Article (Scientific journals)
GcDUO: an open-source software for GC × GC-MS data analysis.
Llambrich, Maria; van der Kloet, Frans M; Sementé, Lluc et al.
2025In Briefings in Bioinformatics, 26 (2)
Peer Reviewed verified by ORBi
 

Files


Full Text
bbaf080 (1).pdf
Author postprint (952.27 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
GC × GC–MS; PARAFAC; PARAFAC2; chemometrics; metabolomics; multi-dimensional chromatography; open-source software; Software; Gas Chromatography-Mass Spectrometry/methods
Abstract :
[en] Comprehensive 2D gas chromatography coupled with mass spectrometry (GC × GC-MS) is a powerful analytical technique. However, the complexity and volume of data generated pose significant challenges for data processing and interpretation, limiting a broader adoption. Chemometric approaches, particularly multiway models like Parallel Factor Analysis (PARAFAC), have proven effective in addressing these challenges by enabling the extraction of meaningful chemical information from multi-dimensional datasets. However, traditional PARAFAC is constrained by its assumption of data tri-linearity, which may not be valid in all cases, leading to potential inaccuracies. To overcome these limitations, we present GcDUO, an open-source software implemented in R, designed specifically for the processing and analysis of GC × GC-MS data. GcDUO integrates advanced chemometric methods, including both PARAFAC and PARAFAC2, for a more accurate and comprehensive analysis. PARAFAC is particularly useful for deconvoluting overlapping peaks and extracting pure chemical signals, while PARAFAC2 relaxes de tri-linearity constraint, allowing the alignment between samples. The software is structured into six modules-data import, region of interest (ROI) selection, deconvolution, peak annotation, data integration, and visualization-facilitating comprehensive and flexible data processing. GcDUO was validated against the gold-standard software for comprehensive GC, demonstrating a high correlation (R2 = 0.9) in peak area measurements, confirming its effectiveness and reliability. GcDUO provides a valuable, open-source platform for researchers in metabolomics and related fields, enabling more accessible and customizable GC × GC-MS data analysis.
Disciplines :
Chemistry
Author, co-author :
Llambrich, Maria;  Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), IISPV, C/Escorxador S/N, 43003, Tarragona, Spain
van der Kloet, Frans M;  Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, Netherlands
Sementé, Lluc;  Oncology Department, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili (IISPV), CERCA, Av. Joan Laporte 2, 43204, Reus, Spain
Rodrigues, Anaïs  ;  Université de Liège - ULiège > Molecular Systems (MolSys)
Samanipour, Saer;  Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, Netherlands
Stefanuto, Pierre-Hugues  ;  Université de Liège - ULiège > Département de chimie (sciences)
Westerhuis, Johan A;  Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, Netherlands
Cumeras, Raquel ;  Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), IISPV, C/Escorxador S/N, 43003, Tarragona, Spain ; Oncology Department, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili (IISPV), CERCA, Av. Joan Laporte 2, 43204, Reus, Spain
Brezmes, Jesús;  Department of Electrical Electronic Engineering and Automation, Universitat Rovira i Virgili (URV), IISPV, C/Escorxador S/N, 43003, Tarragona, Spain
Language :
English
Title :
GcDUO: an open-source software for GC × GC-MS data analysis.
Publication date :
04 March 2025
Journal title :
Briefings in Bioinformatics
ISSN :
1467-5463
eISSN :
1477-4054
Publisher :
Oxford University Press, England
Volume :
26
Issue :
2
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
EU - European Union
Funding text :
This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No (798038). Grants PID2021-126543OB-C22 and RTI2018–098577-B-C21 funded by MICIU/AEI/ 10.13039/501100011033 and by ERDF/EU. MLL is thankful for her graduate fellowship from the URV PMF-PIPF program (ref. 2019PMF-PIPF-37) and Boehringer Ingelheim Fonds Travel Grant 2022. The Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement (2021 SGR 00818 and 2021 SGR 00842), CERCA program/Generalitat de Catalunya. AR is supported by the SRA-STEMA post-doctoral fellowship from Liège University.
Available on ORBi :
since 11 April 2025

Statistics


Number of views
50 (1 by ULiège)
Number of downloads
35 (2 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi