[en] The marking of DNA, histones, and RNA is central to gene expression regulation in development and disease. Recent evidence links N6-methyladenosine (m6A), installed on RNA by the METTL3-METTL14 methyltransferase complex, to histone modifications, but the link between m6A and DNA methylation remains scarcely explored. This study shows that METTL3-METTL14 recruits the DNA methyltransferase DNMT1 to chromatin for gene-body methylation. We identify a set of genes whose expression is fine-tuned by both gene-body 5mC, which promotes transcription, and m6A, which destabilizes transcripts. We demonstrate that METTL3-METTL14-dependent 5mC and m6A are both essential for the differentiation of embryonic stem cells into embryoid bodies and that the upregulation of key differentiation genes during early differentiation depends on the dynamic balance between increased 5mC and decreased m6A. Our findings add a surprising dimension to our understanding of how epigenetics and epitranscriptomics combine to regulate gene expression and impact development and likely other biological processes.
Research Center/Unit :
Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium.
Disciplines :
Genetics & genetic processes
Author, co-author :
Quarto, Giuseppe; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Li Greci, Andrea; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Bizet, Martin; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Penning, Audrey; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Primac, Irina; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Murisier, Frédéric; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Garcia-Martinez, Liliana; Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
Borges, Rodrigo L; Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
Gao, Qingzeng; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
Cingaram, Pradeep K R; Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
Calonne, Emilie; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Hassabi, Bouchra; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Hubert, Céline; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Herpoel, Adèle; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Putmans, Pascale; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Mies, Frédérique; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Martin, Jérôme; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Van der Linden, Louis; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Dube, Gaurav; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Kumar, Pankaj; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Soin, Romuald; Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université libre de Bruxelles (ULB), Gosselies, Belgium
Kumar, Abhay; Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
Misra, Anurag; Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
Lan, Jie; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Paque, Morgane ; Université de Liège - ULiège > Département de pharmacie
Gupta, Yogesh K; Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
Blomme, Arnaud ; Université de Liège - ULiège > Département de pharmacie
Close, Pierre ; Université de Liège - ULiège > Département de pharmacie
Estève, Pierre-Olivier; New England Biolabs, Inc., Ipswich, MA, USA
Caine, Elizabeth A; Promega Corporation, Madison, WI, USA
Riching, Kristin M; Promega Corporation, Madison, WI, USA
Gueydan, Cyril; Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université libre de Bruxelles (ULB), Gosselies, Belgium
Daniels, Danette L; Foghorn Therapeutics, Cambridge, MA, USA
Pradhan, Sriharsa; New England Biolabs, Inc., Ipswich, MA, USA
Shiekhattar, Ramin; Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
David, Yael; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
Morey, Lluis; Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
Jeschke, Jana; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Deplus, Rachel; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Collignon, Evelyne; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
Fuks, François; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium. Electronic address: francois.fuks@ulb.be
Fine-tuning of gene expression through the Mettl3-Mettl14-Dnmt1 axis controls ESC differentiation.
Publication date :
20 February 2025
Journal title :
Cell
ISSN :
0092-8674
eISSN :
1097-4172
Publisher :
Elsevier, United States
Volume :
188
Issue :
4
Pages :
998 - 1018
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
HEK2935XUAS cells, mouse ESC J1 WT/Mettl3 KO, WT/Dnmt1 KO, and E14TG2a WT/Mettl14 KO were kindly provided by the laboratories of Pr. Bastian Stielow (Germany), Pr. Howard Y. Chang (USA), Pr. Fabio Spada (Germany), and Pr. Laixin Xia (China), respectively. G.Q., A.L.G., M.B., A.P., I.P., F. Murisier, B.H., J.M., L.V.d.L., P.K., G.D., J.J., and E. Collignon were supported by the Belgian FRS-FNRS, FRIA, or T\u00E9l\u00E9vie. Q.G. and A.L.G. were supported by the Fondation Rose et Jean Hoguet and the Fondation Jaumotte-Demoulin and Fonds David and Alice Van Buuren. F.F. is a ULB professor. R.D. is a ULB lecturer. This work was partially supported by R01GM141349 and R01GM146409 from the National Institute of General Medical Sciences to L.M. We thank the Sylvester Comprehensive Cancer Center Onco-Genomics Core Facility for high-throughput sequencing. This work was supported by funding from the University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, and grants R01GM078455 from the National Institute of Health to R.S. Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under award number P30CA240139. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work was partially supported by the Welch Foundation (AQ-2101-20220331) and the National Institute of Allergy and Infectious Diseases (R01AI161363) to Y.K.G. F.F.\u2019s lab was funded by grants from the FNRS and T\u00E9l\u00E9vie, the \u201CAction de Recherche Concert\u00E9e\u201D (ARC) (AUWB-2018-2023 ULB-No 7), a Walloon Region grant (Win2Wal), FNRS Welbio grants (FNRS-WELBIO-CR-2017A-04 and FNRS-WELBIO-CR-2019A-04R), the FWO and FNRS under the Excellence of Science (EOS O.0020.22/RG3483) programme, the ULB Foundation, the Belgian Foundation against Cancer (FCC 2016-086 FAF-F/2016/872), and H2020-MSCA-ITN ROPES.
Du, J., Johnson, L.M., Jacobsen, S.E., Patel, D.J., DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16 (2015), 519–532, 10.1038/nrm4043.
Li, Y., Chen, X., Lu, C., The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep., 22, 2021, e51803, 10.15252/embr.202051803.
Lee, J.S., Smith, E., Shilatifard, A., The Language of Histone Crosstalk. Cell 142 (2010), 682–685, 10.1016/J.CELL.2010.08.011.
Lyko, F., The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19 (2018), 81–92, 10.1038/nrg.2017.80.
Bestor, T.H., The DNA methyltransferases of mammals. Hum. Mol. Genet. 9 (2000), 2395–2402, 10.1093/HMG/9.16.2395.
Li, E., Bestor, T.H., Jaenisch, R., Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69 (1992), 915–926, 10.1016/0092-8674(92)90611-F.
Mattei, A.L., Bailly, N., Meissner, A., DNA methylation: a historical perspective. Trends Genet. 38 (2022), 676–707, 10.1016/j.tig.2022.03.010.
Ball, M.P., Li, J.B., Gao, Y., Lee, J.-H., LeProust, E.M., Park, I.-H., Xie, B., Daley, G.Q., Church, G.M., Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 27 (2009), 361–368, 10.1038/nbt.1533.
Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Ong, C.T., Low, H.M., Kin Sung, K.W., Rigoutsos, I., Loring, J., et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20 (2010), 320–331, 10.1101/gr.101907.109.
Kulis, M., Heath, S., Bibikova, M., Queirós, A.C., Navarro, A., Clot, G., Martínez-Trillos, A., Castellano, G., Brun-Heath, I., Pinyol, M., et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44 (2012), 1236–1242, 10.1038/ng.2443.
Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.-M., et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462 (2009), 315–322, 10.1038/nature08514.
Ooi, S.K.T., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, P., Lin, S.P., Allis, C.D., et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448 (2007), 714–717, 10.1038/NATURE05987.
Weinberg, D.N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K.N., Horth, C., McGuire, J.T., Xu, X., Nikbakht, H., et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573 (2019), 281–286, 10.1038/s41586-019-1534-3.
Baubec, T., Colombo, D.F., Wirbelauer, C., Schmidt, J., Burger, L., Krebs, A.R., Akalin, A., Schübeler, D., Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520 (2015), 243–247, 10.1038/nature14176.
Neri, F., Rapelli, S., Krepelova, A., Incarnato, D., Parlato, C., Basile, G., Maldotti, M., Anselmi, F., Oliviero, S., Intragenic DNA methylation prevents spurious transcription initiation. Nature 543 (2017), 72–77, 10.1038/nature21373.
Smith, Z.D., Meissner, A., DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14 (2013), 204–220, 10.1038/nrg3354.
Wu, H., Coskun, V., Tao, J., Xie, W., Ge, W., Yoshikawa, K., Li, E., Zhang, Y., Sun, Y.E., Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329 (2010), 444–448, 10.1126/science.1190485.
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485 (2012), 201–206, 10.1038/nature11112.
Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., Jaffrey, S.R., Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149 (2012), 1635–1646, 10.1016/j.cell.2012.05.003.
Lee, M., Kim, B., Kim, V.N., Emerging roles of RNA modification: m(6)A and U-tail. Cell 158 (2014), 980–987, 10.1016/j.cell.2014.08.005.
Li, Y., Xia, L., Tan, K., Ye, X., Zuo, Z., Li, M., Xiao, R., Wang, Z., Liu, X., Deng, M., et al. N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat. Genet. 52 (2020), 870–877, 10.1038/s41588-020-0677-3.
Huang, H., Weng, H., Zhou, K., Wu, T., Zhao, B.S., Sun, M., Chen, Z., Deng, X., Xiao, G., Auer, F., et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567 (2019), 414–419, 10.1038/s41586-019-1016-7.
Dou, X., Xiao, Y., Shen, C., Wang, K., Wu, T., Liu, C., Li, Y., Yu, X., Liu, J., Dai, Q., et al. RBFOX2 recognizes N6-methyladenosine to suppress transcription and block myeloid leukaemia differentiation. Nat. Cell Biol. 25 (2023), 1359–1368, 10.1038/s41556-023-01213-w.
Mu, M., Li, X., Dong, L., Wang, J., Cai, Q., Hu, Y., Wang, D., Zhao, P., Zhang, L., Zhang, D., et al. METTL14 regulates chromatin bivalent domains in mouse embryonic stem cells. Cell Rep., 42, 2023, 112650, 10.1016/j.celrep.2023.112650.
Dou, X., Huang, L., Xiao, Y., Liu, C., Li, Y., Zhang, X., Yu, L., Zhao, R., Yang, L., Chen, C., et al. METTL14 is a chromatin regulator independent of its RNA N6-methyladenosine methyltransferase activity. Protein Cell 14 (2023), 683–697, 10.1093/procel/pwad009.
Lin, S., Choe, J., Du, P., Triboulet, R., Gregory, R.I., The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol. Cell 62 (2016), 335–345, 10.1016/j.molcel.2016.03.021.
Choe, J., Lin, S., Zhang, W., Liu, Q., Wang, L., Ramirez-Moya, J., Du, P., Kim, W., Tang, S., Sliz, P., et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561 (2018), 556–560, 10.1038/s41586-018-0538-8.
Deng, S., Zhang, J., Su, J., Zuo, Z., Zeng, L., Liu, K., Zheng, Y., Huang, X., Bai, R., Zhuang, L., et al. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility. Nat. Genet. 54 (2022), 1427–1437, 10.1038/s41588-022-01173-1.
Sun, T., Xu, Y., Xiang, Y., Ou, J., Soderblom, E.J., Diao, Y., Crosstalk between RNA m6A and DNA methylation regulates transposable element chromatin activation and cell fate in human pluripotent stem cells. Nat. Genet. 55 (2023), 1324–1335, 10.1038/s41588-023-01452-5.
Leonhardt, H., Page, A.W., Weier, H.U., Bestor, T.H., A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71 (1992), 865–873, 10.1016/0092-8674(92)90561-p.
Yankova, E., Blackaby, W., Albertella, M., Rak, J., De Braekeleer, E., Tsagkogeorga, G., Pilka, E.S., Aspris, D., Leggate, D., Hendrick, A.G., et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593 (2021), 597–601, 10.1038/s41586-021-03536-w.
Huang, Y., Su, R., Sheng, Y., Dong, L., Dong, Z., Xu, H., Ni, T., Zhang, Z.S., Zhang, T., Li, C., et al. Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell 35 (2019), 677–691.e10, 10.1016/j.ccell.2019.03.006.
Xia, Z., Tang, M., Ma, J., Zhang, H., Gimple, R.C., Prager, B.C., Tang, H., Sun, C., Liu, F., Lin, P., et al. Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res. 49 (2021), 7361–7374, 10.1093/nar/gkab517.
Dahlet, T., Argüeso Lleida, A., Al Adhami, H., Dumas, M., Bender, A., Ngondo, R.P., Tanguy, M., Vallet, J., Auclair, G., Bardet, A.F., et al. Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat. Commun., 11, 2020, 3153, 10.1038/s41467-020-16919-w.
Scelfo, A., Barra, V., Abdennur, N., Spracklin, G., Busato, F., Salinas-Luypaert, C., Bonaiti, E., Velasco, G., Bonhomme, F., Chipont, A., et al. Tunable DNMT1 degradation reveals DNMT1/DNMT3B synergy in DNA methylation and genome organization. J. Cell Biol., 223, 2024, e202307026, 10.1083/jcb.202307026.
Stankevičius, V., Gibas, P., Masiulionytė, B., Gasiulė, L., Masevičius, V., Klimašauskas, S., Vilkaitis, G., Selective chemical tracking of Dnmt1 catalytic activity in live cells. Mol. Cell 82 (2022), 1053–1065.e8, 10.1016/j.molcel.2022.02.008.
Yang, X., Han, H., De Carvalho, D.D., Lay, F.D., Jones, P.A., Liang, G., Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26 (2014), 577–590, 10.1016/j.ccr.2014.07.028.
Su, J., Huang, Y.-H., Cui, X., Wang, X., Zhang, X., Lei, Y., Xu, J., Lin, X., Chen, K., Lv, J., et al. Homeobox oncogene activation by pan-cancer DNA hypermethylation. Genome Biol., 19, 2018, 108, 10.1186/s13059-018-1492-3.
Kalkan, T., Olova, N., Roode, M., Mulas, C., Lee, H.J., Nett, I., Marks, H., Walker, R., Stunnenberg, H.G., Lilley, K.S., et al. Tracking the embryonic stem cell transition from ground state pluripotency. Development 144 (2017), 1221–1234, 10.1242/dev.142711.
Zhang, Y., Xiang, Y., Yin, Q., Du, Z., Peng, X., Wang, Q., Fidalgo, M., Xia, W., Li, Y., Zhao, Z.-A., et al. Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nat. Genet. 50 (2018), 96–105, 10.1038/s41588-017-0003-x.
Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., Sandstrom, R., Ma, Z., Davis, C., Pope, B.D., et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515 (2014), 355–364, 10.1038/nature13992.
Maunakea, A.K., Nagarajan, R.P., Bilenky, M., Ballinger, T.J., D'Souza, C., Fouse, S.D., Johnson, B.E., Hong, C., Nielsen, C., Zhao, Y., et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466 (2010), 253–257, 10.1038/nature09165.
Herzog, V.A., Reichholf, B., Neumann, T., Rescheneder, P., Bhat, P., Burkard, T.R., Wlotzka, W., von Haeseler, A., Zuber, J., Ameres, S.L., Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14 (2017), 1198–1204, 10.1038/nmeth.4435.
Neumann, T., Herzog, V.A., Muhar, M., von Haeseler, A., Zuber, J., Ameres, S.L., Rescheneder, P., Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets. BMC Bioinformatics, 20, 2019, 258, 10.1186/s12859-019-2849-7.
Kim, Y.-K., Collignon, E., Martin, S.B., Ramalho-Santos, M., Hypertranscription: the invisible hand in stem cell biology. Trends Genet. 40 (2024), 1032–1046, 10.1016/j.tig.2024.08.005.
Varley, K.E., Gertz, J., Bowling, K.M., Parker, S.L., Reddy, T.E., Pauli-Behn, F., Cross, M.K., Williams, B.A., Stamatoyannopoulos, J.A., Crawford, G.E., et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 23 (2013), 555–567, 10.1101/gr.147942.112.
Ke, S., Pandya-Jones, A., Saito, Y., Fak, J.J., Vågbø, C.B., Geula, S., Hanna, J.H., Black, D.L., Darnell, J.E., Darnell, R.B., m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 31 (2017), 990–1006, 10.1101/gad.301036.117.
Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., Saitou, M., Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146 (2011), 519–532, 10.1016/j.cell.2011.06.052.
Krishnakumar, R., Chen, A.F., Pantovich, M.G., Danial, M., Parchem, R.J., Labosky, P.A., Blelloch, R., FOXD3 Regulates Pluripotent Stem Cell Potential by Simultaneously Initiating and Repressing Enhancer Activity. Cell Stem Cell 18 (2016), 104–117, 10.1016/j.stem.2015.10.003.
Yang, P., Humphrey, S.J., Cinghu, S., Pathania, R., Oldfield, A.J., Kumar, D., Perera, D., Yang, J.Y.H., James, D.E., Mann, M., et al. Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Syst. 8 (2019), 427–445.e10, 10.1016/j.cels.2019.03.012.
Cingaram, P.R., Beckedorff, F., Yue, J., Liu, F., Dos Santos, H.G., Shiekhattar, R., Enhancing Transcriptome Mapping with Rapid PRO-seq Profiling of Nascent RNA. Preprint at bioRxiv, 2024, 10.1101/2024.05.08.593182.
Dasilva, L.F., Blumenthal, E., Beckedorff, F., Cingaram, P.R., Gomes dos Santos, H., Edupuganti, R.R., Zhang, A., Dokaneheifard, S., Aoi, Y., Yue, J., et al. Integrator enforces the fidelity of transcriptional termination at protein-coding genes. Sci. Adv., 7, 2021, eabe3393, 10.1126/sciadv.abe3393.
Smith, A., Formative pluripotency: the executive phase in a developmental continuum. Development 144 (2017), 365–373, 10.1242/dev.142679.
Suelves, M., Carrió, E., Núñez-Álvarez, Y., Peinado, M.A., DNA methylation dynamics in cellular commitment and differentiation. Brief. Funct. Genomics 15 (2016), 443–453, 10.1093/bfgp/elw017.
Djabrayan, N.J.-V., Dudley, N.R., Sommermann, E.M., Rothman, J.H., Essential role for Notch signaling in restricting developmental plasticity. Genes Dev. 26 (2012), 2386–2391, 10.1101/gad.199588.112.
Bisia, A.M., Costello, I., Xypolita, M.-E., Harland, L.T.G., Kurbel, P.J., Bikoff, E.K., Robertson, E.J., A degron-based approach to manipulate Eomes functions in the context of the developing mouse embryo. Proc. Natl. Acad. Sci. USA, 120, 2023, e2311946120, 10.1073/pnas.2311946120.
Wang, K., Shen, H., Gan, P., Cavallero, S., Kumar, S.R., Lien, C.-L., Sucov, H.M., Differential roles of insulin like growth factor 1 receptor and insulin receptor during embryonic heart development. BMC Dev. Biol., 19, 2019, 5, 10.1186/s12861-019-0186-8.
Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B., et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454 (2008), 766–770, 10.1038/nature07107.
Morselli, M., Pastor, W.A., Montanini, B., Nee, K., Ferrari, R., Fu, K., Bonora, G., Rubbi, L., Clark, A.T., Ottonello, S., et al. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. eLife, 4, 2015, e06205, 10.7554/eLife.06205.
Schübeler, D., Function and information content of DNA methylation. Nature 517 (2015), 321–326, 10.1038/nature14192.
Kreibich, E., Kleinendorst, R., Barzaghi, G., Kaspar, S., Krebs, A.R., Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation. Mol. Cell 83 (2023), 787–802.e9, 10.1016/j.molcel.2023.01.017.
Loyfer, N., Magenheim, J., Peretz, A., Cann, G., Bredno, J., Klochendler, A., Fox-Fisher, I., Shabi-Porat, S., Hecht, M., Pelet, T., et al. A DNA methylation atlas of normal human cell types. Nature 613 (2023), 355–364, 10.1038/s41586-022-05580-6.
Murakami, S., Jaffrey, S.R., Hidden codes in mRNA: control of gene expression by m6A. Mol. Cell 82 (2022), 2236–2251, 10.1016/j.molcel.2022.05.029.
Collignon, E., Unveiling the role of cellular dormancy in cancer progression and recurrence. Curr. Opin. Oncol. 36 (2024), 74–81, 10.1097/CCO.0000000000001013.
Wu, Y., Xu, X., Qi, M., Chen, C., Li, M., Yan, R., Kou, X., Zhao, Y., Liu, W., Li, Y., et al. N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nat. Cell Biol. 24 (2022), 917–927, 10.1038/s41556-022-00915-x.
Macrae, T.A., Fothergill-Robinson, J., Ramalho-Santos, M., Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat. Rev. Mol. Cell Biol. 24 (2023), 6–26, 10.1038/s41580-022-00518-2.
Bertero, A., Brown, S., Madrigal, P., Osnato, A., Ortmann, D., Yiangou, L., Kadiwala, J., Hubner, N.C., de Los Mozos, I.R., Sadée, C., et al. The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 555 (2018), 256–259, 10.1038/nature25784.
He, P.C., He, C., m6 A RNA methylation: from mechanisms to therapeutic potential. EMBO J., 40, 2021, e105977, 10.15252/embj.2020105977.
Xiao, S., Cao, S., Huang, Q., Xia, L., Deng, M., Yang, M., Jia, G., Liu, X., Shi, J., Wang, W., et al. The RNA N6-methyladenosine modification landscape of human fetal tissues. Nat. Cell Biol. 21 (2019), 651–661, 10.1038/s41556-019-0315-4.
Kan, R.L., Chen, J., Sallam, T., Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. Trends Genet. 38 (2022), 182–193, 10.1016/j.tig.2021.06.014.
Śledź, P., Jinek, M., Structural insights into the molecular mechanism of the m(6)A writer complex. eLife, 5, 2016, e18434, 10.7554/eLife.18434.
Sharif, J., Endo, T.A., Nakayama, M., Karimi, M.M., Shimada, M., Katsuyama, K., Goyal, P., Brind'Amour, J., Sun, M.-A., Sun, Z., et al. Activation of Endogenous Retroviruses in Dnmt1(-/-) ESCs Involves Disruption of SETDB1-Mediated Repression by NP95 Binding to Hemimethylated DNA. Cell Stem Cell 19 (2016), 81–94, 10.1016/j.stem.2016.03.013.
Stielow, B., Sapetschnig, A., Wink, C., Krüger, I., Suske, G., SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing. EMBO Rep. 9 (2008), 899–906, 10.1038/embor.2008.127.
Schmidt, C.S., Bultmann, S., Meilinger, D., Zacher, B., Tresch, A., Maier, K.C., Peter, C., Martin, D.E., Leonhardt, H., Spada, F., Global DNA hypomethylation prevents consolidation of differentiation programs and allows reversion to the embryonic stem cell state. PLoS One, 7, 2012, e52629, 10.1371/journal.pone.0052629.
Estève, P.-O., Chin, H.G., Smallwood, A., Feehery, G.R., Gangisetty, O., Karpf, A.R., Carey, M.F., Pradhan, S., Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 20 (2006), 3089–3103, 10.1101/gad.1463706.
Dedeurwaerder, S., Desmedt, C., Calonne, E., Singhal, S.K., Haibe-Kains, B., Defrance, M., Michiels, S., Volkmar, M., Deplus, R., Luciani, J., et al. DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol. Med. 3 (2011), 726–741, 10.1002/emmm.201100801.
Gandin, V., Sikström, K., Alain, T., Morita, M., McLaughlan, S., Larsson, O., Topisirovic, I., Polysome fractionation and analysis of mammalian translatomes on a genome-wide scale. J. Vis. Exp., 87, 2014, 51455, 10.3791/51455.
Beckedorff, F., Blumenthal, E., DaSilva, L.F., Aoi, Y., Cingaram, P.R., Yue, J., Zhang, A., Dokaneheifard, S., Valencia, M.G., Gaidosh, G., et al. The Human Integrator Complex Facilitates Transcriptional Elongation by Endonucleolytic Cleavage of Nascent Transcripts. Cell Rep., 32, 2020, 107917, 10.1016/j.celrep.2020.107917.
Babraham Bioinformatics. FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, 2023.
Chen, S., Huang, T., Zhou, Y., Han, Y., Xu, M., Gu, J., AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinformatics, 18(Suppl 3), 2017, 80, 10.1186/s12859-017-1469-3.
Langmead, B., Salzberg, S.L., Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 (2012), 357–359, 10.1038/nmeth.1923.
Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 (2014), 2114–2120, 10.1093/bioinformatics/btu170.
Yates, A., Akanni, W., Amode, M.R., Barrell, D., Billis, K., Carvalho-Silva, D., Cummins, C., Clapham, P., Fitzgerald, S., Gil, L., et al. Ensembl 2016. Nucleic Acids Res. 44 (2016), D710–D716, 10.1093/nar/gkv1157.
Volders, P.-J., Anckaert, J., Verheggen, K., Nuytens, J., Martens, L., Mestdagh, P., Vandesompele, J., LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res. 47 (2019), D135–D139, 10.1093/nar/gky1031.
Anders, S., Pyl, P.T., Huber, W., HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31 (2015), 166–169, 10.1093/bioinformatics/btu638.
Antanaviciute, A., Baquero-Perez, B., Watson, C.M., Harrison, S.M., Lascelles, C., Crinnion, L., Markham, A.F., Bonthron, D.T., Whitehouse, A., Carr, I.M., m6aViewer: software for the detection, analysis, and visualization of N6-methyladenosine peaks from m6A-seq/ME-RIP sequencing data. RNA 23 (2017), 1493–1501, 10.1261/rna.058206.116.
Zhu, S., Xiang, J.-F., Chen, T., Chen, L.-L., Yang, L., Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences. BMC Genomics, 14, 2013, 206, 10.1186/1471-2164-14-206.
Robinson, M.D., McCarthy, D.J., Smyth, G.K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 (2010), 139–140, 10.1093/bioinformatics/btp616.
Love, M.I., Huber, W., Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 2014, 550, 10.1186/s13059-014-0550-8.
Li, B., Dewey, C.N., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 2011, 323, 10.1186/1471-2105-12-323.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 (2009), 2078–2079, 10.1093/bioinformatics/btp352.
Dedeurwaerder, S., Defrance, M., Bizet, M., Calonne, E., Bontempi, G., Fuks, F., A comprehensive overview of Infinium HumanMethylation450 data processing. Brief. Bioinform. 15 (2014), 929–941, 10.1093/bib/bbt054.
McCartney, D.L., Walker, R.M., Morris, S.W., McIntosh, A.M., Porteous, D.J., Evans, K.L., Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. Genom. Data 9 (2016), 22–24, 10.1016/j.gdata.2016.05.012.
Dedeurwaerder, S., Defrance, M., Calonne, E., Denis, H., Sotiriou, C., Fuks, F., Evaluation of the Infinium Methylation 450K technology. Epigenomics 3 (2011), 771–784, 10.2217/epi.11.105.
Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., et al. GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res. 22 (2012), 1760–1774, 10.1101/gr.135350.111.
Hinrichs, A.S., Karolchik, D., Baertsch, R., Barber, G.P., Bejerano, G., Clawson, H., Diekhans, M., Furey, T.S., Harte, R.A., Hsu, F., et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34 (2006), D590–D598, 10.1093/nar/gkj144.
Quinlan, A.R., Hall, I.M., BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26 (2010), 841–842, 10.1093/bioinformatics/btq033.
Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar, F., Manke, T., deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44 (2016), W160–W165, 10.1093/nar/gkw257.
Gaidatzis, D., Burger, L., Florescu, M., Stadler, M.B., Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat. Biotechnol. 33 (2015), 722–729, 10.1038/nbt.3269.
Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J., 17, 2011, 10, 10.14806/ej.17.1.200.
Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, 2009, R25, 10.1186/gb-2009-10-3-r25.
Korotkevich, G., Sukhov, V., Budin, N., Shpak, B., Artyomov, M.N., Sergushichev, A., Fast gene set enrichment analysis. Preprint at bioRxiv, 2021, 10.1101/060012.