androstenone; human nose score; meat quality; phenotyping; recursive model; skatole; Skatole; Androsterone; Animals; Male; Swine/genetics; Swine/physiology; Odorants/analysis; Breeding; Female; Phenotype; Odorants; Swine; Food Science; Animal Science and Zoology; Genetics
Abstract :
[en] Using genetic selection for raising intact boars, which improves growth and feed efficiency, is a promising alternative to castration for mitigating boar taint. Selective breeding has the potential to help to identify and select genetic lines with a reduced risk of boar taint. Common phenotypes are laboratory measurements of skatole (SKA) and androstenone (ANON) i.e., the major compounds responsible for boar taint, in backfat. However, an alternative exists: sensory evaluation by human assessors. The objectives of this study were (1) to estimate the genetic relationships among sensory scores (SENS) obtained by different assessors, (2) to correlate these scores with SKA and ANON, (3) to establish the independence of SENS from the causal traits, here SKA and ANON, by recursive modeling, holding those constant, and (4) to combine different assessors to allow an efficient selection against boar taint. Data included up to 1,016 records of SKA, ANON, and SENS (0-5) from 10 trained assessors on the backfat of intact males reared at least until puberty at three performance testing stations testing the products of Pietrain × commercial crossbred sows. Genetic parameters were estimated using restricted estimate maximum likelihood. Traits SKA and ANON were log10 transformed (SKAt and ANONt) and SENS traits were Snell transformed SENS (SENSt). Heritability estimates were 0.52 for SKAt and 0.53 for ANONt, those for SENSt ranged from 0.07 to 0.30. Moderate to high genetic correlations between some SENSt and SKAt (up to 0.87) and ANONt (up to 0.61) were found. Heritabilities and correlations indicated that some SENSt could be used to select against boar taint. Studying the independence of SENSt from SKAt and ANONt based on a posteriori recursive model revealed a large range of reductions of genetic variance: up to 71.08%. However, some SENSt remained moderately heritable (0.04-0.19) indicating independent genetic variance from SKAt and ANONt. This reflects that some heritable compounds potentially not related to SKA or ANON are perceived. Finally, the combination of assessors allowed, here shown with three assessors, to obtain a high heritability of 0.40, associated to high genetic and phenotypic correlations. Moreover, these results demonstrate the potential of using the sensory scores of several trained assessors for selection against boar taint. [en] Meat quality can be impacted by different practices during the whole life of pigs. Raising intact boars is interesting to potentially improve the growth rate and feed efficiency of boars. Moreover, castration is a major welfare and health issue. However, in intact boars so called boar taint, a fecal and urinary smell, can occur which can repel consumers. This odor is mainly caused by skatole (SKA) and androstenone (ANON) accumulation in fat tissues. To reduce their impact, genetic selection against these heritable compounds can be applied. However, their analytical measurements are costly, time-consuming, and, in consequence, in low numbers. Alternative routine data collection based on sensory evaluation scores (SENS) has been proposed. These SENS were attributed to heated fat samples by 10 trained assessors to detect SKA and ANON together. Genetic relationships indicated that some SENS could potentially be used for genetic selection against SKA and ANON. Investigations on the origin of attributed SENS demonstrated that some (unknown) compounds probably correlated to SKA and ANON are perceived, too. Finally, SENS from different assessors were combined to select more efficiently against boar taint.
Disciplines :
Animal production & animal husbandry Genetics & genetic processes
Author, co-author :
Markey, Alice ; Université de Liège - ULiège > TERRA Research Centre
Groβe-Brinkhaus, Christine ; Institute of Animal Science, University of Bonn, 53115, Bonn, Germany ; Department of Animal Sciences, University of Göttingen, 37077, Göttingen, Germany
Mörlein, Daniel ; Department of Animal Sciences, University of Göttingen, 37077, Göttingen, Germany
Mörlein, Johanna; Department of Animal Sciences, University of Göttingen, 37077, Göttingen, Germany
Wilmot, Hélène ; Université de Liège - ULiège > Département GxABT > Animal Sciences (AS) ; National Fund for Scientific Research (F.R.S.-FNRS), 1000, Brussels, Belgium
Tholen, Ernst; Institute of Animal Science, University of Bonn, 53115, Bonn, Germany
Gengler, Nicolas ; Université de Liège - ULiège > TERRA Research Centre > Animal Sciences (AS)
Language :
English
Title :
Genetic investigations into the use of sensory evaluation: the case of boar taint discrimination in Pietrain sired crossbreds.
F.R.S.-FNRS - Fund for Scientific Research FWB - Wallonia-Brussels Federation Walloon region Federal Ministry of Food and Agriculture
Funding text :
We thank the Public Service of Wallonia (SPW), Agriculture of the Walloon Region (RW), Belgium, for its support through the NoWallOdor project (D65-1430) and the Walloon Pig Genomic Evaluation System. The scientific mobility of A.M. to the University of Bonn, which enabled this research, was financed by the National Fund for Scientific Research (F.R.S-FNRS), the Federation Wallonia-Brussels (FWB), and the RW in Belgium. H.W. as a Research Fellow and N.G. as a former Senior Research Associate acknowledge their support by the F.R.S-FNRS. The data studied belong to the Strat-E-Ger project which was supported by funds from the Federal Ministry of Food and Agriculture (BMEL) via the Federal Office for Agriculture and Food (BLE) under the innovation support program, grant no. 313-06.01-28-1-68.024-11 in Germany.
Ausschuss für Leistungsprüfung und Zuchtwertschätzung (ALZ) beim Schwein des Zentralverbandes der Deutschen Schweineproduktion (ZDS). 2007. Richtlinie für die Stationsprüfung auf Mastleistung, Schlachtkörperwert und Fleischbeschaffenheit beim Schwein. Bonn (Germany): Zentralverband der Deutschen Schweineproduktion e.V. (ZDS).
Bekaert, K. M., F. A. M. Tuyttens, L. Duchateau, H. F. De Brabander, M. Aluwé, S. Millet, F. Vandendriessche, and L. Vanhaecke. 2011. The sensitivity of Flemish citizens to androstenone: influence of gender, age, location and smoking habits. Meat Sci. 88:548-552. doi:10.1016/j.meatsci.2011.02.010
Bonneau, M., and U. Weiler. 2019. Pros and cons of alternatives to piglet castration: welfare, boar taint, and other meat quality traits. Animals 9:884. doi:10.3390/ani9110884
Borrisser-Pairó, F., N. Panella-Riera, M. Gil, Z. Kallas, M. B. Linares, M. Egea, M. D. Garrido, and M. A. Oliver. 2017. Consumers' sensitivity to androstenone and the evaluation of different cooking methods to mask boar taint. Meat Sci. 123:198-204. doi:10.1016/j. meatsci.2016.10.006
Brinke, I., C. Große-Brinkhaus, K. Roth, M. J. Pröll-Cornelissen, S. Klein, K. Schellander, and E. Tholen. 2021. Endocrine fertility parameters-Genomic background and their genetic relationship to boar taint in German Landrace and Large White. Animals 11:231. doi:10.3390/ani11010231
Brinke, I., C. Groβe-Brinkhaus, K. Roth, M. J. Pröll-Cornelissen, I. Schiefler, and E. Tholen. 2022. Meta-analyses for boar taint compounds in two purebred maternal lines and Piétrain-sired crosses. Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP). Wageningen (The Netherlands): Wageningen Academic Publishers; p. 3302-3305. doi:10.3920/978-90-8686-940-4_802
Burgeon, C., M. Debliquy, D. Lahem, J. Rodriguez, A. Ly, and M. -L. Fauconnier. 2021a. Past, present, and future trends in boar taint detection. Trends Food Sci. Technol. 112:283-297. doi:10.1016/j. tifs.2021.04.007
Burgeon, C., A. Markey, M. Debliquy, D. Lahem, J. Rodriguez, A. Ly, and M. -L. Fauconnier. 2021b. Comprehensive SPME-GC-MS analysis of VOC profiles obtained following high-temperature heating of pork back fat with varying boar taint intensities. Foods 10:1311. doi:10.3390/foods10061311
Burgeon, C., A. Markey, Y. Brostaux, and M. -L. Fauconnier. 2023. Modifying headspace sampling environment improves detection of boar taint compounds in pork fat samples. Chemosensors 11:551. doi:10.3390/chemosensors11110551
Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B: Stat. Method. 39:1-22. doi:10.1111/j.2517-6161.1977. tb01600.x
Deutscher Bundestag. 2018. Entwurf eines Vierten Gesetzes zur Änderung des Tierschutzgesetzes. Drucksache 19/5522. Available from https://dserver.bundestag.de/btd/19/055/1905522.pdf
Duarte, D. A. S., M. Schroyen, R. R. Mota, S. Vanderick, and N. Gengler. 2021. Recent genetic advances on boar taint reduction as an alternative to castration: a review. J. Appl. Genet. 62:137-150. doi:10.1007/s13353-020-00598-w
Eaton, J. W., D. Bateman, S. Hauberg, and R. Wehbring. 2020. GNU Octave version 6.1.0 manual: a high-level interactive language for numerical computations. Available from https://www.gnu.org/software/octave/doc/v6.3.0/
Fischer, J., P. W. Elsinghorst, M. Bücking, E. Tholen, B. Petersen, and M. Wüst. 2011. Development of a candidate reference method for the simultaneous quantitation of the boar taint compounds androstenone, 3α-androstenol, 3β-androstenol, skatole, and indole in pig fat by means of stable isotope dilution analysis-headspace solid-phase microextraction-gas chromatography/mass spectrometry. Anal. Chem. 83:6785-6791. doi:10.1021/ac201465q
Fischer, J., C. Gerlach, L. Meier-Dinkel, P. W. Elsinghorst, P. Boeker, H. -G. Schmarr, and M. Wüst. 2014. 2-Aminoacetophenone-a hepatic skatole metabolite as a potential contributor to boar taint. Food Res. Int. 62:35-42. doi:10.1016/j.foodres.2014.02.045
Font-i-Furnols, M., R. Martín-Bernal, M. Aluwé, M. Bonneau, J. -E. Haugen, D. Mörlein, J. Mörlein, N. Panella-Riera, and M. Škrlep. 2020. Feasibility of on/at line methods to determine boar taint and boar taint compounds: an overview. Animals 10:1886. doi:10.3390/ani10101886
Genva, M., T. Kenne Kemene, M. Deleu, L. Lins, and M. -L. Fauconnier. 2019. is it possible to predict the odor of a molecule on the basis of its structure? Int. J. Mol. Sci. 20:3018. doi:10.3390/ijms20123018
Gerlach, C., P. W. Elsinghorst, H. -G. Schmarr, and M. Wüst. 2016. 2-Aminoacetophenone is the main volatile phase I skatole metabolite in Pietrain × Baden-Württemberg hybrid type boars. J. Agric. Food Chem. 64:1158-1163. doi:10.1021/acs.jafc.5b05729
Gianola, D., and D. Sorensen. 2004. Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes. Genetics 167:1407-1424. doi:10.1534/genetics.103.025734
Gilmour, A. R., R. Thompson, and B. R. Cullis. 1995. Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440-1450. doi:10.2307/2533274
Haberland, A. M., H. Luther, A. Hofer, E. Tholen, H. Simianer, B. Lind, and C. Baes. 2014. Efficiency of different selection strategies against boar taint in pigs. Animal 8:11-19. doi:10.1017/S1751731113001857
Hansson, K. -E., K. Lundström, S. Fjelkner-Modig, and J. Persson. 1980. The importance of androstenone and skatole for boar taint. Swed. J. Agric. Res. 10:167-173.
Heyrman, E., S. Janssens, N. Buys, L. Vanhaecke, S. Millet, F. A. M. Tuyttens, J. Wauters, and M. Aluwé. 2020. Developing and understanding olfactory evaluation of boar taint. Animals 10:1684. doi:10.3390/ani10091684
Hill, W. G. 2013. Artificial selection. In: Maloy, S., and K. Hughes, editors. Brenner's encyclopedia of genetics. San Diego (CA): Academic Press; p. 200-203. doi:10.1016/B978-0-12-374984-0.00096-6
Lundström, K., K. R. Matthews, and J. -E. Haugen. 2009. Pig meat quality from entire males. Animal 3:1497-1507. doi:10.1017/S1751731109990693
Mathur, P. K., J. ten Napel, S. Bloemhof, L. Heres, E. F. Knol, and H. A. Mulder. 2012. A human nose scoring system for boar taint and its relationship with androstenone and skatole. Meat Sci. 91:414-422. doi:10.1016/j.meatsci.2012.02.025
Mathur, P. K., J. Napel, R. E. Crump, H. A. Mulder, and E. F. Knol. 2013. Genetic relationship between boar taint compounds, human nose scores, and reproduction traits in pigs. J. Anim. Sci. 91:4080-4089. doi:10.2527/jas.2013-6478
Meier-Dinkel, L., A. R. Sharifi, E. Tholen, L. Frieden, M. Bücking, M. Wicke, and D. Mörlein. 2013. Sensory evaluation of boar loins: trained assessors' olfactory acuity affects the perception of boar taint compounds. Meat Sci. 94:19-26. doi:10.1016/j.meatsci.2012.12.009
Meier-Dinkel, L., J. Gertheiss, S. Müller, R. Wesoly, and D. Mörlein. 2015. Evaluating the performance of sensory quality control: the case of boar taint. Meat Sci. 100:73-84. doi:10.1016/j.meatsci.2014.09.013
Meyer, K., and W. G. Hill. 1997. Estimation of genetic and phenotypic covariance functions for longitudinal or 'repeated' records by restricted maximum likelihood. Livest. Prod. Sci. 47:185-200. doi:10.1016/s0301-6226(96)01414-5
Meyer, K., and D. Houle. 2013. Sampling based approximation of confidence intervals for functions of genetic covariance matrices. Proc. Assoc. Advmt. Anim. Breed. Genet. 20:523-526. Available from http://www.aaabg.org/aaabghome/AAABG20- papers/meyer20523.pdf
Ministère de l'agriculture et de l'alimentation. 2021. Arrêté du 17 novembre 2021 modifiant l'arrêté du 24 février 2020 modifiant l'arrêté du 16 janvier 2003 établissant les normes minimales relatives à la protection des porcs. NOR : AGRT2134285A. Texte n°34. Available from https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000044340570
Misztal, I., S. Tsuruta, D. A. L. Lourenco, Y. Masuda, I. Aguilar, A. Legarra, and Z. Vitezica. 2014. Manual for BLUPF90 family programs. Georgia: University of Georgia. Available from https://nce.ads.uga.edu/html/projects/programs/docs/blupf90_all8.pdf
Mörlein, D., J. Trautmann, J. Gertheiss, L. Meier-Dinkel, J. Fischer, H. -J. Eynck, L. Heres, C. Looft, and E. Tholen. 2016. Interaction of skatole and androstenone in the olfactory perception of boar taint. J. Agric. Food Chem. 64:4556-4565. doi:10.1021/acs.jafc.6b00355
Mörlein, D., J. Mörlein, C. Gerlach, M. Strack, B. Kranz, and D. A. Brüggemann. 2024. An overlooked compound contributing to boar taint and consumer rejection of meat products: 2-aminoacetophenone. Meat Sci. 213:109497. doi:10.1016/j.meatsci.2024.109497
Mujibi, F. D. N., and D. H. Crews. 2009. Genetic parameters for calving ease, gestation length, and birth weight in Charolais cattle. J. Anim. Sci. 87:2759-2766. doi:10.2527/jas.2008-1141
Parois, S. P., A. Prunier, M. J. Mercat, E. Merlot, and C. Larzul. 2015. Genetic relationships between measures of sexual development, boar taint, health, and aggressiveness in pigs. J. Anim. Sci. 93:3749-3758. doi:10.2527/jas.2014-8290
Patterson, R. L. S. 1967. A possible contribution of phenolic components to boar odour. J. Sci. Food Agric. 18:8-10. doi:10.1002/jsfa.2740180103
R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Rius Solé, M. A., and J. A. García Regueiro. 2001. Role of 4-Phenyl-3-buten-2-one in boar taint: identification of new compounds related to sensorial descriptors in pig fat. J. Agric. Food Chem. 49:5303-5309. doi:10.1021/jf010482d
Robic, A., T. Faraut, and A. Prunier. 2014. Pathways and genes involved in steroid hormone metabolism in male pigs: a review and update. J. Steroid Biochem. Mol. Biol. 140:44-55. doi:10.1016/j.jsbmb.2013.11.001
Rodrigues, A., T. Massenet, L. M. Dubois, A. -C. Huet, A. Markey, J. Wavreille, N. Gengler, P. -H. Stefanuto, and J. -F. Focant. 2024. Development and validation of a classification model for boar taint detection in pork fat samples. Food Chem. 443:138572. doi:10.1016/j.foodchem.2024.138572
Snell, E. J. 1964. A Scaling procedure for ordered categorical data. Biometrics 20:592-607. doi:10.2307/2528498
Squires, E. J., C. Bone, and J. Cameron. 2020. Pork production with entire males: directions for control of boar taint. Animals 10:1665. doi:10.3390/ani10091665
Tajet, H., O. Andresen, and T. Meuwissen. 2006. Estimation of genetic parameters of boar taint; skatole and androstenone and their correlations with sexual maturation. Acta Vet. Scand. 48:S9. doi:10.1186/1751-0147-48-S1-S9
Varona, L., and O. González-Recio. 2023. Invited review: recursive models in animal breeding: interpretation, limitations, and extensions. J. Dairy Sci. 106:2198-2212. doi:10.3168/jds.2022-22578
Verplanken, K., S. Stead, R. Jandova, C. Van Poucke, J. Claereboudt, J. Vanden Bussche, S. De Saeger, Z. Takats, J. Wauters, and L. Vanhaecke. 2017. Rapid evaporative ionization mass spectrometry for high-throughput screening in food analysis: the case of boar taint. Talanta 169:30-36. doi:10.1016/j.talanta.2017.03.056
Weiler, U., M. F. i Furnols, K. Fischer, H. Kemmer, M. A. Oliver, M. Gispert, A. Dobrowolski, and R. Claus. 2000. Influence of differences in sensitivity of Spanish and German consumers to perceive androstenone on the acceptance of boar meat differing in skatole and androstenone concentrations. Meat Sci. 54:297-304. doi:10.1016/S0309-1740(99)00106-0
Wesoly, R., and U. Weiler. 2012. Nutritional influences on skatole formation and skatole metabolism in the pig. Animals 2:221-242. doi:10.3390/ani2020221
Windig, J. J., H. A. Mulder, J. ten Napel, E. F. Knol, P. K. Mathur, and R. E. Crump. 2012. Genetic parameters for androstenone, skatole, indole, and human nose scores as measures of boar taint and their relationship with finishing traits. J. Anim. Sci. 90:2120-2129. doi:10.2527/jas.2011-4700
Zamaratskaia, G., and E. J. Squires. 2009. Biochemical, nutritional and genetic effects on boar taint in entire male pigs. Animal 3:1508-1521. doi:10.1017/S1751731108003674