[en] IntroductionAllostatic load (AL) is a composite score of progressive physiological dysregulations in response to long-term exposure to everyday stress. Despite growing interest, limited research has focused on links with cerebral and cognitive aspects of aging and with markers sensitive to Alzheimer’s disease (AD) in a healthy elderly population and with a multimodal approach.MethodsAt baseline, 111 older adults (without cognitive impairment) from the Age-Well trial completed blood and anthropometric markers collection, cognitive assessments and multimodal neuroimaging within 3 months.ResultsAL was negatively associated with gray matter volume and white matter integrity within frontal and temporal regions and poorer attentional performance.DiscussionAL is linked to structural brain integrity in aging- and stress-sensitive regions but not with AD-related markers (β-amyloid load) and only in two AD-sensitive brain regions in older adults. These results highlight the potential interest of AL as a sensitive index of stress-induced brain aging.
Disciplines :
Neurosciences & behavior
Author, co-author :
Palix, Cassandre
Chauveau, Léa
Felisatti, Francesca
Chocat, Anne
Coulbault, Laurent
Hébert, Oriane
Mézenge, Florence
Landeau, Brigitte
Haudry, Sacha
Fauvel, Séverine
Collette, Fabienne ; Université de Liège - ULiège > Département de Psychologie
Abdulraheem Jabbar A. Jalal Majeed M. (2020). The effect of serum cortisol on the prediabetes stage under normal and stress state. IOP Conf. Series Mat. Sci. Eng. 928:052019. doi: 10.1088/1757-899X/928/5/052019
André C Rehel S Kuhn E Landeau B Moulinet I Touron E et al. (2020). Research Group. Association of Sleep-Disordered Breathing With Alzheimer Disease Biomarkers in Community-Dwelling Older Adults: A Secondary Analysis of a Randomized Clinical Trial. JAMA Neurol. 77, 716–724. doi: 10.1001/jamaneurol.2020.0311
Arnsten A. F. T. (2000). Stress impairs prefrontal cortical function in rats and monkeys: role of dopamine D1 and norepinephrine α-1 receptor mechanisms. Prog. Brain Res. 126, 183–192. doi: 10.1016/S0079-6123(00)26014-7
Arnsten A. F. T. (2015). Stress weakens prefrontal networks: molecular insults to higher cognition. Nat. Neurosci. 18, 1376–1385. doi: 10.1038/nn.4087, PMID: 26404712
Arnsten A. F. T. Raskind M. A. Taylor F. B. Connor D. F. (2015). The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder. Neurobiol. Stress 1, 89–99. doi: 10.1016/j.ynstr.2014.10.002, PMID: 25436222
Beckie T. M. (2012). A systematic review of allostatic load, health, and health disparities. Biol. Res. Nurs. 14, 311–346. doi: 10.1177/1099800412455688, PMID: 23007870
Bendlin B. B. Fitzgerald M. E. Ries M. L. Xu G. Kastman E. K. Thiel B. W. et al. (2010). White matter in aging and cognition: A cross-sectional study of microstructure in adults aged eighteen to eighty-three. Dev. Neuropsychol. 35, 257–277. doi: 10.1080/87565641003696775, PMID: 20446132
Booth T. Royle N. A. Corley J. Gow A. J. Valdés Hernández M. Del C. et al. (2015). Association of allostatic load with brain structure and cognitive ability in later life. Neurobiol. Aging 36, 1390–1399. doi: 10.1016/j.neurobiolaging.2014.12.020, PMID: 25659881
Carbone J. T. Clift J. Alexander N. (2022). Measuring allostatic load: approaches and limitations to algorithm creation. J. Psychosom. Res. 163:111050. doi: 10.1016/j.jpsychores.2022.111050, PMID: 36228435
Commodari E. Guarnera M. (2008). Attention and aging. Aging Clin. Exp. Res. 20, 578–584. doi: 10.1007/BF03324887
D’Amico D. Amestoy M. E. Fiocco A. J. (2020). The association between allostatic load and cognitive function: a systematic and meta-analytic review. Psychoneuroendocrinology 121:104849. doi: 10.1016/j.psyneuen.2020.104849, PMID: 32892066
De Felice F. G. Gonçalves R. A. Ferreira S. T. (2022). Impaired insulin signalling and allostatic load in Alzheimer disease. Nat. Rev. Neurosci. 23, 215–230. doi: 10.1038/s41583-022-00558-9, PMID: 35228741
El-Farhan N. Rees D. A. Evans C. (2017). Measuring cortisol in serum, urine and saliva – are our assays good enough? Annal. Clin. Biochem. Int. J. Lab. Med. 54, 308–322. doi: 10.1177/0004563216687335, PMID: 28068807
Ennis G. E. An Y. Resnick S. M. Ferrucci L. O’Brien R. J. Moffat S. D. (2017). Long-term cortisol measures predict Alzheimer disease risk. Neurology 88, 371–378. doi: 10.1212/WNL.0000000000003537, PMID: 27986873
Fjell A. M. McEvoy L. Holland D. Dale A. M. Walhovd K. B. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog. Neurobiol. 117, 20–40. doi: 10.1016/j.pneurobio.2014.02.004, PMID: 24548606
Folstein MF Folstein SE McHugh PR. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 12:189–98. doi: 10.1016/0022-3956(75)90026-6
Fraser R. Ingram M. C. Anderson N. H. Morrison C. Davies E. Connell J. M. C. (1999). Cortisol effects on body mass, blood pressure, and cholesterol in the general population. Hypertension 33, 1364–1368. doi: 10.1161/01.HYP.33.6.1364, PMID: 10373217
Garnier-Crussard A. Bougacha S. Wirth M. André C. Delarue M. Landeau B. et al. (2020). White matter hyperintensities across the adult lifespan: relation to age, Aβ load, and cognition. Alzheimer’s Res. Ther. 12, 1–11. doi: 10.1186/s13195-020-00669-4, PMID: 33032654
Girotti M. Bulin S. E. Carreno F. R. (2024). Effects of chronic stress on cognitive function - from neurobiology to intervention. Neurobiol. Stress 33:100670. doi: 10.1016/j.ynstr.2024.100670
Godefroy O Martinaud O Verny M Mosca C Lenoir H Bretault E et al. (2014). The dysexecutive syndrome of Alzheimer’s disease: the GREFEX study. J Alzheimers Dis. 42, 1203–8. doi: 10.3233/JAD-140585
Godefroy O et le GRoupe de Réflexion sur l’Evaluation des Fonctions EXécutives (2008). Fonctions exécutives et pathologies neurologiques et psychiatriques. Marseille: Solal.
Guidi J. Lucente M. Sonino N. Fava G. A. (2021). Allostatic load and its impact on health: a systematic review. Psychother. Psychosom. 90, 11–27. doi: 10.1159/000510696
Juster R.-P. McEwen B. S. Lupien S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 35, 2–16. doi: 10.1016/j.neubiorev.2009.10.002, PMID: 19822172
Juster R.-P. Misiak B. (2023). Advancing the allostatic load model: from theory to therapy. Psychoneuroendocrinology 154:106289. doi: 10.1016/j.psyneuen.2023.106289, PMID: 37202225
Juster R. P. Pruessner J. C. Desrochers A. B. Bourdon O. Durand N. Wan N. et al. (2016). Sex and gender roles in relation to mental health and allostatic load. Psychosom. Med. 78, 788–804. doi: 10.1097/PSY.0000000000000351, PMID: 27359170
Kallen V. Tahir M. Bedard A. Bongers B. van Riel N. van Meeteren N. (2021). Aging and Allostasis: using Bayesian network analytics to explore and evaluate allostatic markers in the context of aging. Diagnostics 11:157. doi: 10.3390/diagnostics11020157, PMID: 33494482
Karlamangla A. S. Singer B. H. McEwen B. S. Rowe J. W. Seeman T. E. (2002). Allostatic load as a predictor of functional decline. J. Clin. Epidemiol. 55, 696–710. doi: 10.1016/S0895-4356(02)00399-2, PMID: 12160918
Karlamangla A. S. Singer B. H. Seeman T. E. (2006). Reduction in allostatic load in older adults is associated with lower all-cause mortality risk: MacArthur studies of successful aging. Psychosom. Med. 68, 500–507. doi: 10.1097/01.psy.0000221270.93985.82, PMID: 16738085
Kerr P. Kheloui S. Rossi M. Désilets M. Juster R.-P. (2020). Allostatic load and women’s brain health: a systematic review. Front. Neuroendocrinol. 59:100858. doi: 10.1016/j.yfrne.2020.100858, PMID: 32758482
Langellier B. A. Fleming P. J. Kemmick Pintor J. B. Stimpson J. P. (2021). Allostatic load among U.S.- and foreign-born whites, blacks, and Latinx. Am. J. Prev. Med. 60, 159–168. doi: 10.1016/j.amepre.2020.08.022, PMID: 33339663
Lenart-Bugla M. Szcześniak D. Bugla B. Kowalski K. Niwa S. Rymaszewska J. et al. (2022). The association between allostatic load and brain: a systematic review. Psychoneuroendocrinology 145:105917. doi: 10.1016/j.psyneuen.2022.105917, PMID: 36113380
Liu Q. Liu Y. Leng X. Han J. Xia F. Chen H. (2020). Impact of chronic stress on attention control: evidence from behavioral and event-related potential analyses. Neurosci. Bull. 36, 1395–1410. doi: 10.1007/s12264-020-00549-9
Lupien S. J. McEwen B. S. Gunnar M. R. Heim C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445. doi: 10.1038/nrn2639, PMID: 19401723
Marin M.-F. Lord C. Andrews J. Juster R.-P. Sindi S. Arsenault-Lapierre G. et al. (2011). Chronic stress, cognitive functioning and mental health. Neurobiol. Learn. Mem. 96, 583–595. doi: 10.1016/j.nlm.2011.02.016, PMID: 21376129
Mather M. Thayer J. F. (2018). How heart rate variability affects emotion regulation brain networks. Curr. Opin. Behav. Sci. 19, 98–104. doi: 10.1016/j.cobeha.2017.12.017, PMID: 29333483
Matos T. M. De Souza-Talarico J. N. (2019). How stress mediators can cumulatively contribute to Alzheimer’s disease an allostatic load approach. Dementia Neuropsychol. 13, 11–21. doi: 10.1590/1980-57642018dn13-010002, PMID: 31073376
McAvinue L. P. Habekost T. Johnson K. A. Kyllingsbæk S. Vangkilde S. Bundesen C. et al. (2012). Sustained attention, attentional selectivity, and attentional capacity across the lifespan. Atten. Percept. Psychophys. 74, 1570–1582. doi: 10.3758/s13414-012-0352-6
McCrory C. McLoughlin S. Layte R. NiCheallaigh C. O'Halloran A. M. Barros H. et al. (2023). Towards a consensus definition of allostatic load: a multi-cohort, multi-system, multi-biomarker individual participant data (IPD) meta-analysis. Psychoneuroendocrinology 153:106117. doi: 10.1016/j.psyneuen.2023.106117, PMID: 37100008
McEwen B. S. (1998). Stress, adaptation, and disease: allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44. doi: 10.1111/j.1749-6632.1998.tb09546.x, PMID: 9629234
McEwen B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904. doi: 10.1152/physrev.00041.2006, PMID: 17615391
McEwen B. S. Gianaros P. J. (2010). Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann. N. Y. Acad. Sci. 1186, 190–222. doi: 10.1111/j.1749-6632.2009.05331.x, PMID: 20201874
McEwen B. S. Stellar E. (1993). Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 153, 2093–2101. doi: 10.1001/archinte.1993.00410180039004
McLoughlin S. Kenny R. A. McCrory C. (2020). Does the choice of allostatic load scoring algorithm matter for predicting age-related health outcomes? Psychoneuroendocrinology 120:104789. doi: 10.1016/j.psyneuen.2020.104789, PMID: 32739647
Montgomery SA Asberg M. (1979). A new depression scale designed to be sensitive to change. Br J Psychiatry. 134, 382–9. doi: 10.1192/bjp.134.4.382
Moore J. X. Bevel M. S. Aslibekyan S. Akinyemiju T. (2021). Temporal changes in allostatic load patterns by age, race/ethnicity, and gender among the US adult population; 1988–2018. Prev. Med. 147:106483. doi: 10.1016/j.ypmed.2021.106483, PMID: 33640399
Narbutas J. Chylinski D. Van Egroo M. Bahri M. A. Koshmanova E. Besson G. et al. (2021). Positive effect of cognitive reserve on episodic memory, executive and attentional functions taking into account amyloid-Beta, tau, and apolipoprotein E status. Front. Aging Neurosci. 13, 1–15. doi: 10.3389/fnagi.2021.666181, PMID: 34122044
Narbutas J. Van Egroo M. Chylinski D. González P. V. Jimenez C. G. Besson G. et al. (2019). Cognitive efficiency in late midlife is linked to lifestyle characteristics and allostatic load. Aging 11, 7169–7186. doi: 10.18632/aging.102243, PMID: 31503006
Ottino-González J. Jurado M. A. García-García I. Segura B. Marqués-Iturria I. Sender-Palacios M. J. et al. (2017). Allostatic load is linked to cortical thickness changes depending on body-weight status. Front. Hum. Neurosci. 11, 1–11. doi: 10.3389/fnhum.2017.00639, PMID: 29375342
Ottino-González J. Jurado M. A. García-García I. Segura B. Marqués-Iturria I. Sender-Palacios M. J. et al. (2018). Allostatic load and disordered white matter microstructure in overweight adults. Sci. Rep. 8, 15898–15812. doi: 10.1038/s41598-018-34219-8, PMID: 30367110
Ourry V. Gonneaud J. Landeau B. Moulinet I. Touron E. Dautricourt S. et al. (2021). Association of quality of life with structural, functional and molecular brain imaging in community-dwelling older adults. NeuroImage 231:117819. doi: 10.1016/j.neuroimage.2021.117819, PMID: 33549750
Palix C. Felisatti F. Gonneaud J. Kuhn E. Mézenge F. Landeau B. et al. (2022). Relationships between diabetes-related vascular risk factors and neurodegeneration biomarkers in healthy aging and Alzheimer's disease. Neurobiol. Aging 118, 25–33. doi: 10.1016/j.neurobiolaging.2022.06.004, PMID: 35843110
Poisnel G. Arenaza-Urquijo E. Collette F. Klimecki O. M. Marchant N. L. Wirth M. et al. (2018). The age-well randomized controlled trial of the Medit-ageing European project: effect of meditation or foreign language training on brain and mental health in older adults. Alzheimer’s Dementia Transl. Res. Clin. Interv. 4, 714–723. doi: 10.1016/j.trci.2018.10.011, PMID: 30581977
Prenderville J. A. Kennedy P. J. Dinan T. G. Cryan J. F. (2015). Adding fuel to the fire: the impact of stress on the ageing brain. Trends Neurosci. 38, 13–25. doi: 10.1016/j.tins.2014.11.001
Read S. Grundy E. (2014). Allostatic load and health in the older population of England: A crossed-lagged analysis. Psychosom. Med. 76, 490–496. doi: 10.1097/PSY.0000000000000083, PMID: 25153937
Ritchie S. J. Tucker-Drob E. M. Cox S. R. Dickie D. A. Del C. Valdés Hernández M. et al. (2017). Risk and protective factors for structural brain ageing in the eighth decade of life. Brain Struct. Funct. 222, 3477–3490. doi: 10.1007/s00429-017-1414-2, PMID: 28424895
Ronan L. Alexander-Bloch A. Wagstyl K. Farooqi S. Brayne C. Tyler L. K. et al. (2016). Obesity associated with increased brain age from midlife. Neurobiol. Aging 47, 63–70. doi: 10.1016/j.neurobiolaging.2016.07.010, PMID: 27562529
Saeedi M. Rashidy-Pour A. (2021). Association between chronic stress and Alzheimer’s disease: therapeutic effects of saffron. Biomed. Pharmacother. 133:110995. doi: 10.1016/j.biopha.2020.110995, PMID: 33232931
Salehi M. Mesgarani A. Karimipour S. Pasha S. Z. Kashi Z. Abedian S. et al. (2019). Comparison of salivary cortisol level in type 2 diabetic patients and pre-diabetics with healthy people. Open Access Maced. J. Med. Sci. 7, 2321–2327. doi: 10.3889/oamjms.2019.340, PMID: 31592281
Sapolsky R. M. Romero L. M. Munck A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89, PMID: 10696570
Schmidt P. (2016). Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. München: LMU München.
Schulkin J. (2004). Allostasis, homeostasis, and the costs of physiological adaptation. Cambridge: Cambridge University Press.
Seeman T. E. (1997). Increase in urinary cortisol excretion and memory declines: MacArthur studies of successful aging. J. Clin. Endocrinol. Metab. 82, 2458–2465. doi: 10.1210/jc.82.8.2458, PMID: 9253318
Seeman T. E. McEwen B. S. Rowe J. W. Singer B. H. (2001). Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc. Natl. Acad. Sci. 98, 4770–4775. doi: 10.1073/pnas.081072698, PMID: 11287659
Seeman T. E. Singer B. H. Rowe J. W. Horwitz R. I. McEwen B. S. (1997). Price of adaptation—allostatic load and its health consequences. Arch. Intern. Med. 157, 2259–2268. doi: 10.1001/archinte.1997.00440400111013, PMID: 9343003
Seplaki C. Goldman N. Glei D. Weinstein M. (2005). A comparative analysis of measurement approaches for physiological dysregulation in an older population. Exp. Gerontol. 40, 438–449. doi: 10.1016/j.exger.2005.03.002, PMID: 15919596
Smith E. Hay P. Campbell L. Trollor J. N. (2011). A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes. Rev. 12, 740–755. doi: 10.1111/j.1467-789X.2011.00920.x
Stomby A. Boraxbekk C.-J. Lundquist A. Nordin A. Nilsson L.-G. Adolfsson R. et al. (2016). Higher diurnal salivary cortisol levels are related to smaller prefrontal cortex surface area in elderly men and women. Eur. J. Endocrinol. 175, 117–126. doi: 10.1530/EJE-16-0352, PMID: 27190207
Tampubolon G. Maharani A. (2018). Trajectories of allostatic load among older Americans and Britons: longitudinal cohort studies. BMC Geriatr. 18, 1–10. doi: 10.1186/s12877-018-0947-4, PMID: 30352552
Tomadesso C. La Sayette V. Flores R. Bourgeat P. Villemagne V. L. Egret S. et al. (2018). Neuropsychology and neuroimaging profiles of amyloid-positive versus amyloid-negative amnestic mild cognitive impairment patients. Alzheimer Dementia Diag. Assessm. Dis. Monitoring 10, 269–277. doi: 10.1016/j.dadm.2018.02.008, PMID: 29780872
Upchurch D. M. Stein J. Greendale G. A. Chyu L. Tseng C.-H. Huang M.-H. et al. (2015). A longitudinal investigation of race, socioeconomic status, and psychosocial mediators of allostatic load in midlife women. Psychosom. Med. 77, 402–412. doi: 10.1097/PSY.0000000000000175, PMID: 25886828
Van der Linden M. Coyette F. Poitrenaud J. Kalafat M. Calicis F. Wyns C. et al. (2004). et les membres du GREMEM. L’épreuve de rappel libre/rappel indicé à 16 items (RL/RI-16) In: et les membres du GREMEM, L’évaluation des troubles de la mémoire. Présentation de quatre tests de mémoire épisodique (avec leur étalonnage). eds. Van der Linden M. Adam S. Agniel A.. Marseille: Solal. 25–47.
Zsoldos E. Filippini N. Mahmood A. Mackay C. E. Singh-Manoux A. Kivimäki M. et al. (2018). Allostatic load as a predictor of grey matter volume and white matter integrity in old age: the Whitehall II MRI study. Sci. Rep. 8:6411. doi: 10.1038/s41598-018-24398-9, PMID: 29686319