[en] Comprehensive 2D gas chromatography coupled with mass spectrometry (GC × GC-MS) is a powerful analytical technique. However, the complexity and volume of data generated pose significant challenges for data processing and interpretation, limiting a broader adoption. Chemometric approaches, particularly multiway models like Parallel Factor Analysis (PARAFAC), have proven effective in addressing these challenges by enabling the extraction of meaningful chemical information from multi-dimensional datasets. However, traditional PARAFAC is constrained by its assumption of data tri-linearity, which may not be valid in all cases, leading to potential inaccuracies. To overcome these limitations, we present GcDUO, an open-source software implemented in R, designed specifically for the processing and analysis of GC × GC-MS data. GcDUO integrates advanced chemometric methods, including both PARAFAC and PARAFAC2, for a more accurate and comprehensive analysis. PARAFAC is particularly useful for deconvoluting overlapping peaks and extracting pure chemical signals, while PARAFAC2 relaxes de tri-linearity constraint, allowing the alignment between samples. The software is structured into six modules-data import, region of interest (ROI) selection, deconvolution, peak annotation, data integration, and visualization-facilitating comprehensive and flexible data processing. GcDUO was validated against the gold-standard software for comprehensive GC, demonstrating a high correlation (R2 = 0.9) in peak area measurements, confirming its effectiveness and reliability. GcDUO provides a valuable, open-source platform for researchers in metabolomics and related fields, enabling more accessible and customizable GC × GC-MS data analysis.
Disciplines :
Chemistry
Author, co-author :
Llambrich, Maria; Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), IISPV, C/Escorxador S/N, 43003, Tarragona, Spain
van der Kloet, Frans M; Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, Netherlands
Sementé, Lluc; Oncology Department, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili (IISPV), CERCA, Av. Joan Laporte 2, 43204, Reus, Spain
Rodrigues, Anaïs ; Université de Liège - ULiège > Molecular Systems (MolSys)
Samanipour, Saer; Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, Netherlands
Westerhuis, Johan A; Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, Netherlands
Cumeras, Raquel ; Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), IISPV, C/Escorxador S/N, 43003, Tarragona, Spain ; Oncology Department, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili (IISPV), CERCA, Av. Joan Laporte 2, 43204, Reus, Spain
Brezmes, Jesús; Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), IISPV, C/Escorxador S/N, 43003, Tarragona, Spain
Language :
English
Title :
GcDUO: an open-source software for GC × GC-MS data analysis.
This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No (798038). Grants PID2021-126543OB-C22 and RTI2018–098577-B-C21 funded by MICIU/AEI/ 10.13039/501100011033 and by ERDF/EU. MLL is thankful for her graduate fellowship from the URV PMF-PIPF program (ref. 2019PMF-PIPF-37) and Boehringer Ingelheim Fonds Travel Grant 2022. The Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement (2021 SGR 00818 and 2021 SGR 00842), CERCA program/Generalitat de Catalunya. AR is supported by the SRA-STEMA post-doctoral fellowship from Liège University.
Trinklein TJ, Cain CN, Ochoa GS. et al. Recent advances in GC×GC and chemometrics to address emerging challenges in nontargeted analysis. Anal Chem 2023;95:264-86. https://doi. org/10.1021/acs.analchem.2c04235
FranchinaFA,PurcaroG,BurklundA.etal.Evaluationofdifferent adsorbent materials for the untargeted and targeted bacte-rial VOC analysis using GC×GC-MS. Anal Chim Acta 2019;1066: 146-53. https://doi.org/10.1016/j.aca.2019.03.027
Morimoto J, Rosso MC, Kfoury N. et al. Untargeted/targeted 2D gas chromatography/mass spectrometry detection of the total volatile tea metabolome. Molecules 2019;24. https://doi. org/10.3390/molecules24203757
Guo L,Yu H,Li Y. et al. Tensor methods in data analysis of chro-matography/mass spectroscopy-based plant metabolomics. Plant Methods 2023;19:1-13. 10.1186/s13007-023-01105-y
Berrier KL, Prebihalo SE, RE. Synovec. In: Snow NH. (ed), Sepa-ration Science and Technology (New York), Elsevier Inc., 2020, 229-68. https://doi.org/10.1016/B978-0-12-813745-1.00007-6
Stefanuto PH, Smolinska A, Focant JF. Advanced chemomet-ric and data handling tools for GC×GC-TOF-MS: applica-tion of chemometrics and related advanced data handling in chemical separations. TrAC-Trends in Analytical Chemistry 2021;139:116251. https://doi.org/10.1016/j.trac.2021.116251
Bro R. PARAFAC. Tutorial and applications. Chemom Intel Lab Syst 1997;38:149-71. https://doi.org/10.1016/S0169-7439(97)00032-4
Pinkerton DK, Parsons BA, Anderson TJ. et al. Trilinearity devia-tionratio:anewmetricforchemometricanalysisofcomprehen-sive two-dimensional gas chromatography time-of-flight mass spectrometry data. Anal Chim Acta 2015;871:66-76. https://doi. org/10.1016/j.aca.2015.02.040
Prebihalo SE, Berrier KL, Freye CE. et al. Multidimensional gas chromatography: Advances in instrumentation, chemomet-rics, and applications. Anal Chem 2018;90:505-32. https://doi. org/10.1021/acs.analchem.7b04226
Johnsen LG, Skou PB, Khakimov B. et al. Gas chromatography-mass spectrometry data processing made easy. JChromatogrA 2017;1503:57-64. https://doi.org/10.1016/j.chroma.2017.04.052
Mathema VB, Duangkumpha K, Wanichthanarak K. et al. CRISP: a deep learning architecture for GC × GC-TOFMS con-tour ROI identification, simulation and analysis in imaging metabolomics. Brief Bioinform 2022;23:1-17.
Amigo JM, Skov T, Bro R. et al. Solving GC-MS problems with PARAFAC2. TrAC-Trends in Analytical Chemistry 2008;27:714-25. https://doi.org/10.1016/j.trac.2008.05.011
Kronik OM, Liang X, Nielsen NJ. et al. Obtaining clean and infor-mative mass spectra from complex chromatographic and high-resolution all-ions-fragmentation data by nonnegative parallel factor analysis 2. JChromatogrA 2022;1682:463501. https://doi. org/10.1016/j.chroma.2022.463501
Wilde MJ, Zhao B, Cordell RL. et al. Automating and extend-ing comprehensive two-dimensional gas chromatography data processing by interfacing open-source and commercial soft-ware. Anal Chem 2020;92:13953-60. https://doi.org/10.1021/acs. analchem.0c02844
Pollo BJ, Teixeira CA, Belinato JR. et al. Trends Anal Chem 2021;134:116111. https://doi.org/10.1016/j.trac.2020.116111
Quiroz-Moreno C, Furlan MF, Belinato JR. et al. RGCxGC toolbox: an R-package for data processing in comprehen-sive two-dimensional gas chromatography-mass spectrometry. Microchem J 2020;156:104830. https://doi.org/10.1016/j.microc. 2020.104830
Misra BB. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. Anal Methods 2021;13: 2265-82. https://doi.org/10.1039/D1AY00173F
Beucher S. Watershed, hierarchical segmentation and water-fall algorithm. Mathematical Morphology and Its Applications to Image Processing 1994;69-76. https://doi.org/10.1007/978-94-011-1040-2_10
Samanipour S, Dimitriou-Christidis P, Gros J. et al. Analyte quantification with comprehensive two-dimensional gas chro-matography: assessment of methods for baseline correction, peak delineation, and matrix effect elimination for real sam-ples. JChromatogrA 2015;1375:123-39. https://doi.org/10.1016/j.chroma.2014.11.049
Prebihalo SE, Pinkerton DK, Synovec RE. Impact of compre-hensive two-dimensional gas chromatography time-of-flight mass spectrometry experimental design on data trilinearity and parallel factor analysis deconvolution. JChromatogr A 2019;1605:460368. https://doi.org/10.1016/j.chroma.2019. 460368
Lorenzo-Seva U, ten Berge. Tucker's congruence coefficient as a meaningful index of factor similarity. Methodology 2006;2:57-64. https://doi.org/10.1027/1614-2241.2.2.57
Domingo-Almenara X, Brezmes J, Vinaixa M. et al. eRah: a com-putational tool integrating spectral deconvolution and align-ment with quantification and identification of metabolites in GC/MS-based metabolomics.Anal Chem 2016;88:9821-9.https://doi.org/10.1021/acs.analchem.6b02927
Wan KX, Vidavsky I, Gross ML. Comparing similar spectra: from similarity index to spectral contrast angle. JAmSoc Mass Spectrom 2002;13:85-8. https://doi.org/10.1016/S1044-0305 (01)00327-0
Weggler BA, Dubois LM, Gawlitta N. et al. A unique data analysis framework andopen source benchmark data set forthe analysis of comprehensive two-dimensional gas chromatography soft-ware. JChromatogrA 2021;1635:461721. https://doi.org/10.1016/j.chroma.2020.461721
Franchina FA, Zanella D, Lazzari E. et al. Investigating aroma diversity combining purge-and-trap, comprehensive two-dimensional gas chromatography, and mass spectrometry. JSep Sci 2020;43:1790-9. https://doi.org/10.1002/jssc.201900902
Stein SE, Scott DR. Optimization and testing of mass spectral library search algorithms for compound identification. JAmSoc Mass Spectrom 1994;5:859-66. https://doi.org/10.1016/1044-0305 (94)87009-8
National Institute of Standards and Technology (2023) NIST Search Program (Software version 3.0). Available at https://chemdata.nist.gov/dokuwiki/doku.phpid=chemdata:nistlibs# nist_search_software.
Tsugawa H, Cajka T, Kind T. et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 2015;12:523-6. https://doi.org/10.1038/nmeth.3393
Horai H, Arita M, Kanaya S. et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 2010;45:703-14. https://doi.org/10.1002/jms.1777
Ruttkies C, Schymanski EL, Wolf S. et al. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. JChem 2016;8:1-16. https://doi.org/10.1186/s13321-016-0115-9
Dührkop K, Fleischauer M, Ludwig M. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite struc-ture information. Nat Methods 2019;16:299-302. https://doi. org/10.1038/s41592-019-0344-8
Li M, Zhao Z, Zhang Y. et al. Chemometrics combined with com-prehensive two-dimensional gas chromatography-mass spec-trometry for the identification of baijiu vintage. Food Chem 2024; 444:138690. https://doi.org/10.1016/j.foodchem.2024.138690
Pourasil RSM, Cristale J, Lacorte S. et al. Non-targeted gas chro-matography orbitrap mass spectrometry qualitative and quan-titative analysis of semi-volatile organic compounds in indoor dust using the regions of interest multivariate curve resolution chemometrics procedure. JChromatogrA 2022;1668. https://doi. org/10.1016/j.chroma.2022.462907
Wünsch UJ, Bro R, Stedmon CA, Wenig P, Murphy KR. Emerg-ing patterns in the global distribution of dissolved organic matter fluorescence. Anal Methods 2019;11:888-93. https://doi. org/10.1039/C8AY02422G