (1−α)µ,

σ2
new =ασ2

old + (1−α)σ2,

where α is a momentum parameter typically close to 1 (0.9 or 0.99). During inference,

it uses the aggregated statistics of the entire training dataset to normalize the activa-

tions. Overall batch normalization can speed up training by allowing the use of higher

learning rates thus narrowing down the parameter search. It also helps to improve the

generalization performance of the network by maintaining the intermediate activations

in an acceptable range to prevent the problem of exploding or vanishing gradients [163].

2.4.3.3 Dropout layer

Dropout [176] is another useful method for optimizing the training of a CNN as it

prevents overfitting by dropping some random neuron activations during training. At

every iteration, it selects a random subset of neurons of the previous layer and set the

activations to zero with a probability p. To ensure that the activations of different set

of neurons are dropped, this process is performed for each training example and each

neuron independently. The remaining neurons are scaled by a factor of 1
1−p to compensate

for dropped neurons and maintains an expected output magnitude. During inference,

the dropout layer is typically deactivated, with all the neuron activation being used.

Overall, the dropout layer acts as a form of regularization by introducing noise into

the network training. This noise helps prevent the network from relying too heavily

on any particular set of neurons and encourages the network to learn more robust and

generalized features.
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2.4.4 CNN architectures

Currently a number of state-of-the-art CNN architectures are being used by researchers,

academicians and companies to solve computer vision based image classification, seg-

mentation and object detection tasks. We discuss some of the architectures that we have

implemented in our thesis work.

2.4.4.1 Residual network

AlexNet [100] and VGG16 [171] were the first of its kinds of CNNs that have revolu-

tionized deep learning in the field of computer vision. Nowadays they have however

become obsolete and are replaced by deeper and more sophisticated CNNs. One such

CNN is Residual Network, popularly known as ResNet [74], that uses skip connections or

shortcuts, allowing the network to learn residual mappings instead of directly learning

the desired underlying mapping. This residual mapping solves the problem of vanish-

ing gradients that occurs in deep networks. The basic building block of ResNet is the

residual block which consists of two convolutional layers with batch normalization and

ReLu as activation functions and a shortcut or skip connection that skips one or more

intermediate layers. This skip connection allows the flow of gradient directly through

the network without passing through the activation function, thereby mitigating the

vanishing gradient problem. The shortcut connections simply perform identity mapping,

i.e., they directly pass along the input to the next layers. ResNet comes in number of

variants, such as ResNet18, ResNet50, ResNet152 where numbers indicate the numbers

of layers in the ResNet. Apart from standalone architecture, variants of ResNets are also

used as backbone networks for various deep transfer learning task (We discuss about

transfer learning in Section 2.5). Figure 2.11 shows the configuration of residual blocks

in the ReseNet34 architecture.

2.4.4.2 Fully Convolutional Network

A Fully Convolutional Network, also known as FCN [116], is a CNN architecture primar-

ily used for semantic segmentation tasks in computer vision. Semantic segmentation

is a pixel-wise classification where each pixel is assigned a predefined label (object or

background). This is in contrast with the standard image classification, where a label is

assigned to the entire image. Contrary to traditional CNN, where the last layers are fully

connected or dense layers, in FCN architecture, convolutional layers are implemented

end-to-end fashion. In FCN, the initial layers are made up of stack of convolutional
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Figure 2.11: A typical 34 layered ReseNet34 architecture with 4 residual blocks. Skip
connection are placed after every two convolutional layers (source:[74])

blocks followed by maxpooling whereas later layers are upsampling layers that use

transpose convolutional (or decovolutional) layers to recover the spatial resolution. Skip

connections are incorporated by fusion of intermediate layers with upsampling layers as

shown in Figure 2.12. The variants of FCN includes FCN8, FCN16 and FCN32 where

number indicates the number of layers in the network architecture.

2.4.4.3 U-Net architecture

U-Net [157] is a popular CNN architecture for semantic segmentation, initially proposed

in biomedical domain. It follows an encoder-decoder architecture, where the encoder is

used to extract hierarchical feature representations by gradually reducing the spatial

dimensions of the input image through convolutions with max-pooling operations and

the decoder part upsamples these features to generate a segmentation map with the

same spatial dimensions as the input image. In the encoder part, contracting feature

maps have increasing number of channels along the subsequent convolutional layers

whereas in decoder part, expending feature maps have decreasing number of channels
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Figure 2.12: An FCN network architecture with skip (fusion) connections in the interme-
diate layers

along the upsampling path. Skip connections are used to fuse the compressed activations

from encoder with the upsampled activations of decoder thereby combining the high-

resolution, low-level features from the encoder with low-resolution, high-level features

from the decoder. U-Net is proven to be very effective in semantic segmentation tasks in

biomedical field, including cell segmentation, organ segmentation, and lesion detection

in medical images [29, 79, 109]. Figure 2.13 shows the original U-Net architecture with

all its specifications.

2.4.4.4 High resolution Network architecture

High resolution network architecture, known as HRNet [211] is primarily developed

for general purpose computer vision tasks including semantic segmentation, human

pose estimation, object detection and facial landmark detection. It maintains high-

resolution representations throughout the network by using parallel branches with

different resolutions. These branches are then fused together at multiple stages of

the network, allowing the model to capture both fine-grained details and high-level

semantic information simultaneously. It starts from a high-resolution convolution stream,

gradually adding high-to-low resolution convolution streams one by one, and connect

the multi-resolution streams in parallel. The resulting network consists of several

stages as shown in Figure 2.14, and the nth stage contains n streams corresponding

to n resolutions. Repeated multi-resolution fusions is performed by exchanging the

information across the parallel streams over and over [211].
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Figure 2.13: U-Net architecture with 572×572 input image resolution (source:[157])

Figure 2.14: High resolution network architecture with different resolutions maintained
parallelly and fused at the end (source: [211])
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2.5 Deep transfer learning and domain adaptation

One of the bottlenecks in training deep CNNs is the requirement for a large amount

of labeled data to train the model. In real-world applications, such as general image

classification, datasets with millions of labeled images (e.g., ImageNet [49]) are available,

providing sufficient data to train a CNN classifier or an object detector. In biomedical

domain, where labeled image datasets are often scarce or not publicly accessible, training

a CNN can be however quite challenging. Deep Transfer Learning is a machine learning

technique where a pre-trained deep learning model, developed for one (source) task, is

adapted for a different but related (target) task. It leverages the knowledge gained from

the source task to improve performance or efficiency on the target task, particularly

when the target task has limited data. By gaining the knowledge from the source task,

the model can effectively learn representations that generalize well to the target task

[140, 235]. In this thesis, we discuss about supervised deep transfer learning applied to

anatomical landmark detection. Deep transfer learning has the following components:

• Source and target tasks: Source task comes from source domain DS and it

consists of labeled data pairs
{(

xS
i , yS

i

)}NS
i=1 for which the model is already trained

and the sample set NS is very large. Here xS
i are input features from source task

and yS
i are the corresponding labels. Target task comes from target domain that

consists of labeled data pairs
{(

xT
i , yT

i
)}NT

i=1 for which the model is transferred and

the sample set NT of this domain is small. In this case xT
i are input features for

target task and yT
i are the corresponding labels (if available). In transfer learning,

we leverage the model fS learned from the source task to improve the learning

process for the target task.

• Pre-trained model: It is a deep learning model of a source task, trained on large,

diverse datasets (e.g., ImageNet for image tasks), capturing general patterns like

edges, shapes, or textures in their early layers, and task-specific features in their

later layers.

Deep transfer learning has two approaches to transfer the knowledge from source task

to target task, namely feature extraction and fine-tuning. In feature extraction, the

model fS, learned on the source task is used as a fixed feature extractor to transform raw

input data from source task into a lower-dimensional, informative feature representation.

Instead of training the entire model from scratch, the early or intermediate layers (which

capture general patterns) of fS are used as a fixed, untrained, feature extractor, while a
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new classifier gT is trained using these features as inputs. More formally, let us denote

by fS(.;θS) the feature extractor whose parameters θS are determined on the source data.

The target model fT(x;θT) is defined as

fT(x;θT)= gT( fS(xT
i ;θS);θT),

with the parameters θT optimized on the target data:

θT = argmin
θ

NT∑
i=1

LT

(
gT( fS(x;θS);θ), yT

i

)
,

where LT is the loss function of the target task. The model gT can be any trainable

classifier (e.g., a fully connected layer).

In the fine-tuning approach, the target task model fT is initialized with the weights of

the source model fT and then fine-tuned on the target dataset. Technically, we fine-tune

the model by the following formulation:

fT = argmin
f

NT∑
i=1

LT

(
f
(
xT

i ,θT

)
, yT

i

)
+λ ·R (θT ,θS) , (2.25)

where LT is the loss function of the target task, R(θT ,θS) is a (optional) regularization

term, for instance to manage the difference between fS and fT . λ is the hyperparameter

that controls the strength of regularization. In the fine-tuning approach, a pretrained

model serves as the backbone or encoder of the target model fT . The model consists of

two sets of parameters: θS from the source task model fS and θT from the target task

model fT , both of which are integrated into a common network for training. Fine-tuning

offers several options for updating the model parameters [226]:

• The early layers (typically from the pretrained model) can be frozen, meaning

their parameters remain unchanged during training, while only the later layers

are optimized.

• Alternatively, the entire pretrained backbone can be frozen, and only the final

classification layer is trained. The approach then becomes an instance of feature

extraction.

• In a full fine-tuning approach, all parameters in θT are updated during optimiza-

tion, allowing the model to fully adapt to the target task.

Domain adaptation is a particular family of transfer learning problems in which

a model to perform a given task has been trained on one (source) data distribution
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but has to be applied to perform the same task on a different, but related, (target)

data distribution. Unlike in general transfer learning, in domain adaptation, the input

space and tasks, and thus the label space, are shared between the source and target

domains, and only the source and target input distributions are different. For instance,

in biomedical research, laboratories across different regions use various data acquisition

tools (such as microscopes or X-ray machines) and use all their own acquisition settings to

collect similar types of data. These differences in acquisition settings often cause models

trained on data acquired by one laboratory to perform poorly on data acquired by another

laboratory, leading to the issue of domain shift. Domain shift can lead to a drop in the

model’s performance when applied to the target domain, as the model is trained on one

distribution but tested on another. The general transfer learning strategies mentioned

earlier, i.e. feature extraction and fine-tuning, can be applied for domain adaptation but

other more specific approaches exist that try to minimize the impact of domain shift

while minimizing the amount of target domain data to be collected (see, e.g., [70] for a

review).

2.6 Metrics and loss functions

In the context of model evaluation, if we are interested in performance measure in terms

of ‘the higher the better’, then it is called metric and if ‘the lower the better’, we call it

loss. While loss functions are used during training to optimize the model, evaluation

metrics (e.g., accuracy, F1-score) are used after training to measure performance on

validation or test datasets. They serve different purposes but are often aligned to ensure

the model is optimized for relevant metrics. They help in assessing how well our model is

doing and can guide in fine-tuning the model or selecting the best model among different

alternatives. In this thesis, for the segmentation tasks discussed in Chapters 4 and 6,

we investigate both binary and multi-class semantic segmentation approaches which is

a type of pixel-wise classification task. In these approaches, each pixel is assigned to a

predefined class label, with binary segmentation involving two labels (e.g., 0 or 1), and

multi-class segmentation involving more than two labels. A binary classifier typically

generates a probability score P (y= 1 | x) using sigmoid function in the final layer. This

score ranges between 0 and 1 and represents the likelihood that the input x belongs to the

positive class (e.g., "1") or background (e.g. , "0"). A multi-class classifier employs softmax
function in the last layer to produce the class probabilities, ranging between 0 and 1 and

summing to 1. In both cases, a decision threshold is a critical concept, where the goal

44



2.6. METRICS AND LOSS FUNCTIONS

is to assign one of the possible labels (i.e. classes) to each pixel. It refers to the value

at which the predicted probability or score for a given class is compared to determine

the final classification. In binary classification tasks, the default decision threshold on

a probability score is T = 0.5, meaning that inputs with a predicted probability of 0.5

or higher are classified as the positive class (i.e. 1) while those below this threshold are

classified as the negative class (i.e. 0). Note however that, this probability score can

be tweaked to improve confidence calibration that enable better interpretability and

decision making. In case of multi-class classification, the default class is typically the

one that receives the highest class probability score, but, equivalently to the use of a

decision threshold, the probabilities can be rescaled using additional hyper-parameters

to favor some classes over the others.

Many metrics and loss functions are available in the machine learning literature. We

discuss below only those which are related to our thesis work. We fist cover in Section

2.6.1 metrics that are used to assess binary classifiers and then presents in Section 2.6.2

various loss functions that are used to train deep learning models.

2.6.1 Metrics

A metric is a quantitative measure used to evaluate the performance of a model on

an independent test set. Metrics provide insights into how well a model performs with

respect to the specific objectives of the problem being solved. We focus here on binary

classification problems and we will denote by yi ∈ {0,1} the true output class of the ith
instance and by ŷi ∈ {0,1} the model prediction for the same instance. Instances in the

next chapters will be mostly N image pixels that will have to be predicted as belonging

to a particular class (typically the positive class, encoded as 1) or to the background

(typically the negative class, encoded as 0), in the context of image segmentation tasks.

Before moving to the metrics descriptions, we first defined some terms used to

calculate them.

• True positives (TP): the number of positive instances that are correctly predicted

as positives by the model. It can be computed as:

TP =
N∑

i=1
ŷi · yi (2.26)

where N is the total number of instances (e.g. pixels in the image).
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• False positives (FP): the number of negative instances that are incorrectly

predicted as positives by the model. It is computed as:

FP =
N∑

i=1
ŷi · (1− yi) . (2.27)

• False negatives (FN): the number of positive instances that are incorrectly

predicted as negatives by the model, computed as:

FN =
N∑

i=1
(1− ŷi) · yi. (2.28)

• True negatives (TN): the number of negative instances that are correctly pre-

dicted as negative, computed as:

TN =
N∑

i=1
(1− ŷi) · (1− yi) . (2.29)

2.6.1.1 Accuracy

Accuracy is the simplest metric which tell about the model performance in term of how

many predictions are correct out of total predictions. The accuracy assigns 1 to correct

predictions and 0 to misclassified samples (also known as 0−1 loss). Mathematically, the

accuracy score in terms of loss can be computed by the model over a dataset of n samples

as:

Macc = 1
N

N∑
i=1

(1−ℓ0-1(yi, ŷi)) (2.30)

where yi and ŷi are the actual and predicted values respectively. Another way of writing

the accuracy formula is:

Macc = TP +TN
TP +TN +FP +FN

(2.31)

where TP,TN,FP and FN are defined as above. Although accuracy is the most straight-

forward evaluation metric, it becomes unreliable in scenarios with imbalanced datasets

(see the next section). In such cases, relying on accuracy can lead to a biased model that

favors the majority class, failing to generalize effectively. This is particularly problematic

when the minority class holds greater significance, as the model may overlook crucial

instances, leading to poor performance in real-world applications.
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2.6.1.2 Precision, Recall and F1 score

Tackling class imbalance while measuring the performance of the model is vital in

situations where the minority class has more weight than negative class. For example,

in biomedical research, machine learning models are often used to detect whether a

patient has cancer. Suppose only 2% of the patients in the dataset have cancer. In such a

case, a model trained predominantly on the negative class could achieve a high accuracy

of 98% simply by predicting all patients as negative, while completely ignoring the

minority (positive) class. In scenarios like this, it is more meaningful to focus on metrics

that account for false positives (FP) (false alarms) and false negatives (FN) (missed

detections). Metrics such as Precision, Recall, and F1 score are more informative and

reliable performance measures compared to plain accuracy. These metrics can be defined

as:

• Precision measures the proportion of true positive predictions out of all positive

predictions (both true positives and false positives). In other words, precision looks

at ’how many retrieved cases are relevant’. It is also called ’positive predictive

value’ and calculated as:

Precision = TP
TP +FP

(2.32)

• Recall, also called ’sensitivity’ or ’true positive rate’ (TPR), measures the proportion

of true positive predictions out of all actual positive instances in the dataset.

In other words, it indicates the probability of retrieving relevant cases and is

calculated as:

Recall = TP
TP +FN

(2.33)

• F1 score is the ’harmonic mean’ of precision and recall values and balances both

metrics. It gives more weight to lower values. The F1 score is high only if both

precision and recall values are high. F1 score is calculate as:

F1 Score = 2 · Precision×Recall
Precision+Recall

(2.34)

In terms of TP, FP and FN, the F1 score can be expressed as:

F1 Score = 2 ·TP
2 ·TP +FP +FN

(2.35)
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2.6.1.3 ROC and AUC curves

The Receiver Operating Characteristic (ROC) curve and the Area Under the ROC Curve

(AUC) are commonly used evaluation metrics for binary classification models. They

provide insights into a model’s performance across different decision thresholds and help

assess its ability to discriminate between the positive and negative classes.

• ROC curve: The ROC curve is a graphical representation of the performance of

a binary classification model at different threshold values. The curve shows the

True Positive Rate (see recall in Section 2.6.1.2), also known as sensitivity or recall,

against the False Positive Rate (FPR = FP
FP+TN ) or ′1− speci f icity′ at various

threshold settings [186] as shown in Figure 2.15. By varying the decision threshold

of the model (the probability threshold above which an instance is classified as

positive), we can calculate different TPR and FPR values, resulting in points

on the ROC curve. An ideal ROC curve is more inclined to top left of the plot,

Figure 2.15: Visualization of Receiver operating characteristic (ROC) curve. (source:
[237])

indicating high sensitivity and low specificity, showing better model performance.

A random classifier would result in a diagonal line from the bottom-left to the

top-right of the plot.

• AUC quantifies the overall performance of a binary classification model by calculat-

ing the area under the ROC curve. It represents the probability that the model will
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rank a randomly chosen positive instance higher than a randomly chosen negative

instance. AUC provides a scalar value between 0 and 1, with 1 indicating a perfect

model (with TRP = 100% and FPR = 0) in discriminating positive and negative

instances. AUC values below 0.5 shows that the model is worse than random guess

and value at 0.5 indicating the model is just performing at random chances (shown

in the diagonal line in Figure 2.15)

2.6.2 Loss functions

The loss function plays a crucial role in training a CNN. It is applied at the end of the

last layer to quantify the difference between predicted values ( ŷi) and the actual ground

truth values (yi). The choice of a loss function depends on the specific task at hand,

such as classification, regression, or segmentation. In this section we discus some of the

loss functions we have implemented in our thesis work, first for regression and then for

classification problems.

2.6.2.1 Regression loss functions

Regression loss functions are used in tasks where the model output values are continuous

(e.g., when predicting (x, y) positions of a landmark in an image in Chapter 5). We describe

below the two regression loss functions used in our thesis.

2.6.2.1.1 Mean Squared Error (MSE). Mean squared error measures the mean

squared difference between true and predicted values. It Penalizes larger errors more

heavily due to the squaring and is thus sensitive to outliers. MSE is calculated as:

LMSE = 1
N

N∑
i=1

(yi − ŷi)2 (2.36)

where N is the sample size, yi and ŷi are the true and predicted values respectively.

2.6.2.1.2 Mean Absolute Error (MAE). Mean absolute error measures the average

absolute difference between predicted and actual values:

LMAE = 1
N

N∑
i=1

|yi − ŷi| . (2.37)

With respect to MSE, MAE is less sensitive to outliers, i.e. punctual large differences

between the true and predicted values.
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2.6.2.2 Classification loss functions:

We review in this section the classification losses used in our thesis. Most of these

losses are computed on the basis of class probability estimates instead of the final class

predictions, denoted as ŷi earlier. The main reason for this is that the latter are not

differentiable and thus can not be optimized by gradient descent. In what follows, in the

context of binary classification, we will therefore denote by p̂i the probability of class 1 as

predicted by the model (by default, ŷi = 1 if p̂i > 0.5, ŷi = 0 otherwise). In the context of

multi-class classification, we will denote by p̂i j the probability that instance i is in class

j as predicted by the model and we will (one-hot) encode the true class of instance i with

the variables yi j ∈ {0,1}, such that yi, j = 1 if instance i is in class j, yi j = 0 otherwise.

2.6.2.2.1 Cross entropy loss. Cross entropy is one of the most popular loss functions

used to train CNNs for classification tasks. It measures the distance between two

discrete probability distributions: the conditional class probabilities predicted by the

model, p̂i j, and the actual class probabilities. The former is the output of the network

last softmax layer. The actual class probabilities are typically unknown but one uses

instead a probability of 1 for the actual class of the example and 0 for all other classes,

as encoded by variables yi j. Let us develop cross entropy for binary classification (two

classes) and multi-class classification.

• Binary cross entropy for a training set of N instances is computed as follows:

LBCE =− 1
N

N∑
i=1

(yi · log(p̂i)+ (1− yi) · log(1− p̂i)) (2.38)

It is minimum, and equal to 0, when p̂i = yi for all i = 1, . . . , N.

• Categorical cross entropy is defined as:

LCCE =− 1
N

N∑
i=1

C∑
j=1

yi j · log(p̂i j) (2.39)

where C is the number of classes. As for binary cross entropy, categorical cross

entropy is minimum and equal to 0 when p̂i j = yi j for all i and j.

2.6.2.2.2 Jaccard loss: The Jaccard loss function [21], also known as the Intersection

over Union (IoU) loss, is commonly used in image segmentation tasks to quantify the

similarity between the predicted segmentation mask and the ground truth mask. It is

derived from the Jaccard Index (or IoU) and is designed to minimize the dissimilarity.
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First, we define Jaccard Index, which measures the similarity between two sets.

Mathematically, for two sets A and B, the Jaccard Index is given by:

J(A,B) =
|A∩B|
|A∪B| =

|A∩B|
|A|+ |B|− |A∩B| , (2.40)

where A (resp. B) is the set of positive pixels in the ground truth (resp. predicted)

mask. Assuming that our N instances are the image pixels, image segmentation can be

considered as a binary classification problem, where the N instances are the image pixels

and the goal is to predict for each pixel whether it belongs to the segmentation mask (1)

or not (0). Using our previous notations, the Jaccard Index (or IoU) can be derived as

follows:

J ( ŷ, y)=
∑N

i=1 ŷi · yi∑N
i=1 ŷi +∑N

i=1 yi −∑N
i=1 ŷi · yi

, (2.41)

where the sum is over all N image pixels. The numerator is the number of pixels belong-

ing to the mask (yi = 1) and that are predicted as positive ( ŷi = 1) and the denominator

is the number of pixels that are either positive or predicted as positive. Because it uses

the class predictions ŷi, the latter metrics can not be optimized by gradient descent. the

Jaccard Loss used for model training is defined as follows:

LJaccard = 1− J (p̂, y) , (2.42)

where the class predictions ŷi ∈ {0,1} are replaced in the Jaccard Index by the class

probability predictions p̂i ∈ [0,1].

2.6.2.2.3 Dice loss: Introduced first in [181], the dice loss is used for image segmen-

tation tasks for highly unbalanced datasets. It measures the area of overlap between

predicted regions and ground truth regions, excluding the background region. To com-

pute the dice loss, we first define the dice coefficient (using the same notations as in the

previous section):

DC( ŷ, ŷ)= 2 ·∑N
i=1 ŷi · yi∑N

i=1 ŷi +∑N
i=1 yi

. (2.43)

The dice coefficient is very close to the Jaccard Index of Equation 2.40. Interestingly, one

can show that it is also equivalent to the F1 score. Indeed, if we substitute TP, FP and

FN terms from Equations 2.26, 2.27 and 2.28 respectively, into Equation 2.43, then the

numerator becomes:

2 ·
N∑

i−1
ŷi · yi = 2 ·TP (2.44)
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and the denominator:
N∑

i=1
ŷi +

N∑
i=1

yi = TP +FP +TP +FN (2.45)

From Equations (2.44) and (2.45), the dice coefficient can thus be rewritten as:

DC( ŷ, y)= 2 ·TP
2 ·TP +FP +FN

, (2.46)

which is exactly the F1 score from Equation (2.35).

As for the Jaccard index, DC( ŷ, y) is not differentiable since it depends on class

predictions. The dice coefficient in Equation 2.43 is only for model assessment. The Dice

loss used for model training is written:

LDice = 1−DC(p̂, y), (2.47)

where again the class predictions ŷi ∈ {0,1} in the Dice Coefficient are replaced by the

class probability predictions p̂i ∈ [0,1].

2.6.2.2.4 Tversky loss: Tversky loss [161] generalizes the dice loss by introducing

two hyperparameters α and β (that should sum to 1) that allow to weight the “false

positives" and “false negatives" respectively. The Tversky coefficient is calculated as:

Tv( ŷ, y)= TP
TP +α ·FP +β ·FN

, (2.48)

where α and β are weighting parameters that control the relative importance of false

positives (FP) and false negatives (FN), respectively. When α > β, the Tversky index

places more emphasis on minimizing false positives, prioritizing sensitivity (recall).

When α<β, tversky index tries to minimize the effect of false negatives and prioritizing

precision or specificity. Dice coefficient is recovered by setting the α=β= 0.5. Tversky

loss is the complement of tversky index, where class predictions are substituted for class

probabilities:

Ltversky = 1−Tv(p̂, y). (2.49)

Similar to the dice loss, the tversky loss quantifies the distance between two segmentation

masks and is used in medical image segmentation tasks of highly imbalanced datasets

(i.e. small segmentation masks).

2.6.2.2.5 Focal loss: Focal loss [111] is a modified version of the standard cross-

entropy loss, designed to address the class imbalance problem often encountered in

dense prediction tasks such as object detection, semantic segmentation, and medical
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imaging. It focuses more on the hard-to-classify examples (e.g., minority classes or

misclassified samples) by dynamically scaling the loss contribution of easy-to-classify

(true negatives) examples. Focal loss is used as a loss function, both in binary and

multi-class classification tasks. Mathematically, focal loss is defined as follows (in binary

classification setting):

LFocal =− 1
N

N∑
i=1

(
yi ·α · (1− p̂i)γ · log(p̂i)+ (1− yi) · (1−α) · p̂γi log(1− p̂i)

)
, (2.50)

where α and γ are two hyperparameters. With respect to binary cross entropy, α (∈ [0,1])

is a weighting factor that allows to re-balance the classes, while γ (typically set to 2)

allows to give more weights to the hard-to-classify examples. For example, when yi = 1,

the first term is rescaled by (1− p̂i)γ, which increases as p̂i moves further away from 1.

2.6.2.2.6 Bi-tempered logistic loss: Bi-Tempered Logistic Loss [11] is another

extension of the standard cross-entropy loss, designed to improve robustness against

label noise (mislabeling) and outliers. Unlike standard cross-entropy, which assumes

data is perfectly labeled and reliable, Bi-Tempered Loss uses a tempered logarithmic

and tempered exponential framework, controlled by two parameters T1 and T2. These

parameters shape the loss to mitigate the impact of outliers and noisy labels. The Bi-

Tempered Logistic Loss introduces tempered alternatives to the exponential (e.g. softmax

function in the last layer) and logarithmic functions (e.g. cross entropy loss function),

softening their impact and offering robustness to scenarios where the presence of outliers

and mislabeling of data make the training unstable. We define tempered logarithm
function logT(x) as:

logT (x)=


x1−T−1
1−T if T ̸= 1,

log(x) if T = 1,
(2.51)

When T = 1, it reduces to natural logarithm log(x) and if T < 1, the logarithm func-

tion grows slowly, thereby limiting the influence of outliers. The tempered version of

exponential function expT(x) is defined as:

expT (x)=
[1+ (1−T) x]

1
1−[T]
+ if T ̸= 1,

exp(x) if T = 1,
(2.52)

where [z]+ =max(z,0) ensures non-negativity. Setting T = 1 reduces Equation (2.52) to

the standard exp(x) and for T > 1, it caps excessively large values, making predictions
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more stable. To calculate the Bi-tempered loss, firstly, a tempered softmax function is

used to compute the predicted probabilities p̂i j for instance i as:

p̂i j =
expT2

(
zi j

)∑C
k=1 expT2 (zik)

, (2.53)

where zi j are raw logits (model outputs) for instance i and class j and T2 controls how

the softmax function behaves. For T2 < 1, the output probabilities are flattened, reducing

overconfidence and for T2 > 1, the probabilities are sharpened (tail-heaviness), thus

keeping the loss value small while maintaining the decision boundary away from the

noisy examples. The loss, for N instances, is computed using the true labels yi and the

tempered logarithm as follows:

LBi−tempered =− 1
N

N∑
i=1

C∑
j=1

yi j · logT1

(
p̂i j

)
, (2.54)

where T1 controls the behavior of the logarithmic penalty. Tuning this term between

0 and 1 will ensure a finite amount of loss is incurred for each example even if they

are mislabeled. It down-weights extreme probabilities, thereby mitigating the impact of

noisy labels.
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3
LITERATURE REVIEW

In this chapter, we review various computer vision-based automatic and semi-automatic

image analysis methods and tools that are used in morphometric and phenotype studies

of the aquaculture and biomedical model fish. These methods and tools play a significant

role in improving research by automating various aspects of the bioimage analysis. This

chapter aims to provide exhaustive information about the current conventional and

AI-based image analysis methods and tools to researchers from biomedical, aquaculture

and computer science background. Our literature review was performed using searches

in PubMed, Scopus, Google Scholar, Web of Science, Bioimage Informatics Index (ht

tps://biii.eu, and Papers With Code (https://paperswithcode.com/ databases

(accessed before 2 August 2023), and thanks to our personal communications with

researchers in the field, including members of the BioMedAqu project.

Reference: This chapter is an adapted and updated version of the work we published

in "Navdeep Kumar, Raphaël Marée, Pierre Geurts, Marc Muller, "Recent Advances in
Bioimage Analysis Methods for Detecting Skeletal Deformities in Biomedical
and Aquaculture Fish Species", Biomolecules, 2023".

3.1 Introduction

Image analysis refers to the process of examining, interpreting, and extracting meaning-

ful information from digital images. It involves applying various algorithms, techniques,

and tools to understand and analyze the content, structure, and characteristics of an
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image [65]. Image analysis can encompass a wide range of tasks, including image seg-

mentation, object detection, feature extraction, pattern recognition, image classification,

and image enhancement [139]. By utilizing computer vision, machine learning, and

other computational methods, image analysis enables the extraction of quantitative

data, identification of patterns, and generation of insights from visual data. It finds

applications in numerous fields, such as medical imaging, satellite imagery, surveillance,

quality control, robotics, and scientific research, contributing to advancements in areas

such as healthcare, agriculture, manufacturing [141]. By analyzing images, valuable

information can be extracted, patterns can be identified, and important insights can be

gained, leading to advancements in various domains. Automatic image analysis refers to

the process of using AI based computer vision algorithms and techniques to analyze and

extract information from images without human intervention.

In biomedical research, images also commonly referred to as bioimages are generated

using sophisticated instruments such as x-ray machines or powerful microscopes to

extract and visualize biological information within two (x,y) or three (x,y,z) dimensional

coordinate spaces and four (x,y,z,t) dimensional dynamic data spaces [224]. Bioimages

can provide uniquely valuable information about tissue composition, morphology and

function, as well as quantitative descriptions of many fundamental biological processes.

Biomedical imaging enables the real-time visualization of biological processes within

living organisms, capturing alterations in receptor kinetics, molecular and cellular sig-

naling, as well as interactions and the transit of molecules across membranes. Predomi-

nantly non-invasive, bioimaging methods provide accurate monitoring of metabolites,

serving as valuable biomarkers for identifying, monitoring the progression and assessing

the response to treatment of various diseases [134, 149]. While it is frequently underesti-

mated, there exists another crucial element in imaging that could arguably be deemed

the most significant dimension —the wavelength (λ) of the imaging signal. Within this

pivotal dimension, specifically the electromagnetic spectrum, numerous specialized imag-

ing technologies have emerged, utilizing various signals across the electromagnetic

continuum [225]. Figure 3.1 shows commonly used bioimage modalities in biomedical

research.

Proceeded by Introduction, in Section 3.2, we first highlight the popular imaging

techniques used in acquiring fish bioimages. In the subsequent sections, we delve into

the image analysis techniques employed in biomedical (Section 3.3) and aquaculture

investigations (Section 3.4) to identify and categorize different types of bone-related

deformities in both model and food fish species. Table 3.1 focuses on user-friendly, AI-
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Figure 3.1: Commonly used bioimage modalities in biomedical research (source: [225])

based image analysis tools used in fish morphometric and phenotype research along with

their specifications.

3.2 Imaging Techniques Used in Fish Bioimages

As mentioned in Chapter 1, one of the main advantages of using zebrafish as a model

animal over other animals is its transparent body during early, external development

life stages, especially from 0 to 10 days dpf. The transparent body of the model fish larva

makes it easy for the biologists to see through its developing organs and bones during in-
vivo studies and also helps to produce bioimage datasets using various image acquisition

equipments [18, 82]. Given that image acquisition precedes image analysis, it is crucial

to employ suitable imaging methods and protocols to ensure effective and accurate image

analysis, particularly when conducting AI-based image analysis. Microscopic imaging

methods necessitate a meticulous pipeline to be adhered to, ensuring the prevention of

unwarranted variations in acquisition adjustments and parameters that might introduce

artifacts, capable of influencing the outcomes of image analysis algorithms [130, 168].

Beyond fundamental considerations like luminosity and focus control, special attention

to the fish’s positioning and the characteristics of the glass plates is also needed to

mitigate potential issues related to light refraction. This precautionary approach aims to

prevent problems like shadowed areas in the images that could disrupt the subsequent
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analysis [92]. Since most phenotype and morphometric studies in biomedical research

require capturing the fine-grained information at the sub-cellular level, microscopy

methods such as bright-field or fluorescence microscopy are prevalent compared to other

imaging approaches [4, 101]. More recently, confocal and light-sheet microscopy deliver

three-dimensional images [26], while Raman spectroscopy, Fourier-transform infrared

spectroscopy, or mass spectrometry imaging are able to reveal the spatial distribution of

individual (bio)molecules or classes of molecules [20, 45, 57, 77], resulting in ever more

high-content and demanding analysis requirements.

Apart from microscopy methods, X-ray radiography techniques are also popular in

biomedical and aquaculture research for analyzing the skeletal structures of the juvenile

and adult fish, including microCT imaging [16, 50, 128]. While microscopy imaging

methods are employed in the early life stages (embryonic and larval) of the model fish

due to its body’s optical clarity and small size, radiography methods are employed in the

later life stages to visualize hard tissues. The adult model fish serves as a distinct and

valuable resource for studying pathogenic and therapeutic aspects of adult human bone

diseases. This is attributed to the fact that certain functions such as bone turnover, repair,

degeneration, and metabolic responses are not fully mature in embryos [32]. Similarly, in

aquaculture research, radiography imaging methods are utilized for juvenile and adult

fish for several types of phenotype and morphometric studies [19, 48].

3.3 Fish bioimage Analysis in Biomedical Research

As outlined in Chapter 1, zebrafish or medaka is used as an animal model for many

biomedical research studies such as morphometry, phenotype classifications, toxicology

and drug discovery or to determine the causes of certain disease infections and pathogen

dissemination [179]. Such studies involve systematic procedure and protocols such as

rearing model fish in the laboratory with utmost care and supervision, preparing the

fish for image acquisition, acquiring of images, potentially with different modalities

(microscopy, radiography, fluorescence etc. as highlighted in section 3.2). In the following

subsections, we describe conventional/ML based and deep learning based computer vision

techniques for automatic or semi-automatic image analysis of fish bio-images in the

context of morphometric and phenotype studies.
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3.3.1 Conventional Machine Learning methods and algorithms

For small datasets, which are common in biomedical imaging, traditional ML methods,

as described in [202], were frequently used in morphometric studies of zebrafish larvae

before the advent of DL. In this paper authors addressed the problem of landmark

detection in bioimages of zebrafish larvae with a supervised learning approach called

extremely randomized trees (ET) algorithm [62]. In this work, each pixel is treated

as observation in a large training sample of pixels extracted either from the close

neighborhood of the landmark or some randomly chosen positions from the training

images. In the classification setting, a separate model is trained for each landmark to

predict whether each image pixel belongs to a landmark or not. In regression setting, also

a separate model is trained for each landmark in order to predict the Euclidean distance

of each pixel from the target landmark. The method is applied to multi-resolution input

features of the pixels at different scales and distances. Training has been done using an

ensemble of fully-grown decision trees without bootstrapping. The method is also tested

on other two publicly available biomedical datasets namely CEPHA [210] and DROSO

[173]. A similar supervised machine learning approach using extremely randomized

trees for automatically classifying brightfield images of wildtype zebrafish embryos

based on their defects has been discussed in [92]. In this work, authors described a

machine learning-based image classification algorithm that involves extracting dense

random subwindows from images, describing them using raw pixel values, and then

classifying these subwindows using ensembles of extremely randomized trees. Finally,

the classifications of these subwindows are combined to determine the classification

of the entire image. Specifically, the method begins by extracting 1000 subwindows of

random sizes and positions from each training image. The sizes of these subwindows

are controlled by parameters defining their minimum and maximum sizes relative to

the total image size. These subwindows are then resized to a fixed size of 32×32 pixels

and described by their raw pixel intensity values in a normalized red-green-blue (TRGB)

color space, where pixel value distributions are normalized within each subwindow by

channel (subtracting the mean and dividing by the standard deviation). Thereafter, an

image of the zebrafish embryo is classified according to its defects by joint exploitation of

these subwindows. The method can be employed in two modes: first, where subwindows

and, consequently, images are directly classified; or second, where image features, based

on the frequencies of subwindows in terminal nodes are classified using a linear SVM

method, also trained on the training set. Another approach to automatically classify

the absence or presence of malformation in the spine of the medakafish embryo (see in
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Figure 3.2: Different phenotypes in zebrafish tail. Larvae were imaged live under a
dissecting microscope under transmitted light illumination: (A) Downward curved tail;
(B) Upward curved tail; (C) Short tail; (D) Normal phenotype (source: [92]).

Figure 3.3) is discussed in [61]. In this work, a dataset of 2D high resolution microscopic

images of medakafish is used. Features extraction is performed firstly by segmenting

the embryo from the images. Since most of the malformations are characterize by

abnormal spin curvature, features such as dimensions, curvature angle is extracted.

These features are then fed to Random Forest Classifier (RFC) for training. Since feature

characterization depends upon the geometry of the skeleton representation of embryos,

authors admitted that their methods could not be applicable where tail of the deformed

embryo makes a hook shape (see subfigure ’f ’ in Figure 3.3), hence not universal to any

type of malformation or with high degree of severity in the deformed tail.

When dealing with image data, SVM and boosting techniques are considered alter-

native choices for classification problems. One such approach is described in [87] for

automatic quantification of zebrafish tail deformation. This method is based on estimat-

ing the tail curvature of the zebrafish by measuring the partial segments of tails using

refined medial representations (RMR), then subsequently fuse these segments in order

to get the complete tails. Two data sets containing 67 and 72 images of well plates with 5

fishes per well plates have been used. Authors tested four classifiers namely Naive Bayes,

SVM with linear kernel, SVM with radial basis function (RBF) kernel and Adaboost

classifier. They reported that SVM with RBF kernel achieved the highest accuracy i.e.

95% per well and 91% per fish. They also reported that some of the misclassifications

60



3.3. FISH BIOIMAGE ANALYSIS IN BIOMEDICAL RESEARCH

Figure 3.3: Images of 9 dpf Medaka alevins. a to c: healthy alevins shown in lateral view
in a, three-quarters view in b and dorsal view in c. d to f: alevins showing different types
of spine malformations, d being a major spine malformation (lateral view), e, a slight
“S-shaped” malformation (three quarter view) and f a hook-shaped alevin (dorsal view)
(source: [61]).

.

were due to debris in the micro-plate wells. In another approach, an ensemble based

machine learning method is used to classify compounds that evaluate the behavioral

phenotype assays and quantify the screen performance of a zebrafish [135]. A dataset

of two sets of compounds comprising 16 quality-controlled compounds and a reference

set of 648 known central nervous system ligands are chosen for training and random

forest classifier is trained to discriminate between compound induced phenotypes. Many

biological studies involve movement behavior analysis and its relevance to ecological

studies, toxicology research, or investigations into the effects of various environmental

factors on fish behavior. In [106], the authors used a decision tree approach to analyze

and categorize medaka fish movement patterns. These patterns describe the process of

collecting movement data from medaka fish and using this data to identify specific pat-

terns or behaviors. These patterns could include swimming speeds, directional changes,

or other locomotion-related traits that might be the indicators of some morphological

changes in fish body.

Supervised machine learning algorithms work well when the data is well annotated.
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In contrast, a conventional template matching based approaches do not need any labelling

of data and still able to perform well for object detection and segmentation tasks. One

such method for detecting and segmenting the head from the microscopy bio-images

of zebrafish and medaka is discussed in [192]. This work discusses the multi-template

matching approach, which involves using multiple templates (reference patterns) to

detect and locate objects of interest within microscopy images of zebrafish and medaka.

Template matching conducts the search by moving the template across the image,

essentially identifying objects with orientations similar to the template. To enhance the

capability for object detection, algorithm permits the input of multiple templates for the

search process. This includes the option to include additional perspectives and scales of

objects. Additionally, users can modify initial templates by selecting various flipping and

rotation options through the plugin interface. To monitor the physical activities and swim

pattern of a model fish larvae, statistical analysis and tracking of multiple zebrafish

larvae is also performed using gaussian mixture models [114, 213]. In [214], a method is

developed to detect and track multiple zebrafish larvae using adaptive gaussian mixture

models and Kuhn-Munkres algorithm. For detection and segmentation, an exponentially

decaying factor is used to update the model parameters recursively and detection period

of larvae is extended if no movement happens for a certain period of time in subsequent

frames. Identity assignment and association for each individual larvae are accomplished

in consecutive frames using Kuhn-Munkers algorithm [102].

3.3.2 Deep learning based analysis methods and algorithms

In recent years, considerable progress has been obtained in the field of AI development.

In particular, deep learning techniques are used for automatic image analysis in biomed-

ical sciences and are becoming the predominant choice in various morphometric and

phenotype studies [113, 182]. For single-cell phenotype assays that require gathering

complex data at the cellular or sub-cellular level to discriminate features linked to cellu-

lar shape, protein localization and intracellular movement, classifying phenotypes using

deep-learning methods have proven to be more effective than conventional approaches

[53, 191]. A similar deep learning based work is carried out in [51], where the goal is to

investigates the application of deep learning techniques for automating the process of

cell detection in wide-field microscopy images of zebrafish. The research explores various

CNN architectures and training methodologies to optimize performance for identifying

cells in complex biological images, aiding the biologists for studying cellular processes

and organisms.
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The diverse set of observable traits or phenotypes that researchers monitor during em-

bryonic development include morphological changes, cellular behaviors, or other features.

These different zebrafish larvae phenotypes are useful for studying the environmental

influence on embryo development. The limited availability of annotated data makes it

challenging to classify these phenotype traits, as the differences between them can be

subtle and ambiguous. In the work of [169], the authors device a two-tier deep learning

based pipeline where the CNN model with compressed separable convolution kernels is

adopted to address the overfitting issue caused by insufficient training data. Authors

report an averaged accuracy of 90% for all the phenotypes and maximum accuracy of

100% for some phenotypes (e.g., dead and chorion), thereby improving the accuracy to

22% against the baseline in [92]. This study offers an effective deep-learning solution

for classifying difficult zebrafish larvae phenotypes based on very limited training data.

A similar problem of phenotype classification of zebrafish larvae in high-throughput

screening using end-to-end deep-learning approach is described in [88]. In this study,

the authors tackle the challenge of categorizing morphological alterations in zebrafish

found in multi-fish wells, which often have fish overlapping with one another. Assessing

the stage, either as a component of a mutant phenotype or induced by treatment, is

essential for analyzing morphological changes and developmental delays in zebrafish

embryos within a specific time frame. However, the detection and quantification of these

delays is often achieved through manual observation, which is both time-consuming

and subjective. The work in [93], presents a method for automatically determining the

developmental stages of zebrafish embryos using deep learning techniques. In this study,

the authors introduce KimmelNet, a deep learning-based pretrained model that is a

simplified version of AlexNet [100], that can analyze 2D bright-field microscopy images

and accurately predict the age of zebrafish embryos. By leveraging a convolutional neural

network (CNN) architecture, the model achieves high accuracy in staging embryos, which

traditionally requires manual and time-consuming analysis by experts. The approach has

the potential to streamline research in developmental biology, improving the efficiency

and consistency of embryo staging.

An advantage of employing deep learning based CNNs is the ability to transfer

learned features from one type of task to another (see Section 2.5 about transfer learning),

which proves beneficial in situations where there is a shortage of well-annotated data.

In [199], a pretrained convolutional neural network (CNN) called VGG-16 [171] is fine-

tuned for the task of automated classification of various phenotypical changes induced by

toxic substance in zebrafish embryos. During fine tuning, initial layers are freezed and
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later layers of the VGG-16 are modified to classify the the 11 observable phenotype traits

of zebrafish larvae from the dataset produced by [92]. Environmental and genetic factors

that influences the process of embryo development, also encourage the biologists to

study the zebrafish eggs in their experiments. Due to the high throughput of microscopic

imaging, automated analysis of zebrafish egg microscopic images is highly demanded.

However, conventional ML algorithms for zebrafish egg image analysis suffer from

the problems of small imbalanced training dataset and subtle inter-class differences.

To handle these bottlenecks, a transfer learning with data augmentation based deep

learning approach is proposed in [170]. In this work, VGG-16, pretrained on imagenet is

used as backbone for the task of automatic classification of weather the egg is fertilized

or unfertilized. This study expands the application of deep transfer learning techniques

to classify zebrafish egg phenotypes, assisting the biologists in automated analysis of

bright-field microscopic images.

As pointed out in the works of [99, 160, 201], genetic inheritance is considered as

important factor when studying bone related abnormalities in human beings. Genetic

skeletal disorders (GSDs) represent a varied and complex group of rare bone growth

abnormalities resulting from disturbances in skeletal development processes, growth

pathways, and homeostasis. These disruptions stem from mutations in various genes

essential for skeletal system development [200]. Gene editing is one of the effective meth-

ods applied to model animals to see the effects of modified genes on the skeletal disorders

of the model animal. In [136], a U-Net based image segmentation protocol is proposed to

quantify phenotypes of altered renal, neural and craniofacial development in Xenopus
mutant zebrafish embryos in comparison with normal variability using images of various

modalities. These algorithms increase the sensitivity and throughput of evaluating devel-

opmental malformations caused by chemical or genetic disruption. Furthermore, authors

also provide a library of pre-trained networks and detailed instructions for applying

deep learning to the reader’s own datasets. Segmentation techniques are needed to study

early heart development in model animals by measuring changes in heart chamber

volume. Accurate segmentation of the complex shape of the ventricles after trabeculation

(transformation from early sponge like structure to smooth and solid shape) begins is

essential for analyzing heart function. However the time-consuming task of manually

segmenting the light-sheet fluorescent microscopy (LSFM) bioimages is infeasible when

processing high axial resolution data, as the number of images required is very large.

Recently, deep learning-based bioimage segmentation methods have shown accurate

segmentation of zebrafish hearts during the early stages of ventricular development.
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[8, 228].

3.4 Fish image analysis in aquaculture

Aquaculture industry provide ample food for human consumption and due to increasing

demand, it is facing pressure from the customers to increase the food supply. A decade ago,

fish farmers used manual methods for routine tasks like sorting fish by size, identifying

diseased fish, removing deformed or dead fish from healthy ones, and counting the

number of fish. These manual methods require significant technical effort and time, due

to which fish farmers were experiencing great challenges to run a farm with adequate

or optimal supply of the fish food. Nowadays, computer vision based image processing

techniques are used in aquaculture industries to overcome the challenges of manual and

laborious procedure. Although new in this field, computer vision based image analysis

methods are helping the fish farmers by speeding up their routinely tasks and at the

same time assisting the technicians and researchers in the aquaculture industry to

identifying and classifying the fish disorders/deformities.

3.4.1 Conventional image analysis methods and algorithms

To produce high quality fish, selective breeding programs are one such effort in which

genetically and phenotypically superior fish breeds are selected for the reproduction.

The most effective approach in the selective breeding involves the consistent collection

of individualized phenotype measurements throughout an organism’s life cycle [63].

Traditional manual methods for assessing fish growth are typically time-consuming,

expensive, and stressful for the animals. Even with the use of anesthesia and proper

husbandry practices, measurement remains a stressful event. For both cost and ethical

reasons, it should either be non-intrusive (i.e., without removing the fish from the

water) or performed as infrequently as possible [89]. In the work of [198], a study

has been conducted to emphasize the use of automated image analysis techniques for

understanding the individualized growth and population structure of Chinook salmon.

In the context of image analysis part, the fish’s contour is extracted, and 11 reference

points (landmarks) are placed on the contour to measure the body side area, fork length,

and body height of the fish. Initially the image analysis is performed using OpenCV’s

conventional thesholding method but subsequently replaced by MXNet-based [39] deep

learning models.
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Individual fish identification is crucial when it comes to tracking the fish fish be-

haviour. Since fishes are grown and reared in populations, individual fish tracking

become a challenging task due to overlapping of fishes in the tank. In [231], authors

implemented a conventional computer vision based method to segment the individual

fish in the tank. In the method, firstly the shape factor is employed to identify image

overlaps. Subsequently, corner points are extracted using the curvature scale space algo-

rithm, and a skeleton is generated using the improved Zhang-Suen thinning algorithm.

Finally, the method identifies intersecting points and effectively segments the overlapped

regions within the images. Authors also compared the method with other traditional

computer vision based methods such as watershed and Liu’s method and reported better

results. Another similar traditional computer vision based image processing technique is

employed in [46] to automatically measure the length of tilapia fish. In this work, image

segmentation is performed using image processing based morphological operation such

as dilation and erosion is applied after converting the image into binary image using

thresholding method.

Aquaculturists (or fish farmers) perform fish quality checks at regular intervals

in their fish farms. Various factors such as treatment, handling, storage, exposure to

pollutants, and climate variations, significantly influence fish quality. Distinctions in

quality are observed between fish raised in unpolluted freshwater environments and

those subjected to polluted or pesticide-affected waters. Pesticides pose a substantial risk

to both fish quality and human health. Detecting and identifying pesticide contamination

in fish pose a great challenge while using traditional intrusive checks that can lead

to high stress level in the fish. In the work of [167], a non-intrusive computer vision

based approach is applied to classify whether the fish is contaminated with pollutants or

healthy for human consumption. In this approach, pupil and eye of the fish are selected as

region-of-interest (ROI) to extract the discriminative features for the classification. First

the ROI is segmented using traditional thresholding methods. Then first order statistical

analysis is performed to extract features such as mean, standard deviation and variance

of the ‘S’ channel of HSV colour space. On these features, different types of classifiers

such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bays

Classifier and Random Forest (RF) are tested. Among all the classifers, authors reported

better results with RF classifier. Object identification or locating the region of interest

(ROI) from a digital image is generally performed using computer vision based image

segmentation methods. In [221], an improved k-means clustering algorithms is applied

for the extraction of contours of the fish followed by morphological operations such as
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dilation, erosion, opening, closing to separate the fish boundaries from the background.

The authors reported that algorithm offers improvements over the traditional K-means

approach and focuses on effectively separating fish from their background in images,

which is crucial for various applications in aquatic research and fisheries management.

Certain machine learning based image segmentation method are useful in fish counting

as well. In the work of [229] the study involves the segmentation of fish-connected regions

in top-view fish images, obtained through morphological image progressing operation.

Subsequently, four types of image features are extracted from each of these fish-connected

regions while removing the redundant features with principal component analysis (PCA).

Fish counting is then executed by applying image density grading using threshold

method based on the area of the connected area. This approach divides fish images into

several sub-images, each containing connected areas, and performs density grading on

each sub-image. This helps rectify the imbalance in the dataset of fish-connected area

sub-images, resulting in more precise and consistent fish counting. Finally fish counting

is performed using a fish-number prediction model, based on BPNN (Backpropagation

Neural Network) for the connected-area dataset at various density levels. The trained

model was then used to determine the fish count within each connected-area image. The

local counts is determine by combining each fish-connected area image.

Identification of disease in the farmed fish is a challenging task. Manual invasive

method involves picking the fish from the water and inspecting it by the expert for

the potential disease identification. These intrusive methods are not only tedious and

time consuming and require technical expertise but also put the fish under stressful

conditions. In [7] an ML based method is devised to automatically diagnose and identify

infection in the salmon fish. The approach is divided into two main components; 1. In the

initial phase, image pre-processing techniques is employed to reduce noise and enhance

image quality, 2. the second phase involves extracting relevant features to facilitate the

classification of diseases using the Support Vector Machine (SVM) algorithm with kernel

function. In [123], an artificial neural network (ANN) is used after feature extraction with

the FAST (Features from Accelerated Segment Test) algorithm. The proposed method

begins with image preprocessing, where images are converted to grayscale, contrast

is enhanced, noise is removed, and segmentation is performed. Next, discriminative

features are extracted using the FAST algorithm, and Principal Component Analysis

(PCA) is applied to reduce dimensionality for improved prediction. Finally, an ANN

classifier is employed on these features to identify diseases in the fish images.
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3.4.2 Deep learning based methods and algorithms

Conventional ML methods in the aquaculture research (as outlined in Section 3.4.1) are

being used for more than a decade, in which manually crafted features require a large

number of human effort and introduce additional uncertainty factors. Recently computer

vision based deep learning methods are becoming popular due its performance and easy

to use traits. Deep learning methods have the capability to automatically discriminate

both high and low level features from dataset itself, allowing for the detection of subtle

fish characteristics within images. It remains resilient against variations in lighting,

positioning, and orientation, rendering it well-suited for computer vision modeling [220].

Although new to aquaculture, CNNs are now getting helpful in various aquaculture

activities such as measuring the length of the fish, landmark detection, fish body part

segmentation.

In [194], a deep learning based method is proposed to automatically measure the

length and weight of Meagre fish in a non-invasive manner. In this work, fish stereo

images are first fed into a deep learning based ‘You Look Only Once’ (YOLO-v4) [152]

object detector to draw the bounding boxes over each individual fish. Subsequently, each

bounding box is utilized to extract the individual fish image, which is then processed

through pre-trained ResNet-101, a CNN optimized for image recognition. The last layer

of ResNet-101 is modified to detect two landmark positions on the fish namely the

snout tip and the base of the middle caudal rays. The landmark detection algorithm

measures the fish length in pixels by counting the distance between the two landmark

points. Finally, the pixel-based length was converted to centimeters using translation

information derived from the calibration phase involving chessboard target images.

Similar approach using advanced version of YOLO (YOLO-v5) is applied in [125] for the

measurement of the fish length combined with stereo-BRUVS calibration method, which

uses calibration cubes to ensure precision within a few millimetres in calculated lengths.

YOLO object detection combined with DeepSORT algorithm [217] is used for the fish

tracking and behaviour analysis in [83]. In this work YOLO-v5 is used to detect fish in

the image and drawing the bounding box over it, while DeepSORT algorithm is used

for fish tracking. In DeepSORT algorithm, first the previously predicted trajectory is

estimated using Kalman filter module then Hungarian algorithm is applied to assess the

level of correspondence between the current frame’s detected result and the predicted

track. Subsequently, any inaccurate tracks are removed to finalize fish tracking, and the

accurate tracks are updated through the Kalman Filter’s update module.

Selective breeding aimed at enhancing swimming abilities in fish might lead to
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morphological changes of their offspring. These changes, while benefiting industrial

productivity, also have implications for the welfare of the animals involved. To measure

the morphological changes in the body of the fish, shape analysis is performed by

placing important landmarks on the fish body in the images. Manually marking the

landmark points is laborious and requires technical expertise. In order to determine 10

morphological traits correlated with swimming performance in ‘juvenile large yellow

croaker’, a deep learning based CNN called high-resolution network (HRNet) is proposed

in [227] to automatically locate the anatomical landmarks points in bioimages of fish. To

get the scaling relationship from the pixel distance on the image to the physical distance

in the metric system, pixel length of the reference solid line on the image is detected and

divided it by the physical distance of the reference solid line of 10cm. In this paper, the

threshold segmentation method is used to detect the pixel length of the reference solid

line. First, RGB image is converted into gray-scale. Then, an appropriate threshold is set

to binarize the grays-cale image to segment the reference solid line. Finally, pixel length

of the reference solid line is computed after segmentation.

As discussed previously, fish disease is a prime concern that lead to increasing

deaths in the fishes and ultimately the potential reason for the economic loss. In the

work of [209], authors compared several CNN architectures such as AlexNet, ResNet18,

ResNet50, ResNet101 for the classification of fish diseases.

3.5 Fish bioimage analysis tools

After a comprehensive literature review of various conventional, machine learning (ML),

and deep learning (DL) methods used in biomedical and aquaculture research, this

section focuses on bioimage analysis tools that feature interactive user interfaces and

integrate ML or DL models as software packages.

3.5.1 EmbryoNet

EmbryoNet [30] is a deep learning based software tool to identify the phenotype de-

fects in the embryonic stage of the zebrafish. The aim of this approach is to bridge

the gap between observed phenotypic traits in embryos and the underlying molecular

signaling pathways responsible for those traits. These diverse set of observable traits

or phenotypes that researchers monitor during embryonic development include mor-

phological changes, cellular behaviors, or other features. In this work, a deep learning

69



CHAPTER 3. LITERATURE REVIEW

based convolutional neural network (CNN) called ’EmbryoNet’ is trained to classify the

phenotypic defects caused by loss of function of the seven major signaling pathways

relevant for vertebrate development using zebrafish signaling mutants combined with

a model of time-dependent developmental trajectories (see Figure 3.4). EmbryoNet is

a modified version of ‘ResNet18’ in which time stamp channel as additional input di-

mension is added, thus feeding four instead of three channels, and by replacing the last

classification layer with the current classification layer. EmbryoNet is trained on more

than 2 million images, comprising thousands of trajectories of normally developing and

signaling-defective zebrafish embryos. The Authors also apply the model to other fish

species such as medaka (Oryzias latipes) and three-spined stickleback (Gasterosteus

aculeatus) to test the generalizability of the approach. The approach enhances the ability

to predict developmental outcomes and understand the mechanisms driving embryoge-

nesis, making it a valuable resource for developmental biology and genetics research.

Figure 3.4: Schematic representation of 7 types of embryo phenotypes (A). Classification
using ‘EmbryoNet’ at different stages: at sphere stage (B) and at 24 dpf (C). (source: [30])

3.5.2 QuantiFish

Quantifish [179] is a software tool, designed to measure and analyze the spread of patho-

logical conditions in zebrafish larvae. It is designed to quantify pathogen or bacterial load
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(infection) by measuring the spatial distribution of bacterial foci, specifically calculating

the number of bacteria per macrophage in zebrafish larvae. This represents the disease

severity by measuring four parameters, namely the number of fluorescent bacterial foci

that are responsible for 50% of the total fluorescence, the number of predefined grid zones

that contain the centre point of a bacterial focus, third the area of a polygon containing

the centre points of all foci and the maximum distance between any two foci. The authors

in the paper stated that the total bacterial load (integrated fluorescence intensity) and

the numbers of separate foci of bacteria detected using QuantiFish were significantly

higher in fish with more widely disseminated infection. The approach allows researchers

to systematically study disease dissemination, aiding in the understanding of disease

mechanisms and the evaluation of potential treatments. The graphical user interface

(GUI) of ‘QuantiFish’ software is depicted in Figure 3.5

Figure 3.5: Depiction of GUI of‘QuantiFish’ software tool for automated quantification of
fluorescent intensity in microscopy images of zebrafish. (source: [179])
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3.5.3 ZF-AutoML

ZF-AutoML [164] is a tool that is devised to detect macrophages anomalies from fluorescence-

labelled zebrafish. The tool is based on Google’s AutoML cloud platform [23] which is

used to train and evaluate custom machine learning models for detection and classifica-

tion tasks. The method automates the process of identifying irregularities in zebrafish

images, making it accessible even to users with minimal machine learning expertise. ZF-

AutoML is developed for the classification of normal phenotype (control) and abnormal

phenotypes (sorafenib-treated and wounded fishes for the angiogenesis and macrophage

experiments, respectively). The tool streamlines classification task by leveraging Google’s

AutoMl based advanced ML algorithms to analyze fluorescence patterns, enhancing the

efficiency and accuracy of identifying developmental or pathological abnormalities. This

tool is particularly useful for researchers in developmental biology and toxicology, en-

abling high-throughput and reliable analysis of zebrafish models. Figure 3.6 shows the

schematic representation of ZF-AutoML machine learning process.

Figure 3.6: (a) Schematic representation of AutoML machine learning process. (b)
Images of Tg (kdrl:EGFP) a zebrafish strain at 96 h-post fertilization (dpf) with or
without sorafenib (0.5 µM). Sorafenib treatment was started at 24 hpf. The green color
indicates vasculature. (source: [164])
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3.5.4 ZFTool

ZFTool [33] is a software tool developed for automating the process of quantifying the

growth and progression of cancer cell masses within zebrafish embryos. The tool enables

researchers to track and measure tumor development over time with high precision,

facilitating the study of cancer progression in a non-invasive manner. The method starts

by injecting cancerous cells (HTC116 cell line) into the embryo’s yolk, followed by a

72-hour incubation period to monitor cell proliferation. Each embryo is photographed at

two time points: immediately after injection (0 hours post-injection, hpi) and after 72

hours (72 hpi). The images obtained were then subjected to analysis using the ZFTool

software, with a focus on the green channel image. The aim of ZFTool is to quantifying

cancer mass evolution over time by measuring the number and mean value of GFP

(green fluorescent protein) pixels. This measurement is conducted by comparing images

taken at 0 hpi with those taken at 24, 48, or 72 hpi, depending on the specific experiment.

ZFTool removes the zebrafish autofluorescence through the computation of the area

with varying intensity thresholds. It does so by automatically calculating the auto-

fluorescence threshold for both the initial (0 hpi) and subsequent time points (24, 48,

or 72 hpi) and establishing a baseline threshold to eliminate auto-fluorescence from

zebrafish embryos. It quantifies the area occupied by marked cells (GFP) and their

intensity through threshold-based segmentation, providing a measure of proliferation

known as the proliferation index, which reflects the evolution of cancer mass in zebrafish.

Figure 3.7 show the segmentation over a sample image.

Figure 3.7: Depiction of segmentation over a characteristic image (zebrafish at 0 hpi
and 72 hpi) where the GFP value and the contour image are overlaid in green and red,
respectively. The white rectangle is the region of interest (source: [33])
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3.5.5 ZF-Mapper

ZF-Mapper [219] is a method to quantify the fluorescent intensities of the pixels in the

microscopic zebrafish images. The authors tested it with macrophage-specific enhanced

green fluorescent protein called EGFP and cancer cell xenograft, implanted in the body

of the zebrafish embryos. In the first experiment, the total fluorescence of zebrafish

expressing macrophage-specific EGPF at the developmental stage of 2-6 dpf as shown

in Figure 3.8 is quantified and results are compared with conventional softwares such

as ImageJ for its reliability. In the second experiment, the cancer xenograft fluorescent

images of the zebrafish implanted with melanoma cancer cells was analysed. In this

experiment, they found that the intensity of the fluorescent regions in the body of

zebrafish has increased from day 2 to day 6 which highlights the increment in the

number of cancer cells in the body of zebrafish over the period of time. ZF-Mapper

is designed to be easy to use, allowing for the efficient processing and quantification

of fluorescence data without the need for complex or expensive software. The tool is

particularly useful for studies involving gene expression, protein localization, and other

fluorescence-based experiments in zebrafish analysis.

3.5.6 ZebraZoom

ZebraZoom [131] is a method for automatically analyzing zebrafish behavior by tracking

their movement within a well and identifying the maneuvers performed during episodic

movements. In this work, the authors categorized these maneuvers into three types:

slow forward swim, routine turn, and escape. They modeled the sequence of maneuvers

as a Markov chain between the two events. To track the core positions of the larvae,

the background image is first subtracted to create binary masks, and then the image is

eroded to determine the core and head direction of the larvae. A bending angle at the tip

is defined that separates the body axis from the line connecting the core and the tip of

the tail (see part C in Figure 3.9). For categorization, multiclass Support Vector Classifier

(SVC) with linear kernel was chosen. To track the full body position over multiple time

scale, the core that includes the head area and swim bladder and tail positions are

measured simultaneously for multiple larvae and global parameters such as tail bending

angle, mid-line position of tail and position of its core and head axis are extracted. These

global parameters along with some other local parameters such as amplitude of the

tail bending angle, instantaneous frequency over time is calculated. Figure 3.9 shows

larvae’s tail and detection of movements based on the tail-bending angle. ZebraZoom
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Figure 3.8: Typical images of tdTomato-labeled A375 xenograft zebrafish from day 1 to
day 6 after cell implantation. (source: [219])

allows researchers to efficiently monitor and categorize various behavioral patterns in

zebrafish, providing a streamlined approach to studying their activity and responses.

The software is capable of handling large datasets, making it ideal for research that

requires extensive behavioral analysis. By automating the process, ZebraZoom reduces

the need for manual observation, increases accuracy, and enhances the ability to conduct

large-scale behavioral studies in zebrafish models.

3.5.7 FishInspector

FishInspector [190] was developed to quantify the morphometric defects during develop-

mental toxicity screening in zebrafish embryos. It can analyze large numbers of embryos

to detect and quantify morphological abnormalities, which are indicative of develop-

mental toxicity. In this approach morphometric features are extracted and organized in

hierarchical manner using length and surface areas from contour information of different

parts of the zebrafish candidate. In order to detect certain features, the information
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Figure 3.9: Image processing for tracking of larvae’s core positions using tail-bending
angle. (A) Tracking of the larvae’s core positions. (B). Identifying the tip of the tail. (C)
Definition of the tail-bending angle (α) separating the body axis (pink) and the line
connecting the core and the tip of the tail (green). (D) Example of the tail-bending angle
over time with detection of movements indicated by the pink line. (source: [131])

about previously detected features should also be included. Finally, the detected features

are the boundary coordinates of the contours of the objects such eyes, head, swim bladder

etc. of embryos. Since the detection of some specific features are dependent upon the

other features, improper detection of one feature may cause a cascading effect upon

other features which may adversely affect the performance of the software tool. The

feature detection algorithms employed in the software are based on contour information

which is semi-automatic and no self learning algorithm has been used. Authors also

specified that, a jaw morphology analysis cannot be performed automatically using this

tool hence subject to manual annotation and correction by the user. The system allows

for high-throughput screening, making it a valuable tool for environmental and pharma-

ceutical research, where understanding the developmental impact of various substances

is crucial. Figure 3.10 shows the screenshot of FishInspector software showing an image

with detected regions of interest (ROIs) for each feature.

3.5.8 Stytra

Stytra [178] is an image analysis tool that enables real-time tracking and quantifica-

tion of zebrafish behavioral traits, including position, orientation, and eye motion. The

76



3.5. FISH BIOIMAGE ANALYSIS TOOLS

Figure 3.10: Screenshot of the FishInspector graphical user interface showing an image
with detected regions of interest (ROIs) for each feature. (source: [190])

experiments utilize both freely swimming and head-restrained zebrafish larvae to ex-

amine their behavioral patterns in well-plates. Images or video frames are captured

using various supported camera models, such as XIMEA, AVT, and those compatible

with OpenCV. For behavior tracking of head restrained fish, curvature of the tail in

current position is compared with previous one and tail angle, position and orientation

is recorded. For Eye tracking, first elliptical regions of eye balls are segmented and

the absolute angle of the major axis of the ellipse is measured as eye angle. For freely

swimming fish tracking, the center of mass of the three objects namely two eyes and one

swim bladder is extracted from background and taken as center of the fish head. The

direction of the tail is measured by searching for the point with largest difference from

the background on a circle of half tail radius. The system is highly customizable and

user-friendly, making it accessible for a wide range of behavioral studies. By automating

complex experimental setups, Stytra enhances the efficiency and accuracy of behavioral

research, facilitating advanced studies in neuroscience and behavior. Figure 3.11 shows

the screenshot of the user interface of Stytra software tool.
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Figure 3.11: Stytra supports a range of behavioral paradigms, offering users a consistent
interface for experiment control. The top toolbar manages the experiment’s execution,
while a camera panel displays tracking results overlaid on the camera image. A cali-
bration panel allows for easy positioning and calibration of the stimulus display, and
a monitoring panel provides real-time plots of user-selected experimental variables.
(source: [178])

3.5.9 ZebrafishMiner

ZebrafishMiner [153] is an open-source software designed for the interactive analysis

of domain-specific fluorescence in zebrafish. Developed as an extension package for the

MATLAB Toolbox SciXMiner [129], it provides an image processing pipeline for the

automatic quantification of fluorescence in zebrafish embryos and larvae of different ages.

The software categorizes fluorescence data into user-defined domains such as tissue,

notochord, skin, eye, brain, yolk, and others. A brightfield and a reference fluorescent

channel consisting of multiple slices for segmentation is used to assign fluorescent signal.

Figure 3.12 shows screenshot of the "Tissue manager“ to colour a tissue in embryo

images. For automatic fluorescent evaluation, embryos are detected in brightfield and

fluorescent images and compared with reference embryos with known domains. This

tool allows researchers to efficiently evaluate and quantify domain-specific fluorescence,

facilitating the study of gene expression and protein localization within zebrafish models.
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ZebrafishMiner offers a user-friendly interface and advanced visualization features,

making it easier to interpret fluorescence data and gain insights into developmental

and genetic processes. The software aims to enhance the accuracy and efficiency of

fluorescence-based experiments in zebrafish research.

Figure 3.12: Tissue Manager (source: [153])

3.5.10 CNNTracker

CNNTracker [230] presents a method for tracking zebrafish using convolutional neural

networks (CNNs). The study develops a CNN-based approach to accurately track the

movement and behavior of zebrafish in video recordings. It tracks the individual fish in a

group of multiple fishes and maintains the correct identities of each fish after crossing

one another or if long time occlusion occurs. In this approach, the head feature maps of

each individual fish are first extracted (see Figure 3.13), and head point pairs between

successive frames are matched. Fish trajectories are then determined by linking these

corresponding head point pairs through inter-frame feature mapping. A collection of

head point pairs is created, where the first point is from the previous frame and the
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second point is from the current frame, resulting in trajectory segments for each fish. The

CNN network is trained using these trajectory segments, allowing it to map and identify

individual fish, as each segment corresponds to a unique fish identity. By leveraging deep

learning techniques, the method improves tracking precision and robustness compared

to traditional tracking methods. This advancement enhances the ability to analyze

zebrafish behavior and movement patterns, providing valuable insights for research in

developmental biology, neuroscience, and other fields where zebrafish are used as model

organisms.

Figure 3.13: The centre of the red square is the detected fish head then image patch
is extracted with the head point as the centre of the dashed red line. Head patch is
transformed into a binary bitmap and the coordinates of the white pixels in the binary
image are extracted. Orientation of the fish head is obtained and rotated to 0 degree to
get the final fish head feature map. (source: [230])
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3.5.11 DeepLabCut

DeepLabCut [127] is a generic software tool, designed to automatically detect user-

defined anatomical landmarks from the video frames of different animals. Its core work-

ing mechanism relies on deep learning based pre-trained CNNs, particularly ‘ResNet’

which acts as the backbone of many CNNs implemented in this tool for tracking the

body of the animal in the video. DeepLabCut is particularly useful in behavioral studies

across various fields, including neuroscience, biomechanics, and ethology, where accurate

and high-throughput tracking of animal movements is essential. One of its strengths

is its flexibility, allowing users to train models for tracking different species and body

parts, as well as its relatively user-friendly interface compared to traditional tracking

softwares. Although, DeepLabCut tool was initially invented for markerless pose estima-

tion in mammals, in [184], the authors explored the possibility of adopting this tool for

conducting markerless cardiac physiology assessment in an important aquatic toxicology

model of zebrafish. In this work, a high-definition videography of heartbeat data is

recorded at a frame rate of 30 frames-per-second (FPS). Next, 20 videos from different

individuals are used to perform convolutional neural network training by labeling the

heart chamber (ventricle) with eight landmarks. Using ResNet-152, a neural network

with 152 convolutional layers with 500,000 iterations, is trained that can track the heart

chamber in a real-time manner. Figure 3.14 shows the working of DeepLabCut tool for

the application of cardiac physiology assessment in zebrafish.

3.5.12 Icy

Icy [47] is an open-source image analysis software platform that boasts a range of key

features designed to facilitate scientific research and bioimaging. It supports multidi-

mensional images, including 2D, 3D, and time-series data, making it ideal for analyzing

complex biological samples. Its modular plugin architecture allows users to extend its

capabilities with custom or existing plugins for specific analyses. Icy includes a variety

of built-in image processing tools for filtering, segmentation, feature extraction, and

quantification, complemented by powerful visualization tools that enable interactive dis-

plays of data. The user-friendly graphical interface ensures accessibility for researchers,

even those with limited programming skills, while scripting capabilities facilitate batch

processing for large-scale studies. Additionally, Icy is compatible with various file formats

commonly used in microscopy, further enhancing its integration into existing workflows.

The active community surrounding Icy provides valuable support through documenta-
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Figure 3.14: The workflow, used to detect and label the heart chamber of zebrafish. On
top, the video of the animal model zebrafish is recorded for cardiovascular assessment.
Up to 20 videos of a heart beating with a duration of 1 min are collected. The bottom
section describes how DeepLabCut performs the training process for dataset and video
analysis, resulting in a labeled zebrafish ventricle heart chamber. (source: [184])

tion, tutorials, and forums, making it a versatile choice for image analysis across multiple

scientific disciplines. Figure 3.15 shows the applications of Icy software tool to zebrafish

research.

3.5.13 Cytomine

Cytomine [124] is a generic open source, web-based software for collaborative analysis of

multi-gigapixel imaging data. This software is designed to bring researchers from various

fields on one platform to analyse their imaging data in a collaborative and distributive

manner. It uses web development methodologies and machine learning in order to readily

organize, explore, share, and analyze (semantically and quantitatively) multi-gigapixel

imaging data over the internet. Its web based user interface allows researchers, students,

collaborators to create, organize, visualize, and edit all data and share projects through

82



3.6. CHALLENGES IN BIOIMAGE ANALYSIS TASKS

Figure 3.15: Applications of Icy tool in zebrafish research. (A) Quantitative analysis of
fluorescence lifetime with the Icy plugin ROI intensity evolution. (B) Unwrapping the
aorta tube with the TubeSkinner plugin (source: Icy)

authentication. It has all the advanced image processing tools to analyse, annotate and

manipulate multi gigapixels images from multiple sources. It includes designing efficient

workflows and creating advanced algorithms, such as deep learning and tree-based

machine learning models, to support content-based image retrieval, object detection,

recognition, and segmentation in extensive multimodal datasets. Emphasis is placed

on reproducible benchmarking of these algorithms across realistic datasets, particu-

larly within the biomedical domain, with a focus on digital pathology and multimodal

microscopy. Figure 3.16 shows the zebrafish imaging modalities handled by Cytomine.

3.6 Challenges in bioimage analysis tasks

The development and application of machine learning (ML) and deep learning (DL) mod-

els for bioimage analysis in morphometric studies encounter various complex challenges,

especially when focused on fish species in aquaculture and biomedical research. These
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Figure 3.16: Zebrafish imaging screen used in Cytomine for analysis
(source:research.cytomine.be)

challenges can be broadly classified into several categories, including issues related

to image acquisition, data quality, annotation subjectivity, diversity of modalities, and

the availability of common image analysis platforms. Some of the these challenges are

outlined in the sections blow:

3.6.1 Image acquisition complexity

Bioimage data in aquaculture and biomedical studies often come from diverse imaging

techniques, such as microscopy and radiography, which vary significantly in resolution,

lighting, contrast, and noise levels. These variations pose a significant challenge for

ML and DL models, which typically require consistent, high-quality data to perform

optimally. Noise and variability introduced during image capture, especially under

non-standardized conditions, can hinder model accuracy and lead to inconsistent results.

3.6.2 Lack of annotated bioimages

The limited availability of well-annotated bioimage data poses a significant challenge

when developing image analysis tools or methods for biomedical research, which rely on

annotated datasets for training, tuning, and validation. While natural image datasets are

readily accessible on various platforms as open-source resources, bioimage datasets are
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typically obtained using costly instruments under controlled laboratory conditions, mak-

ing them less accessible to the general public. Most bioimage datasets are derived from

either patients or model organisms and are often confined to specific labs or researchers.

Additionally, these datasets usually contain only a small number of images—ranging

from a few hundred to a few thousand—compared to natural image datasets, which can

feature millions or even billions of well-annotated images. This limited availability of

annotated images often proves insufficient for training deep-learning models, resulting

in subpar performance. Consequently, models trained on inadequate image data tend to

face difficulties, hindering analysts’ ability to utilize them effectively for image analysis

tasks.

3.6.3 Class imbalance

Many bioimage datasets, especially those dealing with specific anatomical structures or

rare phenotypes, are highly imbalanced. For instance, images where certain developmen-

tal features or disease markers are absent may vastly outnumber those where they are

present. This class imbalance can lead ML and DL models to become biased towards the

majority class, reducing sensitivity to rare but biologically significant features. Handling

class imbalance effectively is essential for reliable phenotype classification, segmentation,

and structure detection.

3.6.4 Annotation subjectivity and inconsistency

Accurate annotations are critical for training supervised ML and DL models, but these

annotations are often subjective, particularly in the biomedical domain where boundaries

between structures may be unclear or open to interpretation. Variability in expert

annotations can lead to inconsistencies in the training data, complicating model training

and evaluation. Furthermore, detailed, high-quality annotations are time-consuming

and labor-intensive to produce, and errors or disagreements among annotators may

introduce noise that models can inadvertently learn.

3.6.5 Structural overlaps and ambiguity in biological features

In images of fish larvae, anatomical structures can appear blurred, overlap, or lack clear

boundaries, making it difficult for models to distinguish them accurately. These ambi-

guities are especially problematic in tasks like segmentation and landmark detection,
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where precise identification of structure boundaries is critical. Overlapping structures

or low-contrast regions may lead models to misclassify or overlook important features,

affecting overall performance.

3.6.6 Tolerance to data corruption

Bioimage datasets can contain mislabeled or corrupted images due to errors during data

collection or annotation. DL models are often sensitive to such corruption, which can

negatively impact model performance. In some cases, models may even learn from these

errors, leading to poor generalization and reduced reliability. Developing models that can

tolerate or correct for corrupted data without extensive manual intervention remains a

major challenge in biomedical imaging.

3.6.7 Choice of image analysis methods and protocols

Traditional image analysis methods that rely on basic image processing functions and

hand-crafted features, work well for small datasets. However, as the amount of data

and its dimensionality increases, these methods become time-consuming and demand

significant human intervention and technical expertise for the analysis. In contrast,

deep learning methods, can significantly accelerate the analysis process by enabling

semi or fully automated workflows. Despite this advantage, training deep-learning-

based convolutional neural networks (CNNs) for high-content image analysis remains

a complex challenge, and effectively applying these techniques in biomedical image

analysis tasks continues to pose difficulties.

3.6.8 Need for a common image analysis platform

In contemporary bioimage analysis, the integration of deep learning models into a com-

mon image analysis platform is vital for streamlining workflows and enhancing research

outcomes. This platform serves as a centralized environment, where researchers can eas-

ily access, visualize, and analyze bioimages using sophisticated algorithms. The proposed

image analysis platform should be designed to facilitate the end-to-end processing of

bioimages, encompassing stages from image acquisition and preprocessing to model de-

ployment and result interpretation. By providing a user-friendly interface, the platform

allows researchers, even those with limited programming expertise, to utilize advanced

deep learning techniques without the need for extensive technical knowledge.
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3.7 Conclusion

This chapter provides a comprehensive review of common computer vision techniques,

encompassing both traditional methods and AI-driven machine learning (ML) and deep

learning (DL) algorithms and tools. It emphasizes their applications in biomedical and

aquaculture research, particularly in phenotype and morphometric studies related to

bone development. Additionally, it addresses the challenges encountered in bioimage

analysis, including the complexities of processing high-content and high-throughput

imaging data, the limitations of traditional analysis methods, the shortage of well-

annotated datasets, and the intricacies involved in implementing effective deep learning

architectures

Given the existing challenges in bioimage analysis for morphometric and pheno-

type studies, this thesis is motivated by the need to develop and implement novel deep

learning methodologies that can effectively address these issues. The goal is to create

robust, scalable solutions that streamline the analysis process, enhance the accuracy of

results, and improve accessibility for researchers across various disciplines. By focus-

ing on the development of automated image analysis methods tailored to aquaculture

and biomedical research, this work aims to contribute significantly to the field. The

integration of a common image analysis platform will empower researchers to leverage

advanced deep learning techniques without extensive technical expertise, promoting

collaboration and innovation in the study of biological processes. Ultimately, this re-

search endeavors to provide new insights into morphometric and phenotypic studies,

advancing our understanding of fish development and contributing to the broader field

of bioinformatics.
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Table 3.1: Image Analysis Tools and their specifications.

Name Ref. paper Image modality Fish type and age Application
Open

source?
Data

availability
Research

area

EmbryoNet [30] D. Capek et al. Light microscopy
Zebrafish (1hpf ∗),
Medaka (0-48 hpf),

Stickleback (0-140 hpf)

Phynotype classification Yes Yes Biomedical

QuantiFish [179] David R. Stirling et al. Fluorescent microscopy Zebrafish (4dpf ∗∗)
Infection dissemination

analysis
Yes On request Biomedical

ZF-AutoML [164] R. Sawaki et al. Light microscopy
Zebrafish larvae

(0–96 hpf)
Phenotype classification Yes No Biomedical

ZFTool [33] M. J. Carreira et al.
Fluorescent green

channel microscopy
Zebrafish larvae

(0–72 hpf)
Toxicity screening Yes No Biomedical

ZF-Mapper [219] D. Yamamoto et al. Light microscopy
Zebrafish larvae

(2–6 dpf)
Cancer Xenograft

Zebrafish screening
Yes Yes Biomedical

ZebraZoom [131] O. Mirat et al. Time series (2D+t)
Zebrafish larvae

(5–7 dpf)
Locomotion tracking,
Behavioral analysis

No No Biomedical

FishInspector [190] E. Teixido et al. Light microscopy
Zebrafish embryos

(0–96 hpf)
Phenotype screening Yes Yes Biomedical

Stytra [178] V. Stih et al. Time series (2D+t) Zebrafish larvae
Zebrafish tracking,
Behavioral analysis

Yes Yes Biomedical

ZebrafishMiner [153] M. Reischl et al. Fluorescent microscopy
Zebrafish embryos
and larvae (32 hpf)

Fluorescent quantification
in body parts

No No Biomedical

CNNTracker [230] X. Zhiping et al. Fluorescent microscopy
Zebrafish

(over 6 months)
Zebrafish tracking Yes No Biomedical

ZFBone [188] M. Tarasco et al. Fluorescent microscopy
Zebrafish larvae

(6 dpf)
Morphometric analysis Yes Yes Biomedical

IMAFISH_ML [137] A. Navarro et al.
Microscopy, RGB,

radiography
Adult gilthead seabream,

meagre, red porgy
Morphometric analysis Yes No Aquaculture

Continue on the next page
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Table 3.1: Image Analysis Tools and their specifications (cont.).

Name Ref. paper Image modality Fish type and age Application
Open

source?
Data

availability
Research

area

DeepLabCut [184] Suryanto et al. Video frames All types Landmark prediction Yes Yes
Biomedical,
Aquaculture

Cytomine [124] R. Marée et al. All types All types General image analysis Yes Yes
Biomedical,
Aquaculture

* hours post fertilization

** days post fertilization
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SEGMENTATION IN MICROSCOPY BIOIMAGES OF

ZEBRAFISH

As we discussed in chapter 1, biomedical research heavily uses Zebrafish (Danio rerio) as

a model to study developmental processes. In the earlier stage of their lifecycle, zebrafish

embryos and larvae are completely transparent, which greatly facilitates monitoring of

their developmental organs such as operculum and vertebral column using microscopy

techniques [56, 75, 130]. Biomedical researchers also rely on microscopy to study the

effects of various chemical compounds on the developing parts of the fish model in

toxicological studies [34]. Such analyses often involve segmenting different categories

of regions of interest (ROI) within images in order to quantify their morphological

changes. For example, the analysis of Head and Operculum (a series of bone) regions

of Zebrafish larvae and the quantification of the operculum-to-head ratio is considered

as a good marker of increased bone formation and mineralization and it is a validated

method to screen for bioactive compounds which have effects on bones [108, 189]. It also

gives an additional information on the possible toxicity of a compound at the organism

level. However, the visual examination and area quantification are a bottleneck and

prevent applying such a workflow at high throughput. In this chapter, supervised deep

learning strategies are proposed and evaluated to segment head and operculum regions,

as evaluation of such approaches has not been proposed previously.

Reference: This chapter is an adapted version of the work we published in "Navdeep

Kumar, Alessio Carletti, Paulo J Gavaia, Leonor M Cancela, Marc Muller, Pierre Geurts,

Raphaël Marée, “Deep Learning Approaches for Head and Operculum Segmen-
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tation in Zebrafish Microscopy Images", International Conference on Computer

Analysis of Images and Patterns (CAIP-2021)".

Demo server with Datasets: https://github.com/navdeepkaushish/S_Zebrafi
sh_Head_Operculum_UNet_Segmentation

4.1 Introduction

In this chapter, we propose variants of deep learning methods to segment head and

operculum of the zebrafish larvae in microscopic images. In the first approach, we used a

three-class model to jointly segment head and operculum area of zebrafish larvae from

background. In the second, two-step, approach, we first trained binary segmentation

model to segment head area from the background followed by another binary model to

segment the operculum area within cropped head area thereby minimizing the class

imbalance problem. Both of our approaches use a modified, simpler, U-Net architecture,

and we also evaluate different loss functions to tackle the class imbalance problem. We

systematically compare all these variants using various performance metrics.

Our methodology is detailed in Section 4.2, beginning with an overview of the image

acquisition settings and datasets in Section 4.2.1. The proposed deep learning strategies

and CNN architecture are then discussed in Sections 4.2.2 and 4.2.3, respectively. The

evaluation protocol for this work is outlined in Section 4.2.4, followed by the presentation

of results in Section 4.3.

4.2 Methodology

This section describes the image acquisition procedure and dataset, followed by two

deep learning strategies. Additionally, it provides details on the convolutional neural

network (CNN) architectures used to segment the head and operculum regions and the

experimental protocol we followed for this work.

4.2.1 Image Acquisition and Dataset Description

Zebrafish larvae stained with alizarin red S were imaged using a MZ 7.5 fluores-

cence stereomicroscope (Leica, Wetzlar, Germany) equipped with a green light filter

(λex=530–560 nm and λem=580 nm) and a black-and-white F-View II camera (Olympus,

Hamburg, Germany). Images were acquired using the following parameters: exposure
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time 1s, gamma 1.00, image format (1376 × 1032) pixels, binning (1 × 1). For morpho-

metric analysis, color channels of the RGB images were split. and red channel (8-bit)

images were used for further analyses.

We follow a supervised deep learning approach that requires original images and

corresponding head and operculum ground-truth masks to design and validate the ap-

proach. Our dataset consists of 8-bit single channel (red channel) fluorescence images of

zebrafish larvea at 6 days post fertilization (dpf). Red channel fluorescence images were

first transformed into greyscale images (with contrast and brightness enhancement) to

ease the manual annotations by experts of head and operculum areas. Manual anno-

tations (illustrated in Figure 4.1) consist of green and red contours of head area and

operculum area respectively. A total of 2293 zebrafish images of 1376×1032 resolution

have been collected and manually annotated over a period of one year. The dataset

consists of 28 different sets of experiments using 5 different compounds, to analyse their

effect on the operculum of the zebrafish larvea. Each set has been acquired with the same

acquisition settings. Manual annotations are then imported into Cytomine open-source

software [124] to centralize data and ease binary masks creation to be further used as in-

puts of deep learning algorithms. In supervised learning setting, a segmentation method

Figure 4.1: Image sample and its corresponding head and operculum annotations. (a)
Raw red channel image (b) manually annotated gray-scale version of the sample image.

requires segmentation masks as its label for learning. Therefore, it is necessary to create

the head and the operculum masks from their respective contours. Firstly, contours of

the head and operculum regions are extracted using OpenCV’s image processing function

’findContours’, after that segmentation masks are created using "flood_fill" algorithm

[138] to fill the contour area with white pixels (255 value) and rest of the area is treated

as background and filled with black pixels (0 value). At the end of this procedure, we get

binary segmentation masks for head and operculum as shown in Figure 4.2.
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Figure 4.2: Images and ground truth masks. Left: Two greyscale images. Middle: contour
extraction of head and operculum areas. Right: binarized ground truth masks.

4.2.2 Two deep learning strategies

In this section, we explore two deep learning strategies, we implemented in this work.

The first strategy called "One-Step segmentation with a three class model" is design to

segment all the three classes namely head, operculum and background in one go. The

second strategy called "Two-step segmentation with two binary models" is designed to

firstly predict head with a binary class model and then operculum with another second

binary class model. The detailed description of the two strategies is discussed in the next

two sections.

4.2.2.1 One-step segmentation with a three-class model.

Following this strategy, original size images without cropping are used. Since typical

CNN networks require input images of small size (see below), original sized images are

first downsized to the size required by the network, keeping their original aspect ratio

to avoid any kind of distortions in the predictions, while upsizing the predicted masks.

Since our images are rectangular but network require square images, we padded the

rectangular images with zeros to make them square. A three-class output segmentation

model is then trained to segment both head and operculum from background areas as

illustrated in Fig. 4.3 (top).
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4.2.2.2 Two-step segmentation with two binary models.

In this approach, a first binary segmentation model is trained to segment the head from

the background in original full images downsized appropriately (as in the three-class

approach). A second binary segmentation model is trained to segment the operculum

area using resized cropped images (rectangular box around the head). At prediction

phase, the first model is applied to segment the head, then a rectangular bounding box is

automatically extracted. Using these box coordinates, we apply the second model to the

resized cropped images (around the head) to segment the operculum area. The two-step

approach is illustrated in Fig. 4.3 (bottom).

4.2.3 U-Net Implementation

For both approaches, the U-Net architecture [157], we discussed in section 2.4.4.3 has

been adapted to segment areas of the zebrafish larvea. As a reminder, the main idea of

U-Net is its two parts: the convolution (encoder) or contracting operations, and deconvo-

lutional (decoder) or expanding operations. In the first part, convolutional operations

are applied in successive layers with the max pooling operations at the end of each layer,

thereby contracting the input resolution. In the second part, an expanding resolution

path is adopted using upsampling or deconvolutional layers. The first part is considered

as a traditional stack of convolutional and max pooling layers to capture context informa-

tion within the image. In the second part, deconvolutional operations are applied along

a symmetric expanding path to capture the precise localized information. One more

important thing about this architecture is its symmetric concatenation of the previous

activations from the first part to the activations of the second part.

As preliminary results with the original U-Net architecture on the training set

were unsatisfactory (including a tendency to predict only the majority class, i.e. the

background), we implemented some modifications in U-Net architecture including the

input size and output size of the network and number of layers and filters. Fig. 4.4

shows our "modified U-Net" network architecture. In our experiments, we used two

versions of modified U-Net, one that accepts 512×512 images as input and another that

accepts 256×256 images. In both cases, the output size of the masks is the same as

the input size whereas in [157], authors used 572×572 inputs and 388×388 outputs.

The reason behind using two variants of the network is to assess whether using less

parameters will negatively impact recognition performance. Using smaller networks

indeed reduces execution times which can be useful in real-time applications. With the
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Figure 4.3: (A) One-step segmentation approach with three classes: head (yellow contour),
operculum (pink contour), background. (B) Two-step binary segmentation approach with
a first binary model (head vs background) followed by a second binary model (operculum
vs other).
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Figure 4.4: Modified U-Net architecture used in experiments for 512×512 sized images.

small size variant of the U-Net architecture (with 256×256 input size), we used fewer

filters in each convolutional block as compared to the larger network thereby reducing

the network size and the number of parameters by 5 folds. For better optimization, we

used "Adam" [98] optimizer and batch normalization in each convolutional block before

max pooling. Adam uses "gradient descent with momentum" combined with an adaptive

learning rate using exponential moving averages, which makes it more computationally

and memory efficient than "Stochastic Gradient Descent” used in the original U-Net

paper. During training, we also used data augmentation (random flips and rotations,

brightness, and contrast changes). We implemented these networks in Python using

Tensorflow and Keras [42].
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4.2.4 Experimental protocol

We first split the dataset into 2105 images for training and 188 images for final evaluation.

To assess variability, the set of 2105 images is split into five equally sized folds. Each

fold is used in turn as the validation set and the remaining folds as the training set. Five

models are trained independently on each training set for 1000 epochs and the five best

models on their corresponding validation set across the epochs are finally retained as

the final models. In addition, we used early stopping, which forces the training to stop

when there is no improvement in the training loss for 100 consecutive epochs. Another

callback called "model checkpointing" is also used in which current training model is

saved if it is better than the previous one on the validation set. We report in tables, the

average performance and standard deviation of these five models estimated on the test

set with 256 × 256 (see tables 4.2 and 4.1) and 512 × 512 (see tables 4.4 and 4.3) input

image resolution using three class and two step binary class settings.

In both approaches, we used deep learning based semantic segmentation approach in

which a model predicts the class of every pixel in the image (dense predictions). In such

a setting, we are faced with a problem of class imbalance as less than 2% of the image

area is occupied by operculum region while around 90% is background region. In such

situation, the contribution of the majority class (in our case, the background) in the loss

during training is more important than that of the minority class, which biases the model

in favor of the majority class while ignoring minority class. While the two-step approach

tends to reduce this phenomenon (by cropping then predicting operculum only within

the head region), a certain class imbalance still persists. Therefore, for both approaches

we propose to evaluate different loss functions during training to handle class imbalance.

Namely, we evaluated the Cross Entropy Loss, Dice Loss, Tversky Loss, Focal Loss and

Jaccard Loss [21]. We have discussed about these loss functions in Section 2.6.2.

4.3 Results and Discussion

Tables 4.1 and 4.3 show the results of the first (three-class segmentation) approach

whereas tables 4.2 and 4.4 of the second (two-step binary class segmentation) approach

using 256×256 input size and 512×512 input size networks, respectively. In both variants,

we report several performance metrics that take into account class imbalance, namely

Precision, Recall, F1 Score and Dice score, computed at the pixel level and averaged over

the 5 models. To get a single score with which to compare the models, the Dice score is
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further averaged over head and operculum. Its standard deviation over the 5 models is

also provided to assess variability.

Table 4.1: Segmentation results with the one-step, three-class approach using different
loss functions for input size 256×256.

Avg. scores with three-class output based segmentation
Loss function Class Precision Recall F1 Score Dice Score±S.D.

Cross Entropy
Head 0.9806 0.9796 0.9801

0.9412±0.0043
Operculum 0.8780 0.9263 0.9014

Tversky loss
Head 0.9779 0.9806 0.9792

0.9470±0.0017
Operculum 0.9086 0.9190 0.9136

Dice loss
Head 0.9819 0.9806 0.9813

0.9462±0.0024
Operculum 0.9120 0.9092 0.9106

Jaccard Loss
Head 0.9678 0.9789 0.9733

0.49±0.0002
Operculum 0.0 0.0 0.0

Focal loss
Head 0.9820 0.9798 0.9809

0.9442±0.0046
Operculum 0.9060 0.9076 0.9066

Table 4.2: Segmentation results with the two-step, binary approach using different loss
functions for input size 256×256.

Avg. scores with two binary-class output based segmentation
Loss function Class Precision Recall F1 Score Dice Score±S.D.

Cross Entropy
Head 0.9832 0.9805 0.9819

0.9540±0.0015
Operculum 0.9196 0.9340 0.9267

Tversky loss
Head 0.9824 0.9806 0.9815

0.9524±0.0024
Operculum 0.9104 0.9374 0.9237

Dice loss
Head 0.9828 0.9826 0.9827

0.9511±0.0046
Operculum 0.9175 0.9276 0.9225

Jaccard Loss
Head 0.9782 0.9826 0.9804

0.9513±0.0012
Operculum 0.9124 0.9355 0.9238

Focal loss
Head 0.9835 0.9815 0.9825

0.9516±0.0018
Operculum 0.9213 0.9261 0.9236

In the three-class approach, the tversky loss seems to better cope with the strong class

imbalance in both 512×512 and 256×256 settings. The worst performer in the three-class

approach is Jaccard loss as it only predicts the majority class (90% background) and no

operculum area. This loss leads however to good predictions with the two-step binary

approach in both input size settings. In the two-step binary segmentation approach,

all losses are very close except cross entropy in 512×512 setting. Overall, the two-step

approach for 512×512 inputs with Jaccard loss has a slight edge over other losses. We
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Table 4.3: Segmentation results with the one-step, three-class approach using different
loss functions for input size 512×512.

Avg. scores with three-class output based segmentation
Loss function Class Precision Recall F1 Score Dice Score±S.D.

Cross Entropy
Head 0.9815 0.9747 0.9781

0.9358±0.0064
Operculum 0.8992 0.8934 0.8953

Tversky loss
Head 0.9812 0.9789 0.9800

0.95±0.0011
Operculum 0.9090 0.9308 0.9196

Dice loss
Head 0.9822 0.9744 0.9783

0.9428±0.0043
Operculum 0.9085 0.9066 0.9074

Jaccard Loss
Head 0.9678 0.9789 0.9733

0.49±0.0002
Operculum 0.0 0.0 0.0

Focal loss
Head 0.9817 0.9768 0.9792

0.9364±0.007
Operculum 0.9078 0.8846 0.8946

Table 4.4: Segmentation results with the two-step, binary approach, using different loss
functions for input size 512×512.

Avg. scores with two binary-class output based segmentation
Loss function Class Precision Recall F1 Score Dice Score±Std.

Cross Entropy
Head 0.9840 0.9780 0.9810

0.9189±0.0159
Operculum 0.9114 0.8428 0.8747

Tversky loss
Head 0.9832 0.9785 0.9808

0.9505±0.0024
Operculum 0.9223 0.9245 0.9234

Dice loss
Head 0.9828 0.9797 0.9812

0.9424±0.0057
Operculum 0.9256 0.8947 0.9097

Jaccard Loss
Head 0.9818 0.99796 0.9807

0.9516±0.002
Operculum 0.9178 0.9311 0.9244

Focal loss
Head 0.9841 0.9732 0.9786

0.9490±0.0031
Operculum 0.9207 0.9227 0.9217

believe that the improved performance of the two-step approach is due to the fact that

the second segmentation model works with a cropped, head-focused, dataset. Because

of the cropping, the class imbalance is not as severe and the operculum image is not

downscaled as much as with the three-class approach. Predictions are thus more precise

and less influenced by the class imbalance. Regarding the two input sizes, we see that

they lead to almost identical performance in terms of Dice Score. Sample predictions from

the best performing models are shown in Figure 4.5. To further evaluate approaches with

respect to their actual intended use, Table 4.5 compares the ground truth and predicted

operculum-to-head ratios using the best performing models from both approaches. We

used four metrics: mean squared error, Pearson and Spearman correlations, and a fourth

100



4.3. RESULTS AND DISCUSSION

Figure 4.5: Sample predictions with best performer on test images with three class (top
row) and two-step binary class (last two rows). From the first to third column: input
Image, true mask, predicted mask.

custom metric P called proximity measure. We compute a proximity measure to see

how close our predicted ratios to the actual ratios for test images. Proximity measure is

calculated as first measuring fraction Min(True_ratio,Predicted_ratio)
Max(True_ratio,Predicted_ratio)) over each test image

and then taking the mean over all the test images. If that number is closes to 1 it means

that our predicted ratio is very close to actual one and if it goes far away then it signifies

the predictions are bad. One can see that the three-class approach performs better in

terms of Pearson correlation and MSE, while the two-step approach performs better in

terms of Spearman correlation. In terms of proximity measure P, both the approaches

are close to 1 which signifies that our model predictions are quite satisfactory. While

the two-step approach works better at the pixel level, this result suggests that further

validation is required to assess which one of the two methods will be the most appropriate

in the context of actual morphological studies.
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Table 4.5: Evaluation of operculum-to-head ratio predictions using best performing
models.

MSE Pearson Spearman P
Three-class approach 1.014e−5 0.210 0.270 0.8577
Two-step approach 4.228e−4 0.117 0.314 0.8468

4.3.1 Robustness to image acquisition with another microscope

In practice, microscopes with different acquisition settings might be used over time by

biomedical researchers, which raises the issue of robustness of segmentation models to

such variabilities, an issue known as domain shift [70] (also see Section 2.5). As a first

step towards robustness evaluation, we applied our best two-step binary approach on

additional, unlabeled, images acquired with another microscope namely Leica MZ10F

fluorescence stereomicroscope equipped with a green fluorescence filter (λex= 546/10

nm), a barrier filter (λem =590 nm) and a DFC7000T camera (Leica, Wetzlar, Germany)

with a different output image size (1920×1440). When run on these unprocessed new

images, we observe that the performance of our model declines, as illustrated by Fig. 4.6

(first row).

Figure 4.6: Robustness evaluation: Predictions from best model using two-step binary
class approach on a new image acquired with another microscope before pre-processing
(first row), and after pre-processing (second row).

We hypothesized that this is due to the fact that, in the new microscope setting,
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ROIs (fish head and operculum) are larger in proportion to the size of the full image as

compared to ROIs in the original training images. To address this issue, we applied a very

simple pre-processing step to reduce the scale proportion of ROIs in the image. First, we

downscaled the new images to the resolution of the original images (i.e., from 1920×1440

down to 1376×1032) keeping the same aspect ratio. We then centered the resulting

1376×1032 image into a 1920×1440 image, filling the new pixels with zeros. Figure

4 (second row) illustrates the positive effect of this pre-processing on the prediction.

Note that downscaling further the image in the first step does not seem to affect the

performance. We hypothesized that this is due to the use of pooling layers that makes

network features somewhat scale invariant (in the direction of a decrease of resolution at

least). In practice, this scale calibration step would require a human expert to manually

draw a rectangle around the head within a single image when a new microscope is used

to initiate the automatic rescaling for the whole set of new images (so that the bounding

box is rescaled down to the average size of the head in the learning set images). We

consider this manual intervention to be acceptable.

4.4 Conclusion

We have evaluated deep learning based semantic segmentation variants on a new dataset

of more than two thousands fluorescent microscopy images of Zebrafish larvae where the

goal is to quantify operculum-to-head ratio. The dataset and prediction code compatible

with Cytomine open-source web platform [124] is available to foster further research and

to enable biomedical experts to routinely use our developments and proofread predictions.

We plan to use such developments as the basis of large-scale morphological studies where

the effects of different concentrations of many compounds on bone formation and mineral-

ization will be evaluated thoroughly using various statistics (such as operculum-to-head

ratio) derived from predicted masks. In the future, it may be necessary to investigate

more advanced approaches for other image variations due to change of acquisition setting

but ours was sufficient on the new microscope used by our collaborators.
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ANATOMICAL LANDMARK DETECTION IN FISH

BIOIMAGES

In numerous bioimage studies, identifying anatomical landmarks is an essential step

for conducting morphometric analyses and measuring the shape, volume, and size

characteristics of the organism being examined [84]. Landmarks are geometric keypoints

localized on an "object" and can be described as coordinate points in a 2D or a 3D space.

For example, in human cephalometric study, human cranium is analyzed for diagnosis

and treatment of dental disharmonies [133] using X-Ray medical imaging techniques.

In biomedical research where fish species such as Zebrafish (Danio rerio) and Medaka

(Oryzias letipes) are used as models, various morphometric analyses are performed to

quantify deformities in them and further identify cause and treatment for human related

bone disorders [91, 215]. Such studies require to analyze and classify deformities in the

vertebral column, jaws or caudal fin of the fish, which is addressed by first detecting

specific landmark positions in fish images. In aquaculture industry, food fish such as

gilthead Seabream suffer from bone related disorders due to the non-natural environment

in which they are reared and morphometric studies are carried out to quantify these

deformities [58, 205]. Such studies also require the researchers to select and mark some

important landmark locations on fish images in order to perform external shape analyses

[118]. In this chapter, we perform an empirical evaluation of variants of deep learning

methods to automatically localize anatomical landmarks in bioimages of fishes acquired

using different imaging modalities (microscopy and radiography). To our knowledge,
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our work is one of the first few attempts to implement a fully automatic end-to-end

deep learning based method for the task of landmark detection in heterogeneous fish

bioimages.

Reference: This chapter is adapted from our publication "Navdeep Kumar, Zachary

Dellacqua, Claudia Di Biagio, Ratish Raman, Arianna Martini, Clara Boglione, Marc

Muller, Pierre Geurts, Raphaël Marée, “Empirical Evaluation of Deep Learning
Approaches for Landmark Detection in Fish Bio-Images", European Conference

on Computer Vision Workshops (ECCV- 2022)."

Demo server with datasets: http://research.uliege.cytomine.org/ (user-

name: eccv2022bic password: deep-fish)

5.1 Introduction

Manual annotations of landmarks locations are very labour intensive and require ded-

icated human expertise. The emergence and heterogeneity of high-throughput image

acquisition instruments makes it difficult to continue analyzing these images manu-

ally. To address the problem, biomedical researchers began to use automatic landmark

localization techniques to speed up the process and analyze large volumes of data. Con-

ventional landmark detection techniques use image processing in order to align two

image templates for landmark configurations then applying some Procrustes analysis

[24]. Classical machine learning techniques such as random forest based algorithms

were also proposed in [177] [112] [202] to automatically localize landmarks in microscopy

images of zebrafish larvae.

Recently, landmark detection or localization has also been extensively studied in

the broader computer vision field, especially for real time face recognition systems

[94][218][71], hand-gesture recognition [151], and human pose estimation [162][12]. With

the advent of more sophisticated techniques such as deep-learning based Convolutional

Neural Networks (CNNs), the performance of computerized models for object detection

and classification has become comparable to human performance. While deep learning

models reach a high level of accuracy in computer vision tasks with natural images (e.g.

on ImageNet), there is no guarantee that these methods will give acceptable performance

in specific bioimaging applications where the amount of training data is limited. Indeed,

learning landmark detection models requires images annotated with precise landmark

positions while experts to carry out these annotations are few, the annotation task is

tedious and it must be repeated for every new imaging modality and biological entity.
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In this chapter, we want to evaluate state-of-the-art deep learning based landmark

detection techniques to assess if they can simplify and speed up landmark analyses

in real-world bioimaging applications, and to derive guidelines for future use. More

precisely, we evaluate the two main families of methods in this domain, namely direct

multivariate regression and heatmap regression, and we focus our experiments on the

identification of anatomical landmarks in 2D images of various fish species. Section 5.2

reviews prior research on anatomical landmark detection in bioimages. In Section 5.3,

we outline our datasets and image acquisition settings. Our methodologies, network

architectures, and evaluation protocol are detailed in Section 5.4. Finally, we present

and discuss the empirical results in Section 5.5.

5.2 Related Work

In biomedical image analysis, patch-based deep learning methods are proposed in which

local image patches are extracted from the images and fed to the CNN to detect the land-

mark locations [14, 172]. Patch-based methods are usually used to train one landmark

model for each landmark location making the whole process computationally very expen-

sive. These models often require plenty of memory storage to operate if the number of

landmark points to detect is high. Another drawback of using the patch-based methods is

missing global information about all the landmarks combined as local patches represent

only limited contextual information about the particular landmark.

Among end-to-end deep learning approaches, the first prominent solution is to output

directly the (x, y) coordinates of the landmarks using CNNs regressors [105]. These

direct coordinate regression based methods are very simple to design and faster to

train. However, to get optimal performances, this approach generally requires large

training datasets and deeper networks [81]. Another approach is to output heatmaps

corresponding to the landmark locations [55, 143, 144]. In this scenario, heatmaps are

generated from the labeled landmarks locations during training and CNNs are trained to

predict these heatmaps. These heatmaps encode per pixel confidence scores for landmark

locations rather than numbers or values corresponding to landmark coordinates. The

most common heatmap generation methods employ distance (linear) functions or some

non-linear gaussian or exponential kernels [223]. In [81] and [121], the authors proposed

a method that combines the heatmap based regressors with direct coordinate regressors

to automatically localize landmarks in MRI images of spine.

The data scarcity in biomedical image analysis is one of the biggest concerns as it is
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difficult to train a deep CNN from scratch with limited amount of images and ground

truths. To address this issue, the authors of [142, 172] explore transfer learning methods

such as using a pre-trained CNN as backbone and only training or fine-tuning its last

layers for the problem of cephalometric landmark detection. Transfer learning is also

used in animal behaviour studies in neuroscience where landmarks are used to aid

computer-based tracking systems. [127] devised a transfer learning based landmark

detection algorithm that uses pre-trained Resnet50 as backbone to automatically track

the movements in video recordings of the animals. To tackle the problem of limited data,

the authors of [154] proposed a method to train models on thousands of synthetically

generated images from other computer vision tasks such as hand recognition systems

and evaluate them on MR and CT images.

There are cases in which two landmark points are either very close to each other or

one is occluding another landmark. In these cases, a single CNN model is not sufficient

to achieve optimal performance in locating the landmarks. To handle these scenarios,

authors in [104, 196] proposed a combination of CNN regressor and Recurrent Neural

Network (RNN) in which RNNs are employed to remember the information for landmark

locations to further refine the predictions given by the CNN regressor. Although these

methods can lead to very good performance for landmark detection, they are very hard

to train on limited image data due to their complex architectural design.

5.3 Dataset Description

In this work, we use three datasets acquired using different microscopy and radiography

imaging protocols. These datasets contain images of three different fish species, namely

zebrafish (Danio rerio) and medaka (Oryzias latipes), used in biomedical research as

model fishes, and gilthead Seabream (Sparus aurata), used for aquaculture research.

The Zebrafish microscopy dataset is acquired from GIGA Institute at the University of

Liège whereas the Medaka microscopy and gilthead Seabream radiograph datasets are

acquired from the department of Biology, University of Rome, Tor Vergata. The summary

of each dataset and detailed dataset descriptions are given in Table 5.1 .

5.3.1 Zebrafish Microscopy Dataset

This dataset is composed of 113 microscropy images of zebrafish (Danio rerio) larvae at

10dpf (3mm length). Images were captured using an Olympus SZX10 stereo dissecting
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Table 5.1: Summary of the datasets used in our methodology

Fish species Number of
images

Number of
landmarks Image modality Research area

Zebrafish 113 25 Microscopy Bio-medical Science
Medaka 470 6 Microscopy Bio-medical Science

Gilthead Seabream 847 19 Radiograph Aquaculture

microscope coupled with an Olympus XC50 camera with a direct light illumination on

a white background. The Olympus XC50 camera allows to acquire 2576 × 1932 pixel

resolution images. 25 landmarks are manually annotated by the experts around the

head of the zebrafish larvae as folows: 1 and 24: Maxilla; 2 and 23: Branchiostegal ray

2; 3 and 11: Opercle; 4,12,13 and 14: Cleithrum; 5 and 19: Anguloarticular; 6 and 25:

Ceratobranchial; 7 and 8: Hyomandibular; 9 and 20: Entopterygoid; 10:Notochord; 21,15

and 18: Parasphenoid; 17 and 22: Dentary; 16: showing anterior end marking. A sample

image and its annotations are shown in Figure 5.1.

Figure 5.1: Zebrafish image and its annotations from Zebrafish Microscopy Dataset
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5.3.2 Medaka Microscopy Dataset

This dataset has 470 images of medaka juveniles (40 days after hatching) where each

image has size 2560×1920. Samples were in toto stained with Alizarin red and pho-

tographed with the Camera Axiocam 305 color connected to the AxioZoom V.16 (Zeiss)

stereomicroscope. A total number of 6 landmarks are manually annotated as follows: 1:

rostral tip of the premaxilla (if the head is bent, the landmark was located between the

left and right premaxilla); 2: base of the neural arch of the 1st (anteriormost) abdom-

inal vertebra bearing a rib; 3: base of the neural post-zygapophyses of the first hemal

vertebra (viz., vertebra with hemal arch closed by a hemaspine); 4: base of the neural

post-zygapophyses of the first preural vertebra; 5: base of the neural post-zygapophyses

of the preural-2 vertebra; 6: posteriormost (caudad) ventral extremity of the hypural 1.

Figure 5.2 shows a sample image from the medaka dataset with annotated landmarks.

Figure 5.2: Sample image of medaka and its annotations from Medaka Microscopy
Dataset

5.3.3 Seabream Radiography Dataset

In this dataset, the fish species is gilthead Seabream (Sparus aurata), sampled at 55 gr

(average weight). A total of 847 fish were xrayed with a digital DXS Pro X-ray (Bruker)

and 19 landmarks are manually annotated on variable image sizes, as follows: A: frontal

tip of premaxillary; B: rostral head point in line with the eye center; C: dorsal head point

in line with the eye center; D: dorsal extremity of the 1st predorsal bone; E: edge between

the dorsal 1st hard ray pterygophore and hard ray; F: edge between the dorsal 1st soft

ray pterygophore and soft ray; G: edge between the dorsal last soft ray pterygophore and

soft ray; H: dorsal concave inflexion-point of caudal peduncle; I: middle point between the

bases of hypurals 2 and 3 (fork); L: ventral concave inflexion-point of caudal peduncle;

M: edge between the anal last pterygophore and ray; N: edge between the anal 1st ray
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pterygophore and ray; O: insertion of the pelvic fin on the body profile; P: preopercle

ventral insertion on body profile; Q: frontal tip of dentary; R: neural arch insertion on

the 1st abdominal vertebral body; S: neural arch insertion on the 1st hemal vertebral

body; T: neural arch insertion on the 6th hemal vertebral body; U: between the pre- and

post-zygapophyses of the 1st and 2nd caudal vertebral bodies. Sample images from the

dataset with annotated landmarks are shown in Figure 5.3.

Figure 5.3: Seabream image and its annotations from Seabream Radiography Dataset

5.4 Method Description

We evaluate two deep learning-based regression approaches: direct coordinate regression

and heatmap-based regression, which are discussed in detail in Sections 5.4.1 and

5.4.2, respectively. A comprehensive description of the training and prediction phases

is provided in Section 5.4.3. Section 5.4.4 covers the CNN architectures used in our

methodology, and in Section 5.4.5, we outline the implementation of the experimental

protocol.

5.4.1 Direct coordinates regression

Direct coordinate regression is a technique commonly used in anatomical landmark

detection, where the model is trained to predict the precise coordinates (typically in

the x, y, and possibly z dimensions) of each landmark in an image. Unlike heatmap-

based approaches (see Section 5.4.2) that predict the likelihood of each pixel being

a landmark and then derive coordinates based on the most probable region, direct
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coordinate regression bypasses this intermediate step. Instead, it directly outputs the

coordinates of each landmark, streamlining the detection process. In the direct regression

approach, the output is designed to predict (N ×2) numbers, where the first (resp. last)

N numbers correspond to x (resp. y) coordinates of the landmarks.

5.4.2 Heatmap-based regression

The second approach is based on outputting the heatmaps (one per landmark) instead

of directly predicting the coordinate points for landmark locations. Each heatmap gives

information about the likelihood for each pixel of being the location of a particular

landmark. At training, the heatmap is constructed to associate to every pixel a score that

takes its highest value (1) at the exact location of the landmark and vanishes towards 0

when moving away from the landmark. The size of the region of influence of a landmark

is controlled by a user-defined dispersion parameter σ. More formally, and following

[223], we have implemented and compared two probability functions to generate these

heatmaps, namely a Gaussian function FG and an Exponential function FE, defined

respectively as follows:

FG(x, y)= A ·exp
(
− 1

2σ2

(
(x−µx

)2 + (
y−µy

)2)
)
,

FE(x, y)= A ·exp
(
− log(2)

2σ
(|x−µx|+ |y−µy|))

)
,

where x and y are the coordinates of a pixel in the image, µx and µy are the coordinates

of the landmark under consideration, σ is the spread of the distribution, and A is a

normalizing constant that gives the amplitude or peak of the curve.

To fix the highest score value as 1 at the exact location of the landmark, we set

the normalizing constant A to 1, since it corresponds to the maximum value of the

gaussian and exponential functions. Figure 5.4 shows the original landmarks on the

image (first column) and their corresponding heatmaps, as the superposition of the

heatmaps corresponding to each landmark (second and third columns).

5.4.3 Training and prediction phases

In the training phase, original images are first downscaled to 256×256 to be fed into

the network. Since the original images are rectangular, we first downscale the image

to a size of 256 along the largest dimension while keeping the aspect ratio unchanged.

Padding is then added to the smallest dimension to produce a 256×256 square image.
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Figure 5.4: Original landmarks on the images (first column), their corresponding Gaus-
sian heatmaps (second column) and Exponential heatmaps (third column)

For direct regression, the output of the model consists of N ×2 real numbers, with N the

total number of landmark, representing landmark coordinates rescaled between 0 and 1.

For heatmap regression, the output is composed of N heatmap slices, each corresponding

to one landmark and constructed as described in the previous section.

The prediction phase for direct regression based approach is simply predicting the

N ×2 numbers and then upscaling them to the original sized image (i.e., multiplying

them by the original image width and height after padding is removed). In the case of the

heatmap based approach, heatmap slices are first predicted by the network and then, as

a post processing step, each heatmap is converted to its corresponding landmark location

by taking the argmax of the heatmap over all image pixel values. The argmax function

returns the 2D coordinates of the highest value in a heatmap slice. The corresponding

landmark coordinates are then upscaled to the size of the original image to produce the

final model predictions.
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5.4.4 Network Architectures

To evaluate our methodology, we implement state-of-art CNNs used in various image

recognition, segmentation, and pose estimation tasks. Following are the CNN architec-

tures we implement in both the multivariate and the heatmap regression based output

network models.

• Heatmap based CNN architectures:

– U-Net architecture: U-Net architecture as described in 2.4.4.3 is a two phase

encoder and decoder network in which the encoder module is made up of

conventional stack of convolutional layers followed by max-pooling layer and

the decoder module consists in a stack of up-sampling layers. In this work,

the last layer of the network is modified to output the N heatmaps.

– FCN8 architecture: In FCN8 as described in 2.4.4.2, the initial layers are

made up of stack of convolutional layers followed by maxpooling whereas

later layers are upsampling layers that consist in the fusion of intermediate

convolutional layers as shown in Figure 2.12. In this work, the last layer is

modified to output N probability heatmaps.

– ResNet50 backbone: ResNet50 is a state-of-the-art image recognition CNN

model described in 2.4.4.1 and also successfully used in pose estimation [127].

It is made up of deeper convolutional layers with residual blocks and is capable

of solving the vanishing gradient problem in deeper networks by passing the

identity information in the subsequent layers. We use the upsampling layers

in the decoder part to achieve the same resolution as that of the input size.

We use ResNet50 pretrained on ‘ImageNet’ [49] dataset for our evaluation

methodology (see section 2.5 for transfer learning). Note that heatmap-based

regression with this architecture is very close to the DeepLabCut[85] approach

and, thus, can be considered as a reimplementation of this latter method.

– HRNet: The deep High Resolution Network architecture is one of the state-of-

the-art architectures for the task of human pose estimation [183]. It maintains

the high resolution from end to end and uses other subnetworks in parallel to

exchange information between and within the stages (see Figure 2.14).

• Multivariate regression based CNN architectures: To implement multivariate

regression that directly regresses coordinate points, we investigate two types of

strategies. In the first case, the encoder part of the U-Net architecture is used for
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learning feature representations. In the second scenario, we explore a transfer

learning based approach where a ResNet50 network pretrained on ImageNet is

used for learning representations. In both scenarios, a fully connected layer is

added at the end of the network to output N ×2 numbers that correspond to (x, y)

coordinates of each landmark location, where N is the total number of landmark

locations.

5.4.5 Experimental Protocol and Implementation

To evaluate method variants, we follow a 5-fold cross validation scheme in which each

dataset is divided into 5 equal parts. In each iteration, one part is used as test set

while the other four parts are merged and shuffled and used as training and validation

sets, with a 3:1 ratio. Here the validation set is used for choosing the best model from

the number of epochs during training. In each fold, one model is trained for maximum

upto 2000 epochs. Mean error is then measured as first upscaling the predictions to

the original sized images then taking the Root Mean Square Error (RMSE) (i.e., the

Euclidean distance) between original ground-truth landmark locations and upscaled

predicted locations for each test image, then calculating the mean over all the test images.

The final error is reported by taking the mean error and standard deviation (Std.) over

5-fold cross validation. In all the evaluation protocols, we applied RMSProp optimizer

with initial learning rate as 0.001 and Mean Square Error (MSE) as the loss function.

To induce variability in the training set, we use data augmentation (scale, shift, rotate,

shear, horizontal flip, random brightness, and contrast change) for all methods. We also

use some callbacks such as Early stopping in which training is stopped when the loss

does not improve over 400 epochs and Learning rate scheduler in which learning rate is

reduced by the factor of 0.2 if validation loss is not improving over 200 epochs. We use

Tensorflow [3] as the deep learning library and Python as programming language. We

have trained the CNNs models on a cluster of roughly 100 NVIDIA’s GeForce GTX 1080

GPUs.

5.5 Results and Discussion

Baseline: We evaluate a first baseline, called ’Mean model’, that simply predicts for each

landmark the mean positions computed for each landmark over original sized images of

the training and validation sets. In Table 5.2, we report the mean error (and standard
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deviation) of this model across 5-folds for our three datasets. As expected, the errors are

very high, showing that landmarks positions are highly variable given the uncontrolled

positioning and orientation of the fishes.

Table 5.2: Mean RMSE for 5-fold cross validation for the baseline ‘Mean model’

Dataset Mean error±S.D.

Zebrafish Microscopy 77.54±8.74

Medaka Microscopy 184.96±19.11

Seabream Radiography 50.14±1.27

Direct multivariate regression: Mean errors and standard deviations over 5-fold

cross validation scheme for direct multivariate regression are reported in Table 5.3. As

expected, very significant improvements can be obtained with respect to the Mean model.

The only exception is U-Net on the Zebrafish Microscopy dataset that obtains a higher

error than the baseline. We hypothesize that this could be due to the significantly lower

number of images (113) in this dataset and the fact that U-Net, unlike ResNet50, is not

pretrained, which makes this model more difficult to train. U-Net remains however a

better model than ResNet50 on the other two, larger, datasets.

Table 5.3: Mean RMSE for 5-fold cross validation for direct multivariate regression

Dataset
Mean Error±S.D.

U-Net(31M) ResNet50(30M)

Zebrafish Microscopy 121.24±5.38 26.31±6.42

Medaka Microscopy 16.65±2.35 20.44±7.61

Seabream Radiography 7.71±0.2 9.65±2.34

Heatmap regression: Heatmap regression requires tuning an additional hyper-

parameter, the dispersion σ. We carried out some preliminary experiments on the

Zebrafish Microscopy Dataset to analyse the impact of this parameter with both heatmap

generation strategies. Table 5.4 shows how the RMSE error, estimated using the vali-

dation set of a single dataset split, evolves with σ in the case of the U-Net architecture.

The best performance is obtained with σ= 5 with the Gaussian heatmap and σ= 3 with

the Exponential heatmap. We will therefore set σ to these two values for all subsequent

experiments. This will potentially make our results on the Zebrafish Microscopy Dataset
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a bit positively biased but we expect this bias to be negligible as the errors in table 5.4

remain very stable and essentially independent of σ as soon as σ is higher than 3. Note

also that better results can be potentially obtained on all problems by tuning σ using

some additional internal cross-validation loop (at a higher computational cost).

Table 5.4: Effect of σ values using Zebrafish microscopy validation data with U-Net

σ
RMSE Error (in pixels)
Gaussian Exponential

1 1202.64 118.87
2 1417.18 1198.1
3 36.38 19.35
4 20.66 19.76
5 19.23 20.06
6 23.52 19.64
7 20.73 19.68
8 19.58 19.58
9 20.15 20.73

10 20.47 20.11

Table 5.5: Mean Error (in pixels) from 5-fold cross validation for heatmap regression

Heatmaps Datasets
Mean Error ± S.D.

U-Net(31M) FCN8(17M) RestNet50(51M) HRNet(6.5M)

Gaussian

Zebrafish Microscopy 13.43±3.14 13.82±2.01 13.77±2.97 13.16±2.93

Medaka Microscopy 10.36±2.45 10.56±1.85 10.18±1.17 10.69±2.52

Seabrean Radiography 5.69±0.28 5.74±0.15 6.13±0.31 6.40±0.63

Exponential

Zebrafish Microscopy 11.29±0.84 14.28±2.35 13.08±3.24 12.62±2.66

Medaka Microscopy 9.34±1.06 10.12±1.60 9.36±1.05 9.54±1.59

Seabream Radiography 5.31±0.13 5.70±0.16 5.47±0.18 5.90±0.64

Table 5.5 reports the performance of the different architectures, with both Gaussian

and Exponential heatmaps. We observe that CNNs having more parameters tend to

perform better in most of the cases (except HRNet with gaussian heatmap) but at the

cost of computational efficiency and memory requirements. In particular, U-Net is better

in terms of accuracy though second largest in size. Pretrained ResNet50 comes next

with comparable performance with the largest size among all the models. Exponential

heatmap outperforms Gaussian heatmap in almost all situations, although the difference

is not very significant.
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Comparing Table 5.5 with Table 5.3, it can be observed that heatmap based regression

clearly outperforms direct multivariate regression on all datasets. From this investiga-

tion, we can conclude that, for the problem of landmark detection in Fish bioimages at

least, heatmap based regression, with U-Net and Exponential heatmap, is the preferred

approach, especially when the dataset is small.

It is interesting to note that because of the downscaling of the input image and the

upscaling of the predictions, one can expect that the reported errors will be non zero

even if the heatmap is perfectly predicted by the CNN model. We can thus expect that

our results could be improved by using higher resolution images/heatmaps, at the price

of a higher computational cost.

Hit rate: To further measure the performance of the model in terms of how many

landmarks are correctly predicted, we define a prediction as a hit if the predicted

landmark location is within some tolerance distance δ from the actual landmark location.

The hit rate is then the percentage of landmarks in the test images that are having a

hit. We choose the best performing method from Table 5.5 (exponential heatmap based

U-Net model) and hit rates with different distance thresholds, estimated by 5-fold cross-

validation, are shown in Table 5.6, with the baseline δ set at the ratio between the

original and heatmap resolutions. As expected, there are not many hits at δ, except on

the third dataset. At 2×δ however, all landmarks are perfectly detected, which suggests

that heatmaps are very accurately predicted (2 pixels error in the downscaled resolution)

and further supports the idea that better performance could be expected by increasing

the resolution of the network input images and heatmaps.

Table 5.6: Hit rate from the three dataset using best performing models

Dataset
δ

(in pixels)

Hit rate (in %)

δ 2×δ
Zebrafish Microscopy 10 20.0 100

Medaka Microscopy 10 16.66 100

Seabream Radiography 8 94.73 100

Per landmark error: To further assess performances hence derive guidelines for

practical use in real-world application, we computed mean error per landmark on test

sets across 5-folds in order to quantify which landmarks are hard to predict by the

models. Figure 5.5 shows per landmark mean error using the best performing method

(exponential heatmap based U-Net model) for all the three datasets. We can observe
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that in the case of the Zebrafish Microscopy dataset, landmarks 4, 16, and 21 are the

most difficult to predict. We hypothesized that these points are largely influenced by

their position on the structure which they marked on. These structures exhibit some

variability (shape, thickness, overlapping, missing or partially missing). In the case

of Seabream Radiography, landmarks G, M, and T are difficult to predict due to their

position which is somehow matched with background (see Figure 5.3). Lastly, in the

case of the Medaka Microscropy dataset, landmark 3 (see Figure 5.2) is badly predicted.

That might be attributed to the variability of the position it is marked on. As model

predictions might vary greatly between landmarks, we believe these approaches should

be combined with user interfaces for proofreading to make them effective. In practice,

experts would mostly need to focus and proofread badly predicted landmarks, an hybrid

human-computer approach which is expected to be much less time consuming than a

completely manual approach.

Figure 5.5: Mean error per landmark with Exponential heatmap regression based U-Net
on Zebrafish (A), Medaka (B), and Seabream (C) datasets

Finally, in Figure 5.6, we illustrate the predictions from the best models using one

image from the test set of each dataset.
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Figure 5.6: Sample predictions on one image from each of our three datasets (Zebrafish,
Medaka and Seabream) using best performing models (exponential heatmap based U-
Net). First column: Original image. Second column: image with predicted landmarks
(red dots) and ground truth landmarks (blue dots)

5.6 Conclusions

We have evaluated two types of regression based landmark detection strategies combined

with four CNN architectures on two microscopy and one radiography imaging datasets

of different types of fish species with limited ground truths. The winning strategy

(heatmap-based regression with Exponential generation function and U-Net architecture)

is a simple end-to-end deep learning methodology where a single model is able to

predict all the landmarks in a single run. Datasets and codes are distributed using open
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licenses and integrated into Cytomine [124]1. End-users can train models and proofread

model predictions, then export all statistics for their morphometric studies. Preliminary

experiments have showed that this approach works also well on images of butterfly wings

(http://hdl.handle.net/2268.2/14509) and we expect our work will ease landmark

detection in future bioimaging studies.

1Code: https://github.com/cytomine-uliege. Demo server with datasets: http://research.u
liege.cytomine.org/ username: eccv2022bic password: deep-fish
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6
UNCOVERING THE BONE STRUCTURES IN ZEBRAFISH

LARVAE: A DEEP LEARNING APPROACH IN

MICROSCOPY

As discussed in Chapter 1, the zebrafish (Danio rerio) is widely regarded as an ideal

model for studying vertebrate biology in biomedical research. Its transparent body during

larval stages and a genetic similarity of over 75% with humans make it especially useful

for genetic and molecular studies focused on bone biology. Bone structures in developing

zebrafish (at 9− 10 dpf) are typically observed by staining wildtype/untreated and

mutant/treated larvae with calcium-binding dyes, like alizarin red or calcein, followed by

microscopic imaging. Examining the development of bone structures in zebrafish larval

microscopy images is essential to accurately analyze skeletal development and bone-

related anomalies. Missing structures or gaps in imaging data, whether due to imaging

limitations, staining inconsistencies, or structural irregularities from mutations can

hinder accurate assessment of bone phenotypes. Deep learning techniques, specifically in

image segmentation, can offer promising solutions for identifying and even reconstructing

missing and occluded bone structures in zebrafish larval images. Using a deep learning

model for semantic segmentation can enable precise identification and segmentation of

bone regions across microscopy images, even when parts of the structure are weak, faint

or occluded. In this chapter, we present a deep learning-based semantic segmentation

approach to uncover the missing, weak, faint and overlapping bone structures from two

microscopy image datasets of 9-day post-fertilization (dpf) zebrafish larvae, acquired
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from lateral and ventral views respectively.

6.1 Introduction

Skeletal development in zebrafish is a dynamic and tightly controlled process, with

individual elements developing in a predetermined sequence and timing [44, 54, 97].

Most studies in zebrafish focus on the head skeleton, as it is the first to mineralize,

and the most prominent structure to be analyzed is the operculum, later covering the

gills [103, 189]. However, assessing the entire head skeleton reveals that individual ele-

ments may respond differently to a stimulus [5, 6], thus assessment of the entire cranial

skeleton is required. Key phenotypic outcomes include overall changes in mineralization

levels [43, 150, 195] and deformities or absence of specific bone elements resulting from

disruptions in morphogenic pathways [13, 28, 31]. Inter-individual variability, as well

as variability in experimental conditions and timing require that comparisons between

mutant/treated larvae with their wild type/untreated controls are always performed in

parallel and on a sufficient number of animals. These studies provide insights into the

molecular basis of bone diseases, aiding in diagnosis, and facilitating drug screening.

Such research contributes to finding improved treatments for conditions associated with

aging, including osteoporosis, osteopetrosis, osteoarthritis, and various bone injuries

[40]. Analyzing developing bone structures from microscopy images of control and mu-

tant/treated larvae is a crucial but time consuming task. In the process of analysing the

bone structures, experts need to visually inspect each bone structure meticulously in

order to specify the presence or absence of the bone structure, and its shape and size.

Especially in ventral view, several structures are overlapping in 2d images (see Figure

6.1 (D)) and it is challenging to delineate the boundaries of each structure manually.

Moreover, certain structures are either absent or have very unclear/weak boundaries

(see Figure 6.1 (B) and (C)), posing challenges for biologists in objective visual observa-

tion. Nowadays, biomedical researchers are taking the assistance of computer vision

based automatic image processing tools to reduce human error and streamline the time

consuming manual annotations of the developing bone structures in the model fish.

In Section 6.2, we describe the image acquisition process and the image datasets

used in our approach. Section 6.3 is dedicated to specifying the methodology, network

architecture and evaluation protocol used and we present our results in Section 6.4.
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Figure 6.1: Image samples of zebrafish larvae depicting cases of present, missing, blurred,
and occluded structures. The top row displays the original images, while the bottom
row shows a magnified section (indicated by a blue square). In column (A), both Br2a
and Br2b structures are visible. In column (B), Br2a is missing, while Br2b is faintly
visible. In column (C), both Br2a and Br2b are absent. In column (D), Cb1 and Cl1 are
overlapping with unclear boundaries.

6.2 Image acquisition and dataset description

In this work, we use two types of datasets, acquired using the same microscopy setting,

but different views of the alizarin red stained, 3-dimensional head skeleton, namely a

"lateral view" and a "ventral view". In the lateral view, euthanized larvae are placed in a

side view such that the eyes and most symmetrically paired elements overlap, while the

vertebral bodies are clearly visualized (see Figure 6.3 (a)). In the ventral view, the larvae

are placed horizontally with the bottom (ventral) facing towards the objective of the

microscope. In that view, all elements of the head skeleton are clearly observed, albeit

some are again overlapping (see Figure 6.3 (b)). In the original study [150], two different

mutant lines were used, carrying insertion mutations in the col10a1a (zfin Id: ulg076) or

the fbln1 (zfin Id: ulg075) gene coding regions, respectively, that inactivate the encoded

protein. Only images from the col10ala mutant line is used in this chapter. For each line,

three genotypes were obtained by crossing heterozygous mutant parents: homozygous

(hom) carrying both copies of the mutant alleles, heterozygous (het) carrying one copy

each of the mutant and WT alleles, and WT carrying only the intact alleles (controls).

All larvae were sacrificed at the same age of 9 days post-fertilization (dpf), stained for

125



CHAPTER 6. UNCOVERING THE BONE STRUCTURES IN ZEBRAFISH LARVAE: A
DEEP LEARNING APPROACH IN MICROSCOPY

calcified structures by alizarin red, and imaged as described previously in [150] using

a dissecting microscope (Olympus SZX10, Tokyo, Japan, cell B software version 3.4).

Annotations were carried out by experts, while genotyping of all individual larvae was

performed after all image analysis was finalized as described in [150]. Two datasets were

formed: the "lateral view" dataset and the "ventral view" dataset. In the lateral view

dataset, visible vertebral bodies are annotated, whereas in the ventral view dataset, all

visible bone structures of the head of the zebrafish larvae are annotated. Since in both

datasets, some structures are either missing or not clearly visible, the total number of

structures varies from image to image.

Figure 6.2 shows sample images from both datasets and their corresponding masks.

In both cases, the original image resolution is 1932×2576. The lateral view dataset

contains 117 images, and the ventral view dataset contains 192 images. Images in the

lateral and ventral dataset originate respectively from 36 and 38 different fish. For each

fish, multiple images (on average 3 and 5 per fish, respectively for the lateral and ventral

views) are present in the dataset that correspond to different views of the fish in terms

of focus or orientation. Some images have also been annotated several times by different

annotators. We decided to incorporate them all in the dataset, as they reflect natural

diversity in the data collection protocol. We took care, however, of not incorporating

images from the same fish in both the training and test set to avoid any bias in the

evaluation (see Section 6.3.4 for the experimental protocol).

6.2.1 Annotation description

In the lateral view dataset, visible bone structures (vertebral bodies) of the vertebral

column are annotated and all are termed as "VB", a short form of vertebral body. In

the ventral view dataset, an image has a maximum of 24 bone structures if none is

missing. The names of the structures are as follows: Branchiostegal ray 1 (Br1a, Br1b),

Branchiostegal ray 2 (Br2a, Br2b), Ceratobranchial (Cb1, Cb2), Ceratohyal (Ch1, Ch2),

Cleithrum (Cl1, Cl2), Dentary (D1, D2), Entopterygoid (En1, En2), Hyomandibular

(Hm1, Hm2), Maxilla (M1, M2), Notochord (N), Occipital (Oc1, Oc2), Opercle (Op1,

Op2), Parasphenoid (P). Out of 24 structures, 22 structures are in 11 bilateral pairs,

while two axial structures are single (N, P). Apart from structural annotations, we have

also annotated the full fish larvae in ventral view to be used for automatic cropping

in our experiments. Image samples from lateral and ventral view datasets with their

corresponding annotated bone structures are shown in Figure 6.3.

While visualizing the ventral view dataset, we observe that the boundaries of some
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Figure 6.2: Sample images from lateral view dataset (first row) and ventral view dataset
(second row) with their corresponding segmentation masks. The scale bars correspond to
500 µm.

structures are either blur or unclear due to overlapping with other structures. As shown

in Figure 6.1 (B), Br2b is very weak but present and in Figure 6.1 (D), the boundaries

of Cb1 and Cl1 are not clear due to overlapping. Because of these limitations in visual

perception, structures may not get accurate annotations, potentially inducing subjectivity

in manual annotations by the experts and resulting in the possibility of mislabeled data.

6.3 Method Description

To identify and segment missing, faint and occluded bone structures in microscopy

images, we employ a "binary semantic segmentation" approach, where each pixel is

classified as either positive (1) or negative (0). Clusters of positive pixels (1) represent
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Figure 6.3: Sample images with annotations from (a) lateral and (b) ventral view dataset.

regions of interest (ROIs ie. segmented bone structures), while clusters of negative pixels

(0) represent the background. We evaluate the model on test images by determining

the overlap between the predicted segmented structures and ground truth masks (we

discuss in detail about training and prediction phases in Section 6.3.3). Two distinct

binary segmentation U-Net models, with modifications at the output layer, are trained

separately for the lateral and ventral view datasets.

In the lateral view dataset, a binary segmentation U-Net model with a single output

layer is trained to segment all "VB" structures within the vertebral region of zebrafish

larvae. The use of a single output layer is appropriate due to the lack of structural

overlap. Furthermore, full-size images are utilized without cropping, and they undergo

resizing and padding during the training process (refer to Section 6.3.3 for details on the

training phase).

For the ventral view dataset, the approach involves first training a binary segmenta-

tion U-Net model to segment the entire larval body from full-sized images. The resulting

segmentation masks are then used to automatically crop the images. This cropping step,

applied to the ventral view dataset is intended to increase the proportion of positive class

pixels by reducing the background (negative class pixels), thereby partially addressing

the issue of class imbalance (we discuss the class imbalance problem later in this section).

As described in Section 6.2, ventral images contain 24 structures, of which 22 form 11

pairs with symmetrical shapes (e.g., Br1a and Br1b or M1 and M2 are symmetrical). Two

structures (N and P, shown in Figure 6.3) are unpaired, as they are located along the

medial axis. Additionally, some structures overlap (e.g., D1, M1, and Cb1, Cl1, Oc1, and

N, as seen in Figure 6.3), which complicates the segmentation task for a binary model
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with a single output mask. Furthermore, the dataset is affected by class imbalance,

as the average ratio of positive pixels to background pixels per image (and thus per

mask) is below 0.3, a problem that could worsen if separate output masks are used

for each structure. To tackle both these issues, we create the final ground truth masks

by combining each symmetrical pair of structures into a single mask, while structures

without symmetry are kept as separate masks. This approach helps mitigate class

imbalance and addresses the overlap issue by merging symmetrical structures into one

mask. We then stack these masks along the third axis to produce a multi-layer output

mask with dimension H×W ×13 where H and W are the height and width of the input

image, and 13 is the total number of output masks (11 paired and 2 unpaired structures).

If a structure is absent in the ground truth, the combined mask contains only background

pixels (all values set to 0), while any present structure is marked with positive class

values (1s) in its respective locations. If all structures in a mask are missing, then

we get a fully negative mask (all values as 0) along the third dimension, ensuring a

consistent number of masks (i.e. 13) at the output layer. Figure 6.2 shows example images

from both lateral and ventral views with their corresponding segmentation masks. For

visualization, all ventral masks are merged into a single mask. Note that only head

structures from the ventral view dataset are used in this methodology. Figure 6.4 depicts

the end-to-end methodology we use for the lateral view (above) and ventral view (below)

datasets.

6.3.1 CNN architecture

We implemented a CNN architecture called U-Net for both image datasets. Originally

introduced in [157] (and discussed in Section 2.4.4.3), U-Net is a deep learning model

designed for semantic segmentation in biomedical images. It utilizes an encoder-decoder

structure, where the encoder comprises conventional blocks of convolutional layers

followed by max-pooling layers. The max-pooling layers reduce the resolution of the acti-

vation maps, enhancing spatial invariance of the features. The decoder block, composed

of upsampling or deconvolutional layers, restores the original image resolution. Each con-

volutional block’s activation maps are added to the corresponding deconvolutional block,

transferring feature information from the encoder to the decoder during upsampling.

This transfer aids the learning process by addressing vanishing gradients. Additionally,

batch normalization is applied throughout both modules to enable more efficient network

training. Figure 6.5 shows the exact U-Net architecture used in our methodology.
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Figure 6.4: Method description for lateral view (A) and ventral view (B) dataset training

6.3.2 Loss functions

To handle the problem of class imbalance, we use ‘focal loss’ as CNN’s cost function. Focal

loss is a generalized version of cross-entropy (CE) loss that tries to focus more on ’hard

to classify’ (FN) examples and down-weigh the ’easy to classify’ (TN), thus reducing the

overhead of the class imbalance problem. To investigate the robustness of the model

against "hard to annotate" structures (e.g. Br2a, Br2b, M1, Cb1, Cl1 etc.) in some images,

we experiment with a model using ‘bi-tempered logistic loss’ combined with ‘focal loss’

(see Section 2.6.2 for detailed description about these loss functions).

6.3.3 Training and prediction phases

In the training phase, original images are first downscaled to 512×512 to be fed into the

network for both datasets. Since the original images are rectangular, we first downscale

the image to a size of 512 along the largest dimension while keeping the aspect ratio

unchanged. Padding (with zeros) is then added to the smallest dimension to produce a

512×512 square image. Following this procedure, in lateral view dataset, the output of

the model consists of a single mask of dimension H×W with H and W corresponding to

130



6.3. METHOD DESCRIPTION

Figure 6.5: UNet architecture (with modifications at last layer) used in our experiments

the height and width of the input image respectively, while in ventral view dataset, the

output of the model is composed of 13 masks with height and width equal to those of the

input image.

In the prediction phase, all the VB structures are predicted with a single output

mask in case of lateral view dataset and then this mask is upscaled to the original image

size to be compared with the original ground truth masks. This upscaling is performed

by first removing the padding, then resizing it to the original height and width of the

image. The same upscaling steps are applied to upscale all the output masks in the

ventral image dateset as well. In ventral view dataset, the third dimension (depth) of

the output mask is 13, hence each slice of the output mask either corresponds to paired

structures or single structure. During prediction phase, we may get some blobs of false

positives along with ROIs (i.e. true positives) in the slices of the predicted mask in both

the lateral and ventral view images. For mask slices having single structure (i.e. P and N),

in our experiments blobs of false positives are removed by considering only the potential

predicted structures that have pixels count of more then 70 (as it was observed on our

dataset that P and N structures have more than 1000 pixel average area). False positives

blobs from paired structure slices of the predicted mask are removed by considering only

the blobs for potential predicted structures that have more then 25 pixel count.
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6.3.4 Experimental protocol and implementation

To evaluate the models in both image datasets, we adopt a K-fold cross validation

strategy where the dataset is partitioned into K folds of (approximately) equal sizes.

In each iteration, one fold serves as the test set, while the remaining K −1 folds are

combined, shuffled, and split into training and validation sets. Here the validation set is

used to select the best model for predicting the structures. This approach allows every

image in the dataset, the opportunity to serve as a test image when its corresponding fold

is designated as the test set. Following this rule, we choose the value of K = 5 for both

the lateral view and the ventral view dataset. Care was taken to put all the images of

the same fish in the same fold to avoid any bias in the evaluation. For each fold training,

the model is trained for 2000 epochs and is saved at the current checkpoint (using

checkpoint callback) if the loss at current epoch is improved over the loss at previous

epoch. Model training on the current fold is stopped, and moves to next fold, if the

training at the current fold does not see any performance improvement in validation loss

for the next 300 epochs (using early stopping callback). We select precision, recall and

dice score as metrics for the evaluation of the model. The Dice score represents the area

of overlap between the predicted structures and the ground truth masks and ignoring

the background, which is also equivalent to the F1 score (see Section 2.6.1.2). It directly

assesses how much the predicted and actual areas align, without taking into account

the background pixels. Precision measures the fraction of pixels predicted as positive by

the model that are truly positive (True positive/(True positive + False positive)). Recall

measures the fraction of truly positive pixels that are correctly predicted by the model

(True positive/(True positive + False negative)).

In case of the lateral view dataset, we first calculate precision, recall and dice

score per structure at the pixel level and then average them to compute the average

precision, recall and dice score per test image. The final precision, recall and dice scores

are computed by averaging them over all the folds. We then quantify performance at the

structure and image level. To reduce tiny false positives in the predictions, we establish

a criterion wherein regions (i.e. blobs of predicted positive pixels) within the predicted

mask must contain a minimum of 25 pixels to be considered a potential candidate for

structure predictions. We choose this values as there is no structure which has an area

of less than 50 pixels in the original full size ground-truth masks. We first determine

image level accuracy, which is calculated as the proportion of images in which all

ground truth structures are correctly predicted by the model, relative to the total number

of images in the dataset. A ground truth structure is deemed predicted correctly if the
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dice score is at least 0.5 with one of the predicted structures. Next, we compute the

structure level accuracy, defined as the proportion of the ground truth structures

across all images in the dataset that are correctly predicted.

For the ventral view dataset, we first train a single output layered U-Net with a

full larval body mask in order to automatically crop the images around the body of the

zebrafish larvae. After creating the cropped dataset of ventral images, we proceed with

the training and evaluation of the multi-layered output version of the U-Net architecture.

We first compute the average precision, recall, and Dice score (i.e. F1 score) score for

each structure at pixel level across 5 folds. Then, we also quantify the performance

at the image level. As for the ventral view dataset, we set a criterion that a region

(blob of positive pixels) must contain more than 25 positive pixels to be considered a

candidate structure for prediction. The selection of this value is based on the observation

that the structures in the ventral images do not contain fewer than 70 pixels (40% of

70≈ 25). We then compute the number of false positive and false negative predictions

at the image level for each structure separately. A false positive is an image where the

structure is missing in the ground truth but there is at least one predicted structure

somewhere in the image. A false negative is an image where the structure is present

in the ground truth but no predicted structure has a dice score above 0.4 with respect

to that structure. A lower Dice score threshold is used for the ventral view due to the

subjectivity in expert annotations for certain structures that may appear weak, blurred,

or overlap with other structures. The overall image level accuracy for a given structure

is then the percentage of images that are neither false positive nor false negative.

6.4 Results and Discussion

We first evaluate our model on the "lateral view" dataset using 5-fold cross validation
without cropping. In Table 6.1, we report at pixel level, the average precision, recall and

Dice score with standard deviation (S.D.) across 5 folds. Next, we proceed with computing

the accuracies at image and structure level mentioned in Section 6.3.4. They are reported

in Table 6.2.

Following the protocol mentioned in Section 6.3.4, we evaluate our multi-output mask

U-Net model using 5 fold cross-validation on the "ventral view" dataset. The average

precision, recall and Dice score (F1 score) for each structure at ‘pixel level’ across 6-folds

are reported respectively in the second, third and fourth columns of Table 6.3. The total

number of missing structures in ground truth images is mentioned in the fifth column

133



CHAPTER 6. UNCOVERING THE BONE STRUCTURES IN ZEBRAFISH LARVAE: A
DEEP LEARNING APPROACH IN MICROSCOPY

Table 6.1: Pixel-level precision, recall and dice score, averaged over all test images, using
5-fold cross validation on the lateral view dataset.

Metric Score ± S.D.
Precision (at pixel level) 0.8658 ± 0.027

Recall (at pixel level) 0.8382 ± 0.018
Dice score (at pixel level) 0.8494 ± 0.023

Table 6.2: Accuracy at image level and accuracy at structure level for the lateral view
dataset, using 5-fold cross-validation.

Metric Score

Accuracy (at image level) 0.88
Correct predictions
(Out of 117 images)

103

Accuracy (at structure level) 0.97
Correct predictions

(Out of 664 structures)
648

of Table 6.3. Next, we report in the same table the number of false positive and false

negative images and the image level accuracy, as described in Section 6.3.4.

Discussion. From the results in Table 6.2, we infer that for lateral view dataset, our

model performed well in predicting the VB structures from the tail part of the fish. By

visually inspecting the predictions, we observed that our model did not predict some

structures which are present in ground truth annotations primarily due to the fact that

these unpredicted structures are only very weakly visible in the images. In some of these

cases, different annotators might reasonably have omitted marking the vertebral bodies

that our model missed (see Figure 6.6). Irrespectively of the quality of the prediction

of individual structures, the model correctly predicted the exact number of vertebral

bodies in 101 of the 117 images (86.3%). In the remaining images, the difference between

the predicted and the actual counts was minimal: 11 images showed a difference of 1, 4

showed a difference of 2, and 1 image showed a difference of 3. With only one exception

(the image with a difference of 3), all counting errors were underestimations. Given the

limited size of the dataset, we believe these results are very satisfying.

For the ventral view dataset, Table 6.3 shows that structure ’P’ is predicted with 100%

accuracy across all folds. This high accuracy is due to its large area, distinct boundaries,
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Table 6.3: Average scores per structure (at pixel level) across 5-fold cross validation
(Precision, Recall and F1 score) and number of correctly predicted (as present or missing)
for ventral view dataset

Structures Precision ± S.D. Recall ± S.D.
F1 score ± S.D.

(Dice score)

Number of
missing

structures

False
positives

False
negatives

Correct
predictions
(out of 192)

Prediction
accuracy

(in %)
Br1a 0.75 ± 0.01 0.58 ± 0.06 0.58 ± 0.07 1 1 0 191 99
Br1b 0.59 ± 0.08 0.73 ± 0.04 0.73 ± 0.02 3 2 6 184 97
Br2a 0.56 ± 0.13 0.53 ± 0.13 0.54 ± 0.13 137 5 42 145 76
Br2b 0.52 ± 0.13 0.52 ± 0.13 0.52 ± 0.13 132 3 48 141 73
Cb1 0.67 ± 0.15 0.62 ± 0.13 0.64 ± 0.14 9 9 3 180 94
Cb2 0.64 ± 0.15 0.66 ± 0.14 0.63 ± 0.14 5 5 1 186 97
Ch1 0.68 ± 0.15 0.59 ± 0.14 0.60 ± 0.14 9 5 22 165 86
Ch2 0.64 ± 0.12 0.55 ± 0.08 0.56 ± 0.07 8 1 13 178 93
Cl1 0.56 ± 0.04 0.54 ± 0.03 0.55 ± 0.03 0 0 2 190 99
Cl2 0.44 ± 0.13 0.49 ± 0.10 0.46 ± 0.11 0 0 2 190 99
D1 0.51 ± 0.04 0.51 ± 0.07 0.50 ± 0.04 0 0 0 192 100
D2 0.53 ± 0.14 0.56 ± 0.12 0.54 ± 0.12 0 0 0 192 100

En1 0.67 ± 0.11 0.66 ± 0.04 0.64 ± 0.05 0 0 0 192 100
En2 0.53 ± 0.09 0.52 ± 0.10 0.51 ± 0.09 0 0 0 192 100
Hm1 0.84± 0.07 0.79 ± 0.07 0.81 ± 0.07 0 0 0 192 100
Hm2 0.80 ± 0.07 0.77 ± 0.07 0.78 ± 0.07 0 0 0 192 100
M1 0.55 ± 0.06 0.54 ± 0.10 0.52 ± 0.08 10 1 24 167 87
M2 0.59 ± 0.08 0.53 ± 0.09 0.53 ± 0.07 5 1 24 167 87
N 0.89 ± 0.01 0.84 ± 0.04 0.85 ± 0.03 0 0 0 192 100

Oc1 0.60 ± 0.09 0.48 ± 0.06 0.51 ± 0.06 32 8 24 160 83
Oc2 0.54± 0.05 0.46 ± 0.03 0.48 ± 0.01 38 9 25 158 82
Op1 0.84 ± 0.06 0.83 ± 0.04 0.83 ± 0.04 2 2 0 190 99
Op2 0.78 ± 0.07 0.76 ± 0.05 0.75 ± 0.05 0 0 0 192 100

P 0.89 ± 0.03 0.90 ± 0.01 0.89 ± 0.02 0 0 0 192 100

lack of overlap with other structures (see Figure 6.3), and also to its presence in all

images. Similarly, structures ’N’, ’Hm1’, ’Hm2’, ’D1’, ’D2’, ’En1’, and ’En2’ also achieve

perfect accuracy, mainly because they have clear, non-overlapping boundaries and appear

consistently in all images. ’Op2’ is perfectly predicted as well, but there are two false

positives in the case of ’Op1’. ’Cl1’ and ’Cl2’ that are present in all images are very well

predicted but are wrongly undetected in two images. Unsurprisingly, the remaining

structures that have an overlap with others, small size, blurred boundaries and/or a

faint presence are more challenging to detect for the model and their prediction accuracy

is inversely proportional to the number of images where the structure is missing. ’Cb1’

and ’Cb2’ present a prediction accuracy of about 95%, ’M1’ and ’M2’ of about 85%. The

most difficult structures are ’Oc1’ and ’Oc2’ (∼ 80% accuracy) that have a small size and

a strong overlap with ’Cb1’/’Cb2’ and ’Cl1’/’Cl2’ and ’Br2a’ and ’Br2b’ (∼ 75% accuracy)

that are missing in more than 70% of the images. Note that a majority of the errors are

false negatives, i.e. structures that are present in the ground truth but not detected. The
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Figure 6.6: Two cases of bad predictions from the lateral view dataset. The first row
shows the case where unpredicted structure is very small. The second row contains the
case where unpredicted structures are slightly visible and subjectively annotated. The
first column represents the original full-size images, the second column shows the ground
truth annotations of the full-size images, and the third column displays the full-size
predicted annotations.

Dice score at the pixel level is not perfectly correlated with the prediction accuracy at

the image level, as some perfectly detected structures have low dice score (e.g., ’D1’ and

’D2’). This translates the fact that some structures have blurred boundaries, but are not

difficult to detect.

Impact of the genotype on bone development. One of the objectives of the orig-

inal study [150] was to identify relationships between fish genotype and the pres-

ence/absence of some structures. To illustrate this downstream task, we conducted

chi-square tests for each structure to detect significant dependencies between geno-

type and structure presence/absence. The genotype was divided into two categories

(homozygous vs {heterozygous,wild-type}). We performed these tests using ground truth

annotations first and then, our model’s predictions obtained by 5-fold cross-validation.

Table 6.4 reports p-values of both tests for all structures such that at least one of the

two tests yielded a p-value below 0.05. The results reveal that the relationship between

the genotype and the presence/absence of structure ’M1’ is confirmed by both the ground

truth and the predicted structures. The dependence of ’Oc1’ is considered significant
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Table 6.4: P-values for a chi-square test, performed at the image level, comparing the
genotype with the presence/absence of a structure, with the ground truth annotations
(second column) and the model predictions obtained by 5-fold cross-validation (third
column). Only the structures for which at least one p-value is lower than 0.05 are shown.

Structures P-value Ground-Truth P-value Predictions
M1 0.000025 2.51e-11
Oc1 0.000196 0.1175249
Ch1 0.359584 0.0300473
M2 0.417581 8.43e-11

Table 6.5: P-values for a chi-square test, performed at the fish level, comparing the
genotype with the presence/absence of a structure, with the ground truth annotations
(second column) and the model predictions obtained by 5-fold cross-validation (third
column). Only the structures for which at least one p-value is lower than 0.05 are shown.

Structures P-value Ground-Truth P-value Predictions
M1 0.008917 0.006183

Br1b 0.049183 0.851399
M2 0.231883 0.000270

when using the ground truth but it is not confirmed using the model predictions. On the

other hand, the model predictions highlight a significant link between ’Ch1’ and ’M2’ and

the genotype that is not observed using the ground truth.

Since several images are from the same fish, the p-values in Table 6.4 are too opti-

mistic. We also performed the same tests but this time at the fish level. The genotype was

also encoded into the same two categories. The structure presence/absence information

was encoded into three categories: 0 if the structure is missing in all fish images, 1 if it

is present in all fish images and 2 otherwise. Table 6.5 compares the p-values of both

tests for all structures such that at least one of the two tests yielded a p-value below

0.05. At the fish level, only ’M1’ is deemed significant by both tests. ’Br1b’ is significantly

linked with the genotype when using the ground truth annotations but not when using

the predicted ones, while the opposite is true for ’M2’. Given the symmetry between ’M1’

and ’M2’, it makes sense that both are linked with the genotype and this connection was

also reported in [150] based on a different manual re-annotation of the fish.

Overall, Tables 6.4 and 6.5 show that tests based on predicted structures do not lead

to exactly the same conclusions as tests based on manual annotations. This discrepancy

was anticipated given that model predictions do not perfectly align with ground truth
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(as shown in Table 6.3). Note however that the manual annotations are not expected

to be flawless either, given the difficulties discussed previously. As a consequence, we

believe that the significant genotype associations identified through model predictions

certainly deserve further investigation. Machine learning-based predictions may actually

capture more systematic patterns than manual annotations, and, like the ground truth

annotations, they are expected to be free from potential bias since they were generated

without any consideration of the genotype information.

6.5 Experiments with mislabeled data

Lastly, we conduct experiments using artificially ’mislabeled/corrupted’ data. The primary

goal of this experiment is to evaluate the robustness of the model when trained with

mislabeled images and to check the impact of different training losses on this robustness.

As discussed in Section 6.1, annotations can be subjective and may result in mislabeling

errors by experts due to the challenges associated with visual observations (see also

Figure 6.1). In this experiment, we focus on the ventral view dataset and we deliberately

corrupt it by mislabeling some structures in the images. Mislabeling is applied only to

structures that are difficult to annotate, such as those that are missing in some images

or have small, weak, faint, or overlapping boundaries, i.e. M1, M2, Br2a, Br2b, Cl1,

Cl2, Oc1, Oc2, Cb1, Cb2. Perturbations involve omitting annotations for very weak but

labeled structures (e.g. M1 and M2), and subjectively annotating structures when they

overlap or are missing (e.g. Oc1, Oc2, Cb1, Cb2) (see Figure 6.7).

Figure 6.7: Random perturbations applied to different structures. M1 and M2 are visible
in the image but omitted in the mask. Oc1, Oc2, Cb1 and Cb2 are absent in the original
ground truth but subjectively annotated in the mask.
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Following this protocol, we first divide the dataset in train, validation and test sets

into 70 : 15 : 15 ratio respectively. As in the previous experiments, the test set contains

(30) images from (6) fish that are not present in the train and validation sets to avoid

any bias. Then, we corrupt 10% of the training set while keeping the validation and test

set unaltered. More precisely, for each structure in the above list, we randomly pick 10%

of the training images where the structure is present and we remove it from the ground

truth. We then randomly select 10% of the images where the structure is missing and we

manually and subjectively add an annotation in the images at the position where the

structure should have been. The model is then trained on the resulting corrupted training

set for 3000 epochs in a single run using three loss functions: focal loss, bi-tempered loss,

and a combination of bi-tempered and focal loss called focally weighted bi-tempered
loss. The first two losses are described in Section 2.6.2.2. The third one is novel and

detailed below. This results in three separate models, each trained with a different loss

function. We also train models using the uncorrupted original training set with the same

loss functions for comparison. The results are reported and discussed in Section 6.5.1.

Focally weighted bi-tempered loss. For the experiments in this section, we imple-

ment a novel loss function, called ’focally weighted bi-tempered loss’, which is a hybrid

version of the focal and bi-tempered losses. The basic idea of implementing this loss

function is to design a loss that can handle class imbalance and mislabeling simultane-

ously. We define the focally weighted bi-tempered loss function for binary classification

problems as follows:

LFBT =LFL ×LBi−Tempered (6.1)

where the focal loss LFL is defined in Equation 2.50 of Section 2.6.2.2.5 and the bi-

tempered loss LBi−Tempered is defined in Equation 2.54 of Section 2.6.2.2.6. The resulting

loss thus depends on the tunable hyper-parameters of both losses, i.e. α and γ for the focal

loss and the two temperatures T1 and T2 for the bi-tempered loss. In all our experiments,

we set α to 0.8, γ to 2 (default), T1 to 0.8 and T2 to 1.8.

6.5.1 Results

We present preliminary experimental results with the focal loss, the bi-tempered loss,

and the combination of both, using the original training set and a training set with 10%

’mislabeled/corrupted’ data in Tables 6.6 and 6.7 respectively.

From Table 6.6, we can see that the focal loss performs better than the bi-tempered

and the focally weighted bi-tempered losses in terms of structure predictions. This might
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Table 6.6: Results on test images using various loss functions for original training dataset

Structures
Total

structures

Focal Bi-tempered
Bi-tempered +

Focal

Dice score
Correct

predictions
(out of 30)

Mistakes Dice
score

Correct
predictions
(out of 30)

Mistakes Dice
score

Correct
predictions
(out of 30)

Mistakes
False

positive
False
negative

False
positive

False
negative

False
positive

False
negative

Br1a 30 0.79 30 0 0 0.81 30 0 0 0.79 30 0 0
Br1b 30 0.56 30 0 0 0.76 29 0 1 0.72 30 0 0
Br2a 17 0.60 25 1 4 0.65 24 1 5 0.66 28 2 3
Br2b 17 0.44 19 0 11 0.51 25 0 5 0.52 28 1 4
Cb1 30 0.62 29 0 1 0.59 26 0 4 0.58 27 0 3
Cb2 30 0.61 28 0 2 0.57 27 1 2 0.65 29 0 1
Ch1 30 0.81 30 0 0 0.81 30 0 0 0.81 30 0 0
Ch2 30 0.69 30 0 0 0.80 30 0 0 0.80 30 0 0
Cl1 30 0.58 27 0 3 0.59 26 0 4 0.55 26 0 4
Cl2 30 0.60 30 0 0 0.63 29 1 0 0.61 30 0 0
D1 30 0.70 30 0 0 0.70 29 1 0 0.73 29 0 1
D2 30 0.82 30 0 0 0.83 29 0 1 0.77 30 0 0
En1 30 0.72 30 0 0 0.75 30 0 0 0.76 30 0 0
En2 30 0.69 30 0 0 0.79 30 0 0 0.72 30 0 0
Hm1 30 0.84 30 0 0 0.85 30 0 0 0.81 30 0 0
Hm2 30 0.83 30 0 0 0.81 30 0 0 0.74 30 0 0
M1 28 0.62 26 1 3 0.65 28 0 2 0.53 29 1 1
M2 29 0.57 29 1 0 0.61 30 0 2 0.52 29 1 1
N 30 0.82 30 0 0 0.85 29 0 1 0.82 29 1 0

Oc1 20 0.63 30 0 0 0.56 27 3 0 0.55 27 3 0
Oc2 20 0.62 30 0 0 0.55 29 0 1 0.57 29 1 0
Op1 30 0.90 30 0 0 0.90 30 0 0 0.86 30 0 0
Op2 30 0.88 30 0 0 0.88 30 0 0 0.85 30 0 0

P 30 0.91 30 0 0 0.91 30 0 0 0.87 30 0 0
Total 671 27 33 28

be due to the fact that bi-tempered loss is specifically built to handle mislabeled/corrupted

data. Since in this case our dataset is neither mislabeled nor corrupted, at least explicitly,

we might expect some errors using the bi-tempered loss and its variant. On the other

hand, by looking at Table 6.7, where we use dataset with 10% mislabeling, the focal

loss has more prediction errors (35 mistakes) as compared to bi-tempered (22 mistakes)

and bi-tempered and focal loss combined (only 16 errors). We believe the improved

performance with bi-tempered and focal loss combined is due to the dual challenges

present in the dataset: mislabeling and class imbalance. bi-tempered loss effectively

addresses the mislabeling issue, while focal loss tackles the class imbalance, collectively

enhancing the model’s performance. More surprisingly, models trained on the corrupted

dataset with the bi-tempered and the focally weighted bi-tempered losses perform better

than the models trained on the original dataset. This might be caused by the data

corruption showing the effect of a data augmentation step. These preliminary results

come from a single train-validation-test split and additional experiments are necessary

to confirm these promising findings.
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Table 6.7: Results on test images using various loss functions for a training dataset with
10% corruption.

Structures
Total

structures

Focal Bi-tempered
Bi-tempered +

Focal

Dice score
Correct

predictions
(out of 30)

Mistakes Dice
score

Correct
predictions
(out of 30)

Mistakes Dice
score

Correct
predictions
(out of 30)

Mistakes
False

positive
False
negative

False
positive

False
negative

False
positive

False
negative

Br1a 30 0.79 29 0 1 0.75 29 0 1 0.80 30 0 0
Br1b 30 0.68 30 0 0 0.80 29 0 1 0.76 30 0 0
Br2a 17 0.57 22 0 8 0.72 27 0 3 0.67 27 1 2
Br2b 17 0.43 15 0 15 0.57 25 0 5 0.47 22 0 8
Cb1 30 0.70 29 0 1 0.66 28 0 2 0.68 29 0 1
Cb2 30 0.68 29 0 1 0.65 28 0 2 0.65 30 0 0
Ch1 30 0.81 30 0 0 0.83 30 0 0 0.81 30 0 0
Ch2 30 0.83 29 0 1 0.81 30 0 0 0.74 30 0 0
Cl1 30 0.49 29 0 1 0.62 27 0 3 0.63 29 0 1
Cl2 30 0.52 30 0 0 0.65 30 0 0 0.60 30 0 0
D1 30 0.73 30 0 0 0.72 30 0 0 0.62 30 0 0
D2 30 0.82 30 0 0 0.74 30 0 0 0.67 30 0 0
En1 30 0.77 30 0 0 0.74 29 0 1 0.75 30 0 0
En2 30 0.78 30 0 0 0.66 30 0 0 0.70 30 0 0
Hm1 30 0.84 30 0 0 0.85 30 0 0 0.82 30 0 0
Hm2 30 0.86 30 0 0 0.84 30 0 0 0.84 30 0 0
M1 28 0.59 26 0 4 0.66 30 0 0 0.55 30 0 0
M2 29 0.53 29 0 1 0.61 30 0 0 0.54 30 0 0
N 30 0.86 30 0 0 0.85 29 0 1 0.84 30 0 0

Oc1 20 0.62 29 1 0 0.60 28 2 0 0.56 29 1 0
Oc2 20 0.61 29 1 0 0.61 29 1 0 0.41 28 2 0
Op1 30 0.90 30 0 0 0.89 30 0 0 0.87 30 0 0
Op2 30 0.89 30 0 0 0.83 30 0 0 0.86 30 0 0

P 30 0.91 30 0 0 0.91 30 0 0 0.88 30 0 0
Total 671 35 22 16

6.6 Conclusions

We have implemented a semantic segmentation-based approach for uncovering the

missing, occluded, faint and weak bone structures of zebrafish larvae (9 dpf) from two

microscopy image datasets. For the lateral view dataset, we are able to achieve around

98% accuracy (at structure level) in identifying the target bone structures from the test

images. In the ventral view dataset, the performance seems more objective as there are

overlapping, blur, noisy structures that may lead to subjectivity in the manual annota-

tions. Our approach uses a simple end-to-end deep learning methodology in which the

presence or absence of missing structures are automatically reported by the model while

simultaneously segmenting faint, small, and overlapping structures. This mitigates the

challenges faced by experts during manual visual observation. Preliminary experiments

have also shown that the approach can tolerate a number of ’mislabeled/corrupted’ an-

notations if trained with bi-tempered loss function, possibly allowing for the experts to

reconsider their previous annotations. We expect that our work will ease the problem of
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identifying missing, weak, faint and occluded bone structures in future bone related or

morphometric studies even in the presence of mislabeled or corrupted datasets.
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7
CONCLUSIONS AND FUTURE PERSPECTIVES

This thesis provides a thorough exploration of current image analysis methods and

advanced machine learning (ML), specifically deep learning (DL) models to address

morphometric and phenotype studies in aquaculture and biomedical research.

In Chapter 2, we laid out the key concepts and components of ML and DL, covering

supervised learning techniques and their relevance to our research. By delving into

optimization strategies, loss functions, CNN architectures and transfer learning methods,

we provided a robust foundation for implementing deep learning models that can be

optimized for specific bioimage analysis tasks.

By reviewing the existing image analysis tools, algorithms, and methodologies in

Chapter 3, we established a foundational understanding of the state-of-the-art techniques

available for tasks such as image segmentation, phenotype classification, anatomical

landmark detection, and behavior tracking in various fish species. This background

informed the development and application of novel automated methods for analyzing

fish bioimages, focusing particularly on bone development studies.

Building on these principles and practices and noting the lack of tools for specific

tasks of the biomedaqu project partners, we implemented bioimage segmentation meth-

ods in Chapter 4, focusing on segmenting the operculum and head regions in red-channel

microscopy images of zebrafish larvae. This segmentation allowed for accurate mea-

surement of the operculum-to-head ratio, providing a quantitative metric for studying

mineralization in bone development. By addressing class imbalance issues through ad-

vanced loss functions and a two-step segmentation process, our end-to-end segmentation
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approach offers a significant advancement for automated morphometric analysis.

Chapter 5 extended this work by applying deep learning for anatomical landmark

detection across multiple datasets of fish species. We evaluated and compared different

regression strategies, demonstrating that heatmap-based regression with an exponential

generation function and U-Net architecture yielded the most accurate results across

datasets. This approach provides a reliable, scalable solution for bioimage analysis,

applicable to both biomedical and aquaculture research settings.

In Chapter 6, we focused on detecting and segmenting weak, faint, overlapping, and

missing structures in 2D lateral and ventral bioimages of zebrafish larvae. By employing

U-Net variants with single and multi-output masks, we demonstrated that deep learn-

ing models effectively segment bone structures, particularly in lateral views. Despite

challenges such as blurred boundaries and the subjectivity of manual annotations, our

model delivered promising results in identifying missing structures while accurately

segmenting faint, blurred, weak, and overlapping structures. Additionally, it exhibited

resilience to mislabeled data. This ability to automatically detect missing bone structures

and segment weak, blurred, and overlapping ones has the potential to significantly en-

hance future bone development studies by reducing manual effort and ensuring greater

consistency in analysis.

7.1 Future perspectives

This thesis offers a comprehensive foundation in automating bioimage analysis for mor-

phometric and phenotype studies related to fish bone development. The work presented

here opens several avenues for future research and practical applications that could fur-

ther advance bioimage analysis methodologies and their applications in aquaculture and

biomedical research. In this section, we outline potential directions and improvements

for future studies.

Enhancing model robustness and generalizability: Although our segmentation

and landmark detection models demonstrated promising performance across multiple

fish species, increasing their robustness on more diverse datasets would enhance their

applicability in wider aquaculture and biomedical settings. Future research could inte-

grate domain adaptation techniques [69] more extensively, allowing models trained on

specific species or imaging conditions to generalize effectively across new species, imaging

modalities, or laboratory setups. Additionally, further exploration of robust, lightweight

models for field deployment could enable practical applications in aquaculture monitoring
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systems.

Addressing annotation and dataset quality: Given the challenges faced in accu-

rately annotating biomedical images, as discussed in Chapter 6, future studies should

explore semi-supervised or self-supervised (unsupervised) learning approaches [80] to

alleviate the need for extensive, high-quality annotations. Developing techniques that

tolerate or even utilize noisy annotations and corrupted datasets could help improve

model performance and reliability, especially when expert-annotated datasets are limited

or inconsistently labeled.

Advancements in Multi-task and Multi-output models: The multi-output seg-

mentation methods used for detecting missing structures in the ventral view (Chapter 6)

demonstrated the potential of deep learning to perform complex analyses within a single

framework. Future studies might expand on this approach by integrating multi-task

learning such as discussed in [68], where segmentation, classification, and landmark

detection tasks are handled simultaneously. This could result in more efficient processing

pipelines and reduce computational costs, making real-time applications more feasible

in biomedical and aquaculture environments.

Incorporating advanced data augmentation and synthetic data: To further

mitigate the effects of class imbalance and limited data, future work could leverage

synthetic data generation techniques, such as Generative Adversarial Networks (GANs)

or foundational Models [212], to create additional, diverse training samples. Augmenting

training datasets with realistic synthetic images may help address underrepresented

classes in bioimage segmentation and anatomical landmark detection, potentially im-

proving model accuracy and resilience to variations in real-world applications.

Exploring transfer learning in greater depth: As discussed in Chapter 2, transfer

learning holds promise to reduce training time and resource requirements. Future work

could test transfer learning frameworks more extensively, particularly across species

with similar morphometric features. Investigating the impact of pre-trained models from

related domains or even from other medical imaging tasks could provide useful insights

and accelerate the adoption of these tools in new or emerging areas of bioimage analysis.

A thorough literature survey of transfer learning in medical imaging is found in [95].

Real-world application and validation in aquaculture: Validating these models

in operational aquaculture environments presents a valuable next step. Deployment

trials, where these algorithms are tested on real-world aquaculture data [119], would

enable practical validation and refinement of the proposed methods. Such trials could

lead to adaptive, user-friendly tools for aquaculture practitioners, especially in areas like
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automated disease detection, behavioral tracking, and population health monitoring etc.

Multimodal capabilities (e.g., ChatGPT-like models): This thesis explores vision-

based deep learning methods, specifically convolutional neural networks (CNNs), devel-

oped before the rise of more advanced foundational models like ChatGPT and Vision

Transformers (ViTs) [15]. These large-scale models, trained on extensive datasets using

unsupervised or self-supervised learning techniques, are designed to be general-purpose

and can be refined or adapted for various applications with minimal additional training.

Although their multimodal capabilities enable them to handle diverse downstream tasks

without requiring training from scratch, these models should be applied carefuly in

medical image analysis, considering the specific requirements of each use case. While

CNNs have demonstrated strong performance in specialized bioimage analysis tasks,

general-purpose multimodal foundational models like ChatGPT are still not yet flexible

enough for complex bioimage analysis applications where fine-grained structures have to

be detected, such as bioimage segmentation and anatomical landmark detection covered

in this thesis.

Using additional collected datasets: Some datasets collected by our collaborators

(see Introduction chapter) were not exploited during this thesis. These datasets are openly

available on a web-based collaborative platform [124]. Future research may leverage

them to further improve AI-driven automation in bioimage analysis, particularly for

studies related to bone development in both model and aquaculture fish species.

7.2 Final Remarks

In conclusion, this thesis advances the field of automated bioimage analysis for fish

morphometric and phenotype studies by developing adaptable, accurate methods that

address key challenges in segmentation, landmark detection, and structure identification.

The automated methodologies presented here not only streamline the analytical workflow

but are expected to also reduce dependency on labor-intensive manual annotations, which

should make bioimage analysis more efficient and scalable. Future studies could extend

these methods to other species and imaging conditions, and apply these tools in real-world

aquaculture and biomedical research environments. By pursuing the future directions,

researchers could enhance the impact of automated bioimage analysis in morphometric

studies, making these tools more accessible, accurate, and applicable to a broader range

of species and research goals. Ultimately, these developments have the potential to

enhance and expand bioimage analysis, contributing to both sustainable aquaculture
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practices and advancements in biomedical research.
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