magnetic flux concentrators; magnetic sensors; metamaterials; metasurfaces; micromagnetism; Acoustics waves; Engineered structures; Enhanced sensitivity; Metasurface; Micromagnetisms; On chips; Optical-; Permalloys; Thermal wave; Materials Science (all); Engineering (all); Physics and Astronomy (all)
Abstract :
[en] Metamaterials with engineered structures have been extensively investigated for their capability to manipulate optical, acoustic, or thermal waves. In particular, magnetic metamaterials with precise geometry, shape, size and arrangement of their elemental blocks may be used to concentrate, focus, or guide magnetic fields. In this work, we show the potential of using soft-magnetic permalloy (Py) metasurfaces to tailor the physical properties of other magnetic structures at the local scale. As an illustration, the magnetic response of a Cobalt (Co) sensor bar placed at the core of a Py metasurface is investigated as a function of in-plane magnetic fields through the planar Hall effect. Our findings reveal that by appropriately selecting the metasurface geometrical parameters, we can adjust the Co bar's coercive field and susceptibility, leading to a huge enhancement in sensor sensitivity of over 2 orders of magnitude. Micromagnetic simulations, coupled with magneto-transport equations and X-ray photoemission electron measurements (XPEEM) with contrast from magnetic circular dichroism (XMCD), accurately capture this effect and provide insights into the underlying physical mechanisms. These findings can potentially enhance the performance and versatility of magnetic functional devices by using specifically designed structural magnetic materials.
Disciplines :
Physics
Author, co-author :
Barrera, Aleix ✱; Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
Fourneau, Emile ✱; Université de Liège - ULiège > Département GxABT
Bort-Soldevila, Natanael; Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
Cunill-Subiranas, Jaume ; Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
Del-Valle, Nuria; Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
Lejeune, Nicolas ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Staňo, Michal ; CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
Smekhova, Alevtina; Helmholtz-Zentrum Berlin fur Materialien und Energie Albert-Einstein-Strasse 15, Berlin D-12489, Germany
Mestres, Narcis ; Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
Balcells, Lluis; Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
Navau, Carles ; Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
Uhlíř, Vojtěch ; CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic ; Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno 616 69, Czech Republic
Bending, Simon J ; Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, U.K
Valencia, Sergio ; Helmholtz-Zentrum Berlin fur Materialien und Energie Albert-Einstein-Strasse 15, Berlin D-12489, Germany
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Palau, Anna ; Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
The authors acknowledge financial support from Fonds de la Recherche Scientifique - FNRS under the programs PDR T.0204.21 and CDR J.0176.22, EraNet-CHISTERA R.8003.21. Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033/through CHIST-ERA PCI2021-122028-2A and PCI2021-122083-2A cofinanced by the European Union Next Generation EU/PRTR, PID2021-124680OB-I00, PID2021-128410OB-I00, and TED2021-130402B-I00, cofinanced by ERDF a way of making Europe, and Severo Ochoa Programme for Centres of Excellence in R&D (CEX2023-001263-S). The Spanish Nanolito networking project (RED2022-134096-T). The Research Foundation and by COST (European Cooperation in Science and Technology) [www.cost.eu] through COST Action SUPERQUMAP (CA 21144). N.L. acknowledges support from FRS-FNRS (Research Fellowships FRIA). The work of E.F. has been financially supported by the FWO and F.R.S.-FNRS under the Excellence of Science (EOS) project O.0028.22. AB acknowledge support from MICIN Predoctoral Fellowship (PRE2019-09781). S.J.B. was supported by the Engineering and Physical Sciences Research Council (EPSRC) in the United Kingdom under Grant No. EP/W022680/1. The authors acknowledge the Scientific Services at ICMAB and the UAB PhD program in Materials Science. M.S. and V.U. acknowledge the support from the TACR EraNet CHIST-ERA project MetaMagIC TH77010001. J.C.-S. acknowledges funding from AGAUR-FI Joan Oro\u0301 grants (2023 FI-2 00143), Generalitat de Catalunya. We thank the Helmholtz-Zentrum Berlin fu\u0308r Materialien und Energie for the allocation of synchrotron radiation beamtime at the SPEEM end-station of UE49-PGM beamline at BESSY II.The authors acknowledge financial support from Fonds de la Recherche Scientifique - FNRS under the programs PDR T.0204.21 and CDR J.0176.22, EraNet-CHISTERA R.8003.21. Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033/through CHIST-ERA PCI2021-122028-2A and PCI2021-122083-2A cofinanced by the European Union Next Generation EU/PRTR, PID2021-124680OB-I00, PID2021\u2013128410OB-I00, and TED2021-130402B\u2013I00, cofinanced by ERDF a way of making Europe, and Severo Ochoa Programme for Centres of Excellence in R&D (CEX2023\u2013001263-S). The Spanish Nanolito networking project (RED2022-134096-T). The Research Foundation and by COST (European Cooperation in Science and Technology) [ www.cost.eu ] through COST Action SUPERQUMAP (CA 21144). N.L. acknowledges support from FRS-FNRS (Research Fellowships FRIA). The work of E.F. has been financially supported by the FWO and F.R.S.-FNRS under the Excellence of Science (EOS) project O.0028.22. AB acknowledge support from MICIN Predoctoral Fellowship (PRE2019-09781). S.J.B. was supported by the Engineering and Physical Sciences Research Council (EPSRC) in the United Kingdom under Grant No. EP/W022680/1. The authors acknowledge the Scientific Services at ICMAB and the UAB PhD program in Materials Science. M.S. and V.U. acknowledge the support from the TACR EraNet CHIST-ERA project MetaMagIC TH77010001. J.C.-S. acknowledges funding from AGAUR-FI Joan Oro\u0301 grants (2023 FI-2 00143), Generalitat de Catalunya. We thank the Helmholtz-Zentrum Berlin fu\u0308r Materialien und Energie for the allocation of synchrotron radiation beamtime at the SPEEM end-station of UE49-PGM beamline at BESSY II.
Elahi, E.; Khan, M. A.; Suleman, M.; Dahshan, A.; Rehman, S.; Khalil, H. M. W.; Rehman, M. A.; Hassan, A. M.; Koyyada, G.; Kim, J. H.; Khan, M. F. Recent innovations in 2D magnetic materials and their potential applications in the modern era. Mater. Today 2024, 72, 183- 206, 10.1016/j.mattod.2023.11.008
Peixoto, L.; Magalhães, R.; Navas, D.; Moraes, S.; Redondo, C.; Morales, R.; Araújo, J. P.; Sousa, C. T. Magnetic nanostructures for emerging biomedical applications. Appl. Phys. Rev. 2020, 7, 011310 10.1063/1.5121702
Matsukura, F.; Tokura, Y.; Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 2015, 10, 209- 220, 10.1038/nnano.2015.22
Lalieu, M. L. M.; Lavrijsen, R.; Koopmans, B. Integrating all-optical switching with spintronics. Nat. Commun. 2019, 10, 110 10.1038/s41467-018-08062-4
Bandyopadhyay, S.; Atulasimha, J.; Barman, A. Magnetic straintronics: Manipulating the magnetization of magnetostrictive nanomagnets with strain for energy-efficient applications. Appl. Phys. Rev. 2021, 8, 041323 10.1063/5.0062993
Cowburn, R. P. Property variation with shape in magnetic nanoelements. J. Phys. D:Appl. Phys. 2000, 33, R1 10.1088/0022-3727/33/1/201
Lin, G.; Makarov, D.; Schmidt, O. G. Magnetic sensing platform technologies for biomedical applications. Lab Chip 2017, 17, 1884- 1912, 10.1039/C7LC00026J
Zheng, C. Magnetoresistive Sensor Development Roadmap. IEEE Trans. Magn. 2019, 55, 1- 30, 10.1109/TMAG.2019.2896036
Tumanski, S. Handbook of Magnetic Measurements; Jones, B.; Huang, H., Eds.; CRC Press, 2011; pp 1- 382.
Kulkarni, P. D.; Iwasaki, H.; Nakatani, T. The Effect of Geometrical Overlap between Giant Magnetoresistance Sensor and Magnetic Flux Concentrators: A Novel Comb-Shaped Sensor for Improved Sensitivity. Sensors 2022, 22, 9385 10.3390/s22239385
Cardoso, S.; Leitao, D. C.; Gameiro, L.; Cardoso, F.; Ferreira, R.; Paz, E.; Freitas, P. P. Magnetic tunnel junction sensors with pTesla sensitivity. Microsyst. Technol. 2014, 20, 793- 802, 10.1007/s00542-013-2035-1
Zhang, X.; Bi, Y.; Chen, G.; Liu, J.; Li, J.; Feng, K.; Lv, C.; Wang, W. Influence of size parameters and magnetic field intensity upon the amplification characteristics of magnetic flux concentrators. AIP Adv. 2018, 8, 125222 10.1063/1.5066271
Khan, M. A.; Sun, J.; Li, B.; Przybysz, A.; Kosel, J. Magnetic sensors-A review and recent technologies. Eng. Res. Express 2021, 3, 022005 10.1088/2631-8695/ac0838
Liu, W.; Li, Z.; Ansari, M. A.; Cheng, H.; Tian, J.; Chen, X.; Chen, S. Design Strategies and Applications of Dimensional Optical Field Manipulation Based on Metasurfaces. Adv. Mater. 2023, 35, 2208884 10.1002/adma.202208884
Qiu, C. W.; Zhang, T.; Hu, G.; Kivshar, Y. Quo Vadis, Metasurfaces?. Nano Lett. 2021, 21, 5461- 5474, 10.1021/acs.nanolett.1c00828
Zheludev, N. I.; Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917- 924, 10.1038/nmat3431
Magnus, F.; Wood, F.; Moore, J.; Morrison, K.; Perkins, G.; Fyson, J.; Wiltshire, M. C.; Caplin, D.; Cohen, L. F.; Pendry, J. B. A d.c. magnetic metamaterial. Nat. Mater. 2008, 7, 295- 297, 10.1038/nmat2126
Jung, P.; Ustibov, A.; Anlage, S. Progress in superconducting metamaterials. Supercond. Sci. Technol. 2014, 27, 073001 10.1088/0953-2048/27/7/073001
Xu, L. J.; Huand, J. Magnetostatic chameleonlike metashells with negative permeabilities. EPL (Europhys. Lett.) 2019, 125, 64001 10.1209/0295-5075/125/64001
Navau, C.; Prat-Camps, J.; Sanchez, A. Magnetic energy harvesting and concentration at a distance by transformation optics. Phys. Rev. Lett. 2012, 109, 263903 10.1103/PhysRevLett.109.263903
Narayana, S.; Sato, Y. DC magnetic cloak. Adv. Mater. 2012, 24, 71- 74, 10.1002/adma.201104012
Gömöry, F.; Solovyov, M.; Soucl, J.; Navau, C.; Prat-Camps, J.; Sanchez, A. Experimental Realization of a Magnetic Cloak. Science 2012, 335, 1466- 1468, 10.1126/science.1218316
Wang, R.; Mei, Z.; Cui, T. A carpet cloak for static magnetic field. Appl. Phys. Lett. 2013, 102, 213501 10.1063/1.4808013
Zhu, J.; Jiang, W.; Liu, Y.; Yin, G.; Yuan, J.; He, S.; Ma, Y. Three-dimensional magnetic cloak working from d.c. to 250 kHz. Nat. Commun. 2015, 6, 8931 10.1038/ncomms9931
Prat-Camps, J.; Navau, C.; Sanchez, A. Experimental realization of magnetic energy concentration and transmission at a distance by metamaterials. Appl. Phys. Lett. 2014, 105, 234101 10.1063/1.4903867
Navau, C.; Mach-Batlle, R.; Parra, A.; Prat-Camps, J.; Laut, S.; Del-Valle, N.; Sanchez, A. Enhancing the sensitivity of magnetic sensors by 3D metamaterial shells. Sci. Rep. 2017, 7, 44762 10.1038/srep44762
Prat-Camps, J.; Navau, C.; Sanchez, A. Quasistatic Metamaterials: Magnetic Coupling Enhancement by Effective Space Cancellation. Adv. Mater. 2016, 28, 4898- 4903, 10.1002/adma.201506376
Fourneau, E.; Arregi, J. A.; Barrera, A.; Nguyen, N. D.; Bending, S.; Sanchez, A.; Uhlíř, V.; Palau, A.; Silhanek, A. V. Microscale Metasurfaces for On-Chip Magnetic Flux Concentration. Adv. Mater. Technol. 2023, 8, 2300177 10.1002/admt.202300177
Lejeune, N.; Fourneau, E.; Barrera, A.; Morris, O.; Leonard, O.; Arregi, J.; Navau, C.; Uhlir, V.; Bending, S.; Palau, A.; Silhanek, A. Dimensional crossover of microscopic magnetic metasurfaces for magnetic field amplification. APL Mater. 2024, 12, 071126 10.1063/5.0217500
Bort-Soldevila, N.; Cunill-Subiranas, J.; Barrera, A.; Del-Valle, N.; Silhanek, A. V.; Uhlír, V.; Bending, S.; Palau, A.; Navau, C. Enhanced magnetic field concentration using windmill-like ferromagnets. APL Mater. 2024, 12, 021123 10.1063/5.0187035
Barrera, A.; Fourneau, E.; Martín, S.; Batllori, J. M.; Alcalá, J.; Balcells, L.; Mestres, N.; Nguyen, N. D.; Sanchez, A.; Silhanek, A. V.; Palau, A. Tunable Perpendicular Magnetoresistive Sensor Driven by Shape and Substrate Induced Magnetic Anisotropy. Adv. Sens. Res. 2023, 2, 2200042 10.1002/adsr.202200042
Mor, V.; Grosz, A.; Klein, L. Planar Hall Effect Magnetometers; Grosz, A.; Haji-Sheikh, M.; Mukhopadhyay, S., Eds.; Springer, 2017; Vol. 19.
Stoner, E. C.; Wohlfarth, E. P. Magnetic Recording of Superconducting States. Philos. Trans. R. Soc. A 1948, 204, 599- 642, 10.1098/rsta.1948.0007
Bahl, C. R. H. Estimating the demagnetization factors for regular permanent magnet pieces. AIP Adv. 2021, 11, 075028 10.1063/5.0060897
Brown, W. F., Jr Virtues and weaknesses of the domain concept. Rev. Mod. Phys. 1945, 17, 15 10.1103/RevModPhys.17.15
Voltan, S.; Cirillo, C.; Snijders, H. J.; Lahabi, K.; García-Santiago, A.; Hernández, J. M.; Attanasio, C.; Aarts, J. Emergence of the stripe-domain phase in patterned permalloy films. Phys. Rev. B 2016, 94, 094406 10.1103/PhysRevB.94.094406
Sandig, O.; Herrero-albillos, J.; Römer, F. M.; Friedenberger, N. Journal of Electron Spectroscopy and Imaging magnetic responses of nanomagnets by XPEEM. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 365- 370, 10.1016/j.elspec.2012.07.005
Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133 10.1063/1.4899186
Fidler, J.; Schrefl, T. Micromagnetic modelling-the current state of the art. J. Phys. D:Appl. Phys. 2000, 33, R135 10.1088/0022-3727/33/15/201
Brown, W. F. Micromagnetics; Interscience Tracts on Physics and Astronomy; Interscience Publishers, 1963.
Middelhoek, S. Domain walls in thin Ni-Fe films. J. Appl. Phys. 1963, 34, 1054- 1059, 10.1063/1.1729367