[en] [en] BACKGROUND: Cystoscopy-assisted submucosal injections of urethral bulking agents offer a safe and efficient alternative to surgery for treating urinary incontinence in both dogs and women. To address the concern of their transient therapeutic effect, a preclinical study evaluating the biocompatibility, safety, and durability of nanofibrillated cellulose as a bulking agent was designed. Plant-based nanofibrillated cellulose is considered renewable, biocompatible, and non-degradable in vivo. To the best of our knowledge, no studies of nanofibrillated cellulose injected into the urethral wall of experimental animals have been published to date.
METHODS: After assessing the rheological behavior of nanofibrillated cellulose, a biocompatibility study with 50 rats and a durability study with two Beagle dogs were conducted. In anesthesized rats, deposits of either nanofibrillated cellulose or sodium chloride as an inert control were injected into the urethral wall via a caudal laparotomy. The rats were euthanized for histopathological assessment after 7, 30, and 90 days. In dogs, cystoscopy-assisted injections of nanofibrillated cellulose were followed with magnetic resonance imaging at 14 days and at 2, 3, 6, and 12 months.
RESULTS: The rheological studies demonstrated a gel-like behavior under a wide range of shear stress. Nanofibrillated cellulose induced a moderate host tissue response according to the EN ISO 10993-6 standard, consisting primarily of macrophages, foreign body giant cells, lymphocytes, and plasma cells. No significant difference was observed in the tissue response at different time points. In dogs, the bulking agent was visible in 4/5 (80%) injection sites on magnetic resonance imaging at 12 months post-injection. No signs of migration, abscess formation or any major or long-term complications were observed.
CONCLUSIONS: Nanofibrillated cellulose maintains a chronic but stable and tolerable inflammatory response for up to 90 days in the urethral wall of rats. Durability in the urethral wall of dogs indicates a potential long-term effect.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Peltokallio, Nina M M ; Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland
Noël, Stéphanie ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Bolen, Géraldine ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Kuure, Satu ; GM Unit, Helsinki Institute of Life Science/STEMM, Research Program's Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
Raussi-Lehto, Eija; Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
Reyes, Guillermo ; VTT Technical Research Centre of Finland Ltd., Tampere, Finland
Ajdary, Rubina; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
Kuula, Jani; Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
Hamaide, Annick ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Laitinen-Vapaavuori, Outi M; Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland
Language :
English
Title :
In vivo biocompatibility and long-term durability of nanofibrillated cellulose as a urethral bulking agent in rats and Beagle dogs.
This study was funded by: Business Finland TUTLI fund, \u201CSolving the Mesh\u201D, Project number 211795, BF 6108/31/2019 (www.businessfinland.fi), received by ER-L and JK. Open access funded by Helsinki University Library, received by NP. The sponsors/funders did not play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank Hannu Sariola (Department of Pathology, Faculty of Medicine, University of Helsinki) for expertise in histopathological assessment and Jouni Junnila (EstiMates Oy, Helsinki) in statistical analysis. We also thank Anna Meller, Salla Jalkanen, Kylli Haller, and Raili Heinonen (GM Unit, Laboratory Animal Center, University of Helsinki) for assisting in planning and carrying out the experiments and for animal care; Anna Ahmala and P\u00E4ivi Laitinen (Department of Pathology, Faculty of Medicine, University of Helsinki) for paraffin sectioning and HE staining of tissue samples, and board-certified veterinary internalist Emilie Vangrinsven, ECVIM-CA (Teaching and Clinical Department of Companion Animals, Faculty of Veterinary Medicine, University of Li\u00E8ge), for cystoscopy. This study was carried out with the support of the HiLIFE GM-Unit Core Facility, University of Helsinki, Finland, a member of Biocenter Finland, and in the facilities of the Teaching and Clinical Department of Clinical Sciences of the College of Veterinary Medicine, University of Li\u00E8ge, Belgium.
Holt PE. Urinary incontinence in the bitch due to sphincter mechanism incompetence: prevalence in referred dogs and retrospective analysis of sixty cases. J Small Animal Practice. 1985;26(4):181–90. https://doi.org/10.1111/j.1748-5827.1985.tb02099.x
Arnold S, Jäger P, DiBartola SP, Lott-Stolz G, Hauser B, Hubler M, et al. Treatment of urinary incontinence in dogs by endoscopic injection of Teflon. J Am Vet Med Assoc. 1989;195(10):1369–74. https://doi.org/10.2460/javma.1989.195.10.1369 PMID: 2684938
Noël S, Claeys S, Hamaide A. Acquired urinary incontinence in the bitch: update and perspectives from human medicine. Part 2: The urethral component, pathophysiology and medical treatment. Vet J. 2010;186(1):18–24. https://doi.org/10.1016/j.tvjl.2010.06.011 PMID: 20655776
Haab F, Zimmern PE, Leach GE. Female stress urinary incontinence due to intrinsic sphincteric deficiency: recognition and management. J Urol. 1996;156(1):3–17. https://doi.org/10.1016/s0022-5347(01)65925-1
Luber KM. The definition, prevalence, and risk factors for stress urinary incontinence. Rev Urol. 2004;6(Suppl 3):S3–9. PMID: 16985863
Norton P, Brubaker L. Urinary incontinence in women. Lancet. 2006;367(9504):57–67. https://doi. org/10.1016/S0140-6736(06)67925-7 PMID: 16399154
Haylen BT, de Ridder D, Freeman RM, Swift SE, Berghmans B, Lee J, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Int Urogynecol J. 2010;21(1):5–26. https://doi.org/10.1007/s00192-009-0976-9 PMID: 19937315
Nickel RF, Wiegand U, van den Brom WE. Evaluation of a transpelvic sling procedure with and without colposuspension for treatment of female dogs with refractory urethral sphincter mechanism incompetence. Vet Surg. 1998;27(2):94–104. https://doi.org/10.1111/j.1532-950x.1998.tb00104.x PMID: 9525023
Reeves L, Adin C, McLoughlin M, Ham K, Chew D. Outcome after placement of an artificial urethral sphincter in 27 dogs. Vet Surg. 2013;42(1):12–8. https://doi.org/10.1111/j.1532-950X.2012.01043.x PMID: 23163231
Martinoli S, Nelissen P, White RAS. The outcome of combined urethropexy and colposuspension for management of bitches with urinary incontinence associated with urethral sphincter mechanism incompetence. Vet Surg. 2014;43(1):52–7. https://doi.org/10.1111/j.1532-950X.2013.12084.x PMID: 24256340
Gomes C, Doran I, Friend E, Tivers M, Chanoit G. Long-term outcome of female dogs treated with static hydraulic urethral sphincter for urethral sphincter mechanism incompetence. J Am Anim Hosp Assoc. 2018;54(5):276–84. https://doi.org/10.5326/JAAHA-MS-6709 PMID: 30040444
Hamon M, Hamaide AJ, Noël SM, Claeys S. Long-term outcome of the transobturator vaginal tape inside out for the treatment of urethral sphincter mechanism incompetence in female dogs. Vet Surg. 2019;48(1):29–34. https://doi.org/10.1111/vsu.12947 PMID: 30376185
Imamura M, Hudson J, Wallace SA, MacLennan G, Shimonovich M, Omar MI, et al. Surgical interventions for women with stress urinary incontinence: systematic review and network meta-analysis of randomised controlled trials. BMJ. 2019;365:l1842. https://doi.org/10.1136/bmj.l1842 PMID: 31167796
Kowalik CG, Dmochowski RR, De EJB. Surgery for female SUI: The ICI algorithm. Neurourol Urodyn. 2019;38(Suppl 4):S21–7. https://doi.org/10.1002/nau.23879 PMID: 31050030
Kobashi KC, Vasavada S, Bloschichak A, Hermanson L, Kaczmarek J, Kim SK, et al. Updates to Surgical Treatment of Female Stress Urinary Incontinence (SUI): AUA/SUFU Guideline (2023). J Urol. 2023;209(6):1091–8. https://doi.org/10.1097/JU.0000000000003435 PMID: 37096580
Arnold S, Hubler M, Lott-Stolz G, Rüsch P. Treatment of urinary incontinence in bitches by endoscopic injection of glutaraldehyde cross-linked collagen. J Small Anim Pract. 1996;37(4):163–8. https://doi. org/10.1111/j.1748-5827.1996.tb01951.x PMID: 8731402
Barth A, Reichler IM, Hubler M, Hässig M, Arnold S. Evaluation of long-term effects of endoscopic injection of collagen into the urethral submucosa for treatment of urethral sphincter incompetence in female dogs: 40 cases (1993-2000). J Am Vet Med Assoc. 2005;226(1):73–6. https://doi.org/10.2460/javma.2005.226.73 PMID: 15646576
Byron JK, Chew DJ, McLoughlin ML. Retrospective evaluation of urethral bovine cross-linked collagen implantation for treatment of urinary incontinence in female dogs. J Vet Intern Med. 2011;25(5):980–4. https://doi.org/10.1111/j.1939-1676.2011.0759.x PMID: 21781163
Lüttmann K, Merle R, Nickel R. Retrospective analysis after endoscopic urethral injections of glutaraldehyde-cross-linked-collagen or dextranomer/hyaluronic acid copolymer in bitches with urinary incontinence. J Small Anim Pract. 2019;60(2):96–101. https://doi.org/10.1111/jsap.12949 PMID: 30387491
Chen H, Shipov A, Segev G. Evaluation of cross-linked gelatin as a bulking agent for the management of urinary sphincter mechanism incompetence in female dogs. J Vet Intern Med. 2020;34(5):1914–9. https://doi.org/10.1111/jvim.15857 PMID: 32686187
Kendall A, Byron JK, Westropp JL, Coates JR, Vaden S, Adin C, et al. ACVIM consensus statement on diagnosis and management of urinary incontinence in dogs. J Vet Intern Med. 2024;38(2):878–903. https://doi.org/10.1111/jvim.16975 PMID: 38217372
Hagen S, McClurg D, Bugge C, Hay-Smith J, Dean SG, Elders A, et al. Effectiveness and cost-effectiveness of basic versus biofeedback-mediated intensive pelvic floor muscle training for female stress or mixed urinary incontinence: protocol for the OPAL randomised trial. BMJ Open. 2019;9(2):e024153. https://doi.org/10.1136/bmjopen-2018-024153 PMID: 30782895
Kotb AF, Campeau L, Corcos J. Urethral bulking agents: techniques and outcomes. Curr Urol Rep. 2009;10(5):396–400. https://doi.org/10.1007/s11934-009-0062-3 PMID: 19709488
Schulman CC, Simon J, Wespes E, Germeau F. Endoscopic injection of Teflon for female urinary incontinence. Eur Urol. 1983;9(4):246–7. https://doi.org/10.1159/000474092 PMID: 6873129
Robinson D, Anders K, Cardozo L, Bidmead J, Dixon A, Balmforth J, et al. What Do Women Want? J Pelvic Med Surg. 2003;9(6):273–7. https://doi.org/10.1097/01.spv.0000095060.05452.3f
Casteleijn FM, Enklaar RA, El Bouyahyaoui I, Jeffery S, Zwolsman SE, Roovers J-PWR. How cure rates drive patients’ preference for urethral bulking agent or mid-urethral sling surgery as therapy for stress urinary incontinence. Neurourol Urodyn. 2019;38(5):1384–91. https://doi.org/10.1002/nau.23997 PMID: 30989703
Dwyer L, Weaver E, Rajai A, Cox S, Reid F. “Voice your choice”: a study of women’s choice of surgery for primary stress urinary incontinence. Int Urogynecol J. 2020;31(4):769–77. https://doi.org/10.1007/s00192-019-04202-6 PMID: 31853598
Itkonen Freitas A-M, Isaksson C, Rahkola-Soisalo P, Tulokas S, Mentula M, Mikkola TS. Tension-free vaginal tape and polyacrylamide hydrogel injection for primary stress urinary incontinence: 3-year follow up from a randomized clinical trial. J Urol. 2022;208(3):658–67. https://doi.org/10.1097/ JU.0000000000002720 PMID: 35942796
Politano VA, Small MP, Harper JM, Lynne CM. Periurethral teflon injection for urinary incontinence. J Urol. 1974;111(2):180–3. https://doi.org/10.1016/s0022-5347(17)59921-8 PMID: 4810760
Ghoniem G, Corcos J, Comiter C, Westney OL, Herschorn S. Durability of urethral bulking agent injection for female stress urinary incontinence: 2-year multicenter study results. J Urol. 2010;183(4):1444–9. https://doi.org/10.1016/j.juro.2009.12.038 PMID: 20171691
Ghoniem G, Farhan B, Chowdhury ML, Chen Y. Safety and efficacy of polydimethylsiloxane (Macroplastique®) in women with stress urinary incontinence: analysis of data from patients who completed three years follow-up. Int Urogynecol J. 2021;32(10):2835–40. https://doi.org/10.1007/ s00192-021-04827-6 PMID: 34100973
Pai A, Al-Singary W. Durability, safety and efficacy of polyacrylamide hydrogel (Bulkamid(®)) in the management of stress and mixed urinary incontinence: three year follow up outcomes. Cent European J Urol. 2015;68(4):428–33. https://doi.org/10.5173/ceju.2015.647 PMID: 26855795
Hoe V, Haller B, Yao HH, O’Connell HE. Urethral bulking agents for the treatment of stress urinary incontinence in women: A systematic review. Neurourol Urodyn. 2021;40(6):1349–88. https://doi. org/10.1002/nau.24696 PMID: 34015151
Zheng Y, Rovner E. Update on urethral bulking for stress urinary incontinence in women. Curr Urol Rep. 2022;23(10):203–9. https://doi.org/10.1007/s11934-022-01099-5 PMID: 35781870
Dufresne A. Nanocellulose: a new ageless bionanomaterial. Mater Today. 2013;16(6):220–7. https:// doi.org/10.1016/j.mattod.2013.06.004
Li T, Chen C, Brozena AH, Zhu JY, Xu L, Driemeier C, et al. Developing fibrillated cellulose as a sustainable technological material. Nature. 2021;590(7844):47–56. https://doi.org/10.1038/s41586-020-03167-7 PMID: 33536649
Seddiqi H, Oliaei E, Honarkar H, Jin J, Geonzon LC, Bacabac RG, et al. Cellulose and its derivatives: towards biomedical applications. Cellulose. 2021;28(4):1893–931. https://doi.org/10.1007/ s10570-020-03674-w
Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Poly J. 2014;59:302–25. https://doi.org/10.1016/j.eurpolymj.2014.07.025
Mujtaba M, Negi A, King AWT, Zare M, Kuncova-Kallio J. Surface modifications of nanocellulose for drug delivery applications; a critical review. Cur Opin Biomed Eng. 2023;28:100475. https://doi.org/10.1016/j.cobme.2023.100475
Hussain SM, Bray R. Urethral bulking agents for female stress urinary incontinence. Neurourol Urodyn. 2019;38(3):887–92. https://doi.org/10.1002/nau.23924 PMID: 30801773
Bhattacharya M, Malinen MM, Lauren P, Lou Y-R, Kuisma SW, Kanninen L, et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release. 2012;164(3):291–8. https://doi.org/10.1016/j.jconrel.2012.06.039 PMID: 22776290
Balaji P, Murugadas A, Paasonen L, Shanmugaapriya S, Akbarsha MA. Efficiency of GrowDex® nanofibrillar cellulosic hydrogel when generating homotypic and heterotypic 3D tumor spheroids. AIMS Biophys. 2022;9(3):221–34. https://doi.org/10.3934/biophy.2022019
Feodoroff M, Mikkonen P, Turunen L, Hassinen A, Paasonen L, Paavolainen L, et al. Comparison of two supporting matrices for patient-derived cancer cells in 3D drug sensitivity and resistance testing assay (3D-DSRT). SLAS Discov. 2023;28(4):138–48. https://doi.org/10.1016/j.slasd.2023.03.002 PMID: 36934951
Basu A, Celma G, Strømme M, Ferraz N. In vitro and in vivo evaluation of the wound healing properties of nanofibrillated cellulose hydrogels. ACS Appl Bio Mater. 2018;1(6):1853–63. https://doi. org/10.1021/acsabm.8b00370 PMID: 34996286
Patel DK, Ganguly K, Hexiu J, Dutta SD, Patil TV, Lim K-T. Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing. Carbohydr Polym. 2022;284:119202. https://doi.org/10.1016/j.carbpol.2022.119202 PMID: 35287915
Koivunotko E, Koivuniemi R, Monola J, Harjumäki R, Pridgeon CS, Madetoja M, et al. Cellulaseassisted platelet-rich plasma release from nanofibrillated cellulose hydrogel enhances wound healing. J Control Release. 2024;368:397–412. https://doi.org/10.1016/j.jconrel.2024.02.041 PMID: 38423475
Hubrecht RC, Carter E. The 3Rs and humane experimental technique: implementing change. Animals (Basel). 2019;9(10):754. https://doi.org/10.3390/ani9100754 PMID: 31575048
Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7):e3000411. https://doi.org/10.1371/journal.pbio.3000411 PMID: 32663221
EN ISO 10993-6: Biological Evaluation of Medical Devices. Part 6: Tests for Local Effects after Implantation (ISO 10993- 6:2016). Finnish version of EN ISO 10993-6. Helsinki, Finland: Finnish Standards Association; 2016.
Mann-Gow TK, Blaivas JG, King BJ, El-Ghannam A, Knabe C, Lam MK, et al. Rat animal model for preclinical testing of microparticle urethral bulking agents. Int J Urol. 2015;22(4):416–20. https://doi. org/10.1111/iju.12693 PMID: 25581400
Carstens E, Moberg GP. Recognizing pain and distress in laboratory animals. ILAR J. 2000;41(2):62–71. https://doi.org/10.1093/ilar.41.2.62 PMID: 11304586
Sotocinal SG, Sorge RE, Zaloum A, Tuttle AH, Martin LJ, Wieskopf JS, et al. The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain. 2011;7:55. https://doi.org/10.1186/1744-8069-7-55 PMID: 21801409
Bailey IS, Karran SE, Toyn K, Brough P, Ranaboldo C, Karran SJ. Community surveillance of complications after hernia surgery. BMJ. 1992;304(6825):469–71. https://doi.org/10.1136/bmj.304.6825.469 PMID: 1547415
Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014;2014(6):655–8. https://doi.org/10.1101/pdb.prot073411 PMID: 24890205
Ajdary R, Huan S, Zanjanizadeh Ezazi N, Xiang W, Grande R, Santos HA, et al. Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D-printed scaffolds. Biomacromolecules. 2019;20(7):2770–8. https://doi.org/10.1021/acs.biomac.9b00527 PMID: 31117356
Moberg T, Sahlin K, Yao K, Geng S, Westman G, Zhou Q, et al. Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics. Cellulose. 2017;24(6):2499–510. https://doi.org/10.1007/s10570-017-1283-0
Malizia AA Jr, Reiman HM, Myers RP, Sande JR, Barham SS, Benson RC Jr, et al. Migration and granulomatous reaction after periurethral injection of polytef (Teflon). JAMA. 1984;251(24):3277–81. PMID: 6374180
Pannek J, Brands FH, Senge T. Particle migration after transurethral injection of carbon coated beads for stress urinary incontinence. J Urol. 2001;166(4):1350–3. https://doi.org/10.1016/s0022-5347(05)65767-9 PMID: 11547072
Raffee S, Atiemo H. Polydimethylsiloxane erosion as a cause for recurrent urinary tract infections. J Endourol Case Rep. 2019;5(3):117–9. https://doi.org/10.1089/cren.2019.0007 PMID: 32775642
Csuka DA, Ha J, Hanna AS, Kim J, Phan W, Ahmed AS, et al. Foreign body granuloma development after calcium hydroxylapatite injection for stress urinary incontinence: A literature review and case report. Arab J Urol. 2022;21(2):118–25. https://doi.org/10.1080/2090598X.2022.2146859 PMID: 37234676
Lightner DJ, Fox J, Klingele C. Cystoscopic injections of dextranomer hyaluronic acid into proximal urethra for urethral incompetence: efficacy and adverse outcomes. Urology. 2010;75(6):1310–4. https://doi.org/10.1016/j.urology.2009.12.061 PMID: 20299087
Berger MB, Morgan DM. Delayed presentation of pseudoabscess secondary to injection of pyrolytic carbon-coated beads bulking agent. Female Pelvic Med Reconstr Surg. 2012;18(5):303–5. https://doi.org/10.1097/SPV.0b013e318264c8e0 PMID: 22983276
Mann-Gow TK, King BJ, El-Ghannam A, Knabe-Ducheyne C, Kida M, Dall OM, et al. Novel bio-ceramic urethral bulking agents elicit improved host tissue responses in a rat model. Adv Urol. 2016;2016:1282531. https://doi.org/10.1155/2016/1282531 PMID: 27688751
Salthouse D, Novakovic K, Hilkens CMU, Ferreira AM. Interplay between biomaterials and the immune system: Challenges and opportunities in regenerative medicine. Acta Biomater. 2023;155:1–18. https://doi.org/10.1016/j.actbio.2022.11.003 PMID: 36356914
Sumner JP, Hardie RJ, Henningson JN, Drees R, Markel MD, Bjorling D. Evaluation of submucosally injected polyethylene glycol-based hydrogel and bovine cross-linked collagen in the canine urethra using cystoscopy, magnetic resonance imaging and histopathology. Vet Surg. 2012;41(6):655–63. https://doi.org/10.1111/j.1532-950X.2012.01005.x PMID: 22818023
Lemperle G, Lappin PB, Stone C, Lemperle SM. Urethral bulking with polymethylmethacrylate micro-spheres for stress urinary incontinence: tissue persistence and safety studies in miniswine. Urology. 2011;77(4):1005.e1–7. https://doi.org/10.1016/j.urology.2010.12.021 PMID: 21333337
Thornton AJ, Alsberg E, Hill EE, Mooney DJ. Shape retaining injectable hydrogels for minimally invasive bulking. J Urol. 2004;172(2):763–8. https://doi.org/10.1097/01.ju.0000130466.84214.f7 PMID: 15247778
Suriano R, Griffini G, Chiari M, Levi M, Turri S. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis. J Mech Behav Biomed Mater. 2014;30:339–46. https://doi.org/10.1016/j.jmbbm.2013.12.006 PMID: 24368174
Hassan S, Kim J, Suo Z. Polyacrylamide hydrogels. IV. Near-perfect elasticity and rate-dependent toughness. J Mech Phys Solids. 2022;158:104675. https://doi.org/10.1016/j.jmps.2021.104675
Telin AG, Strizhnev VA, Fakhreeva AV, Asadullin RR, Lenchenkova LE, Ratner AA, et al. Polyacrylamide Hydrogels with a Dispersed Filler: Specifics of Rheology and Filtration in Fractures. Journal of Engineering Physics and Thermophysics. 2023;96(2):513–519. doi: 10.1007/s10891-023-02712-1
Stojkov G, Niyazov Z, Picchioni F, Bose RK. Relationship between structure and rheology of hydrogels for various applications. Gels. 2021;7(4):255. https://doi.org/10.3390/gels7040255 PMID: 34940315
Lightner D, Calvosa C, Andersen R, Klimberg I, Brito CG, Snyder J, et al. A new injectable bulking agent for treatment of stress urinary incontinence: results of a multicenter, randomized, controlled, double-blind study of Durasphere. Urology. 2001;58(1):12–5. https://doi.org/10.1016/s0090-4295(01)01148-7 PMID: 11445471
Matsuoka PK, Locali RF, Pacetta AM, Baracat EC, Haddad JM. The efficacy and safety of urethral injection therapy for urinary incontinence in women: a systematic review. Clinics. 2016;71(2):94–100. https://doi.org/10.6061/clinics/2016(02)08
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100. https://doi.org/10.1016/j.smim.2007.11.004 PMID: 18162407
Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel). 2015;8(9):5671–701. https://doi.org/10.3390/ ma8095269 PMID: 28793529
Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, et al. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules. 2009;10(7):1992–6. https://doi.org/10.1021/bm900414t PMID: 19445519
Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3(1):71–85. https://doi.org/10.1039/c0nr00583e PMID: 20957280
Fukuzumi H, Saito T, Isogai A. Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym. 2013;93(1):172–7. https://doi.org/10.1016/j.carbpol.2012.04.069 PMID: 23465916
Thodikayil AT, Yadav A, Hariprasad P, Saha S. TEMPO-oxidized nanofibrillated cellulose as potential carrier for sustained antibacterial delivery. Int J Biol Macromol. 2023127604. https://doi.org/10.1016/j. ijbiomac.2023.127604 PMID: 39492499
McCollister DD, Hake CL, Sadek SE, Rowe VK. Toxicologic investigations of polyacrylamides. Toxicol Appl Pharmacol. 1965;7(5):639–51. https://doi.org/10.1016/0041-008x(65)90119-5 PMID: 5866801
Johnson KA, Gorzinski SJ, Bodner KM, Campbell RA, Wolf CH, Friedman MA, et al. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicol Appl Pharmacol. 1986;85(2):154–68. https://doi.org/10.1016/0041-008x(86)90109-2 PMID: 3764902
Bélanger MC, Marois Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J Biomed Mater Res. 2001;58(5):467–77. https://doi.org/10.1002/jbm.1043 PMID: 11505420
Darnell MC, Sun J-Y, Mehta M, Johnson C, Arany PR, Suo Z, et al. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials. 2013;34(33):8042–8. https://doi. org/10.1016/j.biomaterials.2013.06.061 PMID: 23896005
Ullm S, Krüger A, Tondera C, Gebauer TP, Neffe AT, Lendlein A, et al. Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties. Biomaterials. 2014;35(37):9755–66. https://doi.org/10.1016/j.biomaterials.2014.08.023 PMID: 25199786
Lindner C, Alkildani S, Stojanovic S, Najman S, Jung O, Barbeck M. In vivo biocompatibility analysis of a novel barrier membrane based on bovine dermis-derived collagen for Guided Bone Regeneration (GBR). Membranes (Basel). 2022;12(4):378. https://doi.org/10.3390/membranes12040378 PMID: 35448348
Vasconcelos SJ de, Leão RAS, Bernardino-Araújo S, Lira MM de M, Tsuji DH. Effect of sugarcane biopolymer in vocal fold of rabbits. Comparative study with calcium hydroxyapatite. Acta Cir Bras. 2015;30(3):186–93. https://doi.org/10.1590/S0102-865020150030000004 PMID: 25790006
Laurén P, Lou Y-R, Raki M, Urtti A, Bergström K, Yliperttula M. Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release. Eur J Pharm Sci. 2014;65:79–88. https://doi.org/10.1016/j.ejps.2014.09.013 PMID: 25245005
Avitsur R, Hunzeker J, Sheridan JF. Role of early stress in the individual differences in host response to viral infection. Brain Behav Immun. 2006;20(4):339–48. https://doi.org/10.1016/j.bbi.2005.09.006 PMID: 16289758
Wen T, Rothenberg ME. The regulatory function of eosinophils. Microbiol Spectr. 2016;4(5). https://doi. org/10.1128/microbiolspec.MCHD-0020-2015 PMID: 27780017
Bjersing L, Borglin NE. Effect of hormones on incidence of uterine esosinophilia in rats. Acta Pathol Microbiol Scand. 1964;60:27–35. https://doi.org/10.1111/apm.1964.60.1.27 PMID: 14114327
Tchernitchin A, Roorijck J, Tchernitchin X, Vandenhende J, Galand F. Dramatic early increase in uterine eosinophils after oestrogen administration. Nature. 1974;248(5444):142–3. https://doi. org/10.1038/248142a0 PMID: 4362086
Duchesne MJ, Badia E. Immunohistochemical localization of the eosinophil major basic protein in the uterus horn and cervix of the rat at term and after parturition. Cell Tissue Res. 1992;270(1):79–86. https://doi.org/10.1007/BF00381882 PMID: 1423526
Aguilar-Mariscal H, Patiño-Camacho SI, Rodríguez-Silverio J, Torres-López JE, Flores-Murrieta FJ. Oral pharmacokinetics of meloxicam in the rat using a high-performance liquid chromatography method in micro-whole-blood samples. Methods Find Exp Clin Pharmacol. 2007;29(9):587–91. https://doi.org/10.1358/mf.2007.29.9.1116314 PMID: 18193109
Foley PL, Kendall LV, Turner PV. Clinical management of pain in rodents. Comp Med. 2019;69(6):468–89. https://doi.org/10.30802/AALAS-CM-19-000048 PMID: 31822323
Herrmann K, Flecknell P. Retrospective review of anesthetic and analgesic regimens used in animal research proposals. ALTEX. 2019;36(1):65–80. https://doi.org/10.14573/altex.1804011 PMID: 30222179
Oliver VL, Thurston SE, Lofgren JL. Using cageside measures to evaluate analgesic efficacy in mice (Mus musculus) after surgery. J Am Assoc Lab Anim Sci. 2018;57(2):186–201. PMID: 29555008