[en] 1. How woody floras have evolved to cope with seasonal drought is still poorly known, especially in tropical Africa, which experiences a drier and more seasonal climate compared to other tropical regions. 2. Here, we characterized the phylogenetic and climatic distribution of three key traits associated with desiccation avoidance or tolerance, focusing on selfsupporting woody species of tropical African forests and savannas. We assembled a large database with newly compiled data on species leaf habit (evergreen vs deciduous, 1255 species) and maximum height (1281 species), along with new data on oven-dry wood density (1363 species), climatic niche and phylogenetic relatedness. Bayesian phylogenetic mixed models were used to assess the phylogenetic signal in niches and trait attributes, to explore individual trait responses to climate and to investigate trait covariations, both in general and for each characterization of the climatic niche. To date, this study represents the first quantitative assessment of the phylogenetic signal in the species leaf habit for the woody flora of tropical Africa, though drought deciduousness is widespread in seasonal forests and savannas. 3. We identified a strong phylogenetic signal, notably for species biome affinity and leaf habit, but also major evolutionary changes. Relying solely on climate was found to be ineffective for predicting species wood density and insufficient for accurately predicting species leaf habit or maximum height. Among forests, the effect of climate on leaf habit became evident when considering covariations with maximum height or wood density. Small understory species are more likely to be evergreen with dense wood, while canopy species are more likely to be deciduous with light wood. This general pattern varies with climate as both evergreen and deciduous species coexist in the canopy of the wettest sites. 4. Synthesis. This study provides first insights into how phylogenetic constraints and climate have shaped species traits related to drought strategies for the woody flora of tropical Africa. It pioneers the modelling of leaf habit in relation to
Disciplines :
Environmental sciences & ecology
Author, co-author :
Gorel, Anaïs ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières
Fayolle, Adeline ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières ; Cirad Forêts et Sociétés, Montpellier, France
Ligot, Gauthier; Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
Rossi, Vivien; Cirad Forêts et Sociétés, Montpellier, France
Hardy, Olivier; Evolutionary Biology and Ecology Unit, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
Beeckman, Hans; Service of Wood Biology, Royal Museum for Central-Africa, Tervuren, Belgium
Steppe, Kathy; Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
Language :
English
Title :
Leaf habit, maximum height and wood density of tropical woody flora in Africa: Phylogenetic constraints, covariation and responses to seasonal drought
Publication date :
2025
Journal title :
Journal of Ecology
ISSN :
0022-0477
eISSN :
1365-2745
Publisher :
Wiley, Oxford, United Kingdom
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
ForestIsLife
Funding text :
Anaïs-Pasiphaé Gorel was funded by the Special Research Fund of Ghent University—BOF postdoctoral fellowship (BOF20/PDO/003) and the CANOPI project (O.0026.22 grant), funded by the FWO and F.R.S.-FNRS under the Excellence of Science (EOS) programme. We express our gratitude to Jean-Louis Doucet and Jean-François Gillet from Gembloux Agro-Bio Tech for their contributions to the CoForTrait database and to Fabrice Bénédet from CIRAD for curating the database.
Aerts, R. (1995). The advantages of being evergreen. Trends in Ecology & Evolution, 10(10), 402–407. https://doi.org/10.1016/S0169-5347(00)89156-9
Aleman, J. C., Fayolle, A., Favier, C., Staver, A. C., Dexter, K. G., Ryan, C. M., Azihou, A. F., Bauman, D., te Beest, M., Chidumayo, E. N., Comiskey, J. A., Cromsigt, J. P. G. M., Dessard, H., Doucet, J.-L., Finckh, M., Gillet, J.-F., Gourlet-Fleury, S., Hempson, G. P., Holdo, R. M., … Swaine, M. D. (2020). Floristic evidence for alternative biome states in tropical Africa. Proceedings of the National Academy of Sciences of the United States of America, 117(45), 28183–28190. https://doi.org/10.1073/pnas.2011515117
Anfodillo, T., Carraro, V., Carrer, M., Fior, C., & Rossi, S. (2006). Convergent tapering of xylem conduits in different woody species. New Phytologist, 169(2), 279–290. https://doi.org/10.1111/j.1469-8137.2005.01587.x
Aubréville, A. (1968). Flore du Gabon: Légumineuses. Caesalpinioidées (Vol. 15). Muséum Nat. d'Histoire Naturelle, Laboratoire de Phanérogamie.
Barbosa, R. I., & Fearnside, P. M. (2004). Wood density of trees in open savannas of the Brazilian Amazon. Forest Ecology and Management, 199(1), 115–123. https://doi.org/10.1016/j.foreco.2004.05.035
Bastin, J.-F., Fayolle, A., Tarelkin, Y., den Bulcke, J. V., de Haulleville, T., Mortier, F., Beeckman, H., Acker, J. V., Serckx, A., Bogaert, J., & Cannière, C. D. (2015). Wood specific gravity variations and biomass of central African tree species: The simple choice of the outer wood. PLoS One, 10(11), e0142146. https://doi.org/10.1371/journal.pone.0142146
Beeckman, H. (2016). Wood anatomy and trait-based ecology. IAWA Journal, 37(2), 127–151. https://doi.org/10.1163/22941932-20160127
Blomberg, S. P., & Garland, T. (2002). Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods: Phylogenetic inertia. Journal of Evolutionary Biology, 15(6), 899–910. https://doi.org/10.1046/j.1420-9101.2002.00472.x
Boom, A. F., Migliore, J., Kaymak, E., Meerts, P., & Hardy, O. J. (2021). Plastid introgression and evolution of African miombo woodlands: New insights from the plastome-based phylogeny of Brachystegia trees. Journal of Biogeography, 48(4), 933–946. https://doi.org/10.1111/jbi.14051
Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261–266. https://doi.org/10.1126/science.aat7631
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
Brown, T. B., Hultine, K. R., Steltzer, H., Denny, E. G., Denslow, M. W., Granados, J., Henderson, S., Moore, D., Nagai, S., SanClements, M., Sánchez-Azofeifa, A., Sonnentag, O., Tazik, D., & Richardson, A. D. (2016). Using phenocams to monitor our changing earth: Toward a global phenocam network. Frontiers in Ecology and the Environment, 14(2), 84–93. https://doi.org/10.1002/fee.1222
Charles-Dominique, T., Davies, T. J., Hempson, G. P., Bezeng, B. S., Daru, B. H., Kabongo, R. M., Maurin, O., Muasya, A. M., van der Bank, M., & Bond, W. J. (2016). Spiny plants, mammal browsers, and the origin of African savannas. Proceedings of the National Academy of Sciences of the United States of America, 113(38), E5572–E5579. https://doi.org/10.1073/pnas.1607493113
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Chave, J., Muller-Landau, H. C., Baker, T. R., Easdale, T. A., ter Steege, H., & Webb, C. O. (2006). Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications, 16(6), 2356–2367. https://doi.org/10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2
Chidumayo, E. N., & Gumbo, D. J. (2010). The dry forests and woodlands of Africa: Managing for products and services. Earthscan.
Choat, B., Ball, M. C., Luly, J. G., & Holtum, J. A. M. (2005). Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees, 19(3), 305–311. https://doi.org/10.1007/s00468-004-0392-1
Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A., Jordan, G. J., McGlone, M. S., Weston, P. H., Westoby, M., Wilf, P., & Linder, H. P. (2009). Phylogenetic biome conservatism on a global scale. Nature, 458(7239), 754–756. https://doi.org/10.1038/nature07764
Dantas, V. d. L., & Pausas, J. G. (2013). The lanky and the corky: Fire-escape strategies in savanna woody species. Journal of Ecology, 101(5), 1265–1272. https://doi.org/10.1111/1365-2745.12118
Dauby, G., Zaiss, R., Blach-Overgaard, A., Catarino, L., Damen, T., Deblauwe, V., Dessein, S., Dransfield, J., Droissart, V., Duarte, M. C., Engledow, H., Fadeur, G., Figueira, R., Gereau, R. E., Hardy, O. J., Harris, D. J., de Heij, J., Janssens, S., Klomberg, Y., … Couvreur, T. L. P. (2016). RAINBIO: A mega-database of tropical African vascular plants distributions. PhytoKeys, 74, 1–18. https://doi.org/10.3897/phytokeys.74.9723
Davies, T. J., Wolkovich, E. M., Kraft, N. J. B., Salamin, N., Allen, J. M., Ault, T. R., Betancourt, J. L., Bolmgren, K., Cleland, E. E., Cook, B. I., Crimmins, T. M., Mazer, S. J., McCabe, G. J., Pau, S., Regetz, J., Schwartz, M. D., & Travers, S. E. (2013). Phylogenetic conservatism in plant phenology. Journal of Ecology, 101(6), 1520–1530. https://doi.org/10.1111/1365-2745.12154
de Bie, S., Ketner, P., Paasse, M., & Geerling, C. (1998). Woody plant phenology in the West Africa savanna. Journal of Biogeography, 25(5), 883–900. https://doi.org/10.1046/j.1365-2699.1998.00229.x
Deblauwe, V., Droissart, V., Bose, R., Sonké, B., Blach-Overgaard, A., Svenning, J.-C., Wieringa, J. J., Ramesh, B. R., Stévart, T., & Couvreur, T. L. P. (2016). Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics: Remotely sensed climate data for tropical species distribution models. Global Ecology and Biogeography, 25(4), 443–454. https://doi.org/10.1111/geb.12426
Doucet, R., Doucet, J.-L., Lejeune, P., Verheyen, C., De Mil, T., Martin, P., Lagoute, P., & Jourez, B. (2022). Wood description and timber use investigation of Pachyelasma tessmannii (Harms) Harms. European Journal of Wood and Wood Products, 80(1), 199–212. https://doi.org/10.1007/s00107-021-01758-3
Droogers, P., & Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, 16(1), 33–45. https://doi.org/10.1023/A:1015508322413
Edwards, E. J., Chatelet, D. S., Chen, B.-C., Ong, J. Y., Tagane, S., Kanemitsu, H., Tagawa, K., Teramoto, K., Park, B., Chung, K.-F., Hu, J.-M., Yahara, T., & Donoghue, M. J. (2017). Convergence, consilience, and the evolution of temperate deciduous forests. The American Naturalist, 190(S1), S87–S104. https://doi.org/10.1086/692627
Fajardo, A. (2022). Wood density relates negatively to maximum plant height across major angiosperm and gymnosperm orders. American Journal of Botany, 109(2), 250–258. https://doi.org/10.1002/ajb2.1805
Fayolle, A., Loubota Panzou, G. J., Drouet, T., Swaine, M. D., Bauwens, S., Vleminckx, J., Biwolé, A., Lejeune, P., & Doucet, J.-L. (2016). Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. Forest Ecology and Management, 374, 42–50. https://doi.org/10.1016/j.foreco.2016.04.033
Fayolle, A., Swaine, M. D., Aleman, J., Azihou, A. F., Bauman, D., te Beest, M., Chidumayo, E. N., Cromsigt, J. P. G. M., Dessard, H., Finckh, M., Gonçalves, F. M. P., Gillet, J.-F., Gorel, A., Hick, A., Holdo, R., Kirunda, B., Mahy, G., McNicol, I., Ryan, C. M., … Woollen, E. (2019). A sharp floristic discontinuity revealed by the biogeographic regionalization of African savannas. Journal of Biogeography, 46(2), 454–465. https://doi.org/10.1111/jbi.13475
Fayolle, A., Swaine, M. D., Bastin, J.-F., Bourland, N., Comiskey, J. A., Dauby, G., Doucet, J.-L., Gillet, J.-F., Gourlet-Fleury, S., Hardy, O. J., Kirunda, B., Kouamé, F. N., & Plumptre, A. J. (2014). Patterns of tree species composition across tropical African forests. Journal of Biogeography, 41, 2320–2331. https://doi.org/10.1111/jbi.12382
Feng, X., Zhao, W., Yang, Q., & Zhou, H. (2023). Decoupling of tree height and root depth across the globe and the implications for tree mortality during drought events. Ecological Indicators, 147, 109944. https://doi.org/10.1016/j.ecolind.2023.109944
Gorel, A.-P., Hardy, O. J., Dauby, G., Dexter, K. G., Segovia, R. A., Steppe, K., & Fayolle, A. (2022). Climatic niche lability but growth form conservatism in the African woody flora. Ecology Letters, 25(5), 1164–1176. https://doi.org/10.1111/ele.13985
Gorel, A.-P., Steppe, K., Beeckman, H., De Baerdemaeker, N. J. F., Doucet, J., Ligot, G., Daïnou, K., & Fayolle, A. (2019). Testing the divergent adaptation of two congeneric tree species on a rainfall gradient using eco-physio-morphological traits. Biotropica, 51(3), btp.12646. https://doi.org/10.1111/btp.12646
Gourlet-Fleury, S., Rossi, V., Rejou-Mechain, M., Freycon, V., Fayolle, A., Saint-André, L., Cornu, G., Gérard, J., Sarrailh, J.-M., Flores, O., Baya, F., Billand, A., Fauvet, N., Gally, M., Henry, M., Hubert, D., Pasquier, A., & Picard, N. (2011). Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests. Journal of Ecology, 99(4), 981–990. https://doi.org/10.1111/j.1365-2745.2011.01829.x
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., & Kueffer, C. (2014). Unifying niche shift studies: Insights from biological invasions. Trends in Ecology & Evolution, 29(5), 260–269. https://doi.org/10.1016/j.tree.2014.02.009
Hacke, U. G., Jacobsen, A. L., & Pratt, R. B. (2022). Vessel diameter and vulnerability to drought-induced embolism: Within-tissue and across-species patterns and the issue of survivorship bias. IAWA Journal, 1(aop), 1–16. https://doi.org/10.1163/22941932-bja10107
Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D., & McCulloh, K. A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457–461. https://doi.org/10.1007/s004420100628
Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33(2), 1–22. https://doi.org/10.18637/jss.v033.i02
Hardy, O. J., & Pavoine, S. (2012). Assessing phylogenetic signal with measurement error: A comparison of man℡ tests, Blomberg et al.'s K, and phylogenetic distograms. Evolution, 66(8), 2614–2621. https://doi.org/10.1111/j.1558-5646.2012.01623.x
Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M., Martínez-Vilalta, J., McDowell, N. G., Powers, J. S., Pugh, T. A. M., Ruthrof, K. X., & Allen, C. D. (2022). Climate change risks to global forest health: Emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73, 673–702. https://doi.org/10.1146/annurev-arplant-102820-012804
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276
Housworth, E. A., Martins, E. P., & Lynch, M. (2004). The phylogenetic mixed model. The American Naturalist, 163(1), 84–96. https://doi.org/10.1086/380570
Ibanez, T., Chave, J., Barrabé, L., Elodie, B., Boutreux, T., Trueba, S., Vandrot, H., & Birnbaum, P. (2017). Community variation in wood density along a bioclimatic gradient on a hyper-diverse tropical Island. Journal of Vegetation Science, 28(1), 19–33. https://doi.org/10.1111/jvs.12456
Janssens, S. B., Couvreur, T. L. P., Mertens, A., Dauby, G., Dagallier, L.-P. M. J., Vanden Abeele, S., Vandelook, F., Mascarello, M., Beeckman, H., Sosef, M., Droissart, V., van der Bank, M., Maurin, O., Hawthorne, W., Marshall, C., Réjou-Méchain, M., Beina, D., Baya, F., Merckx, V., … Hardy, O. (2020). A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodiversity Data Journal, 8, e39677. https://doi.org/10.3897/BDJ.8.e39677
Kafuti, C., Bourland, N., De Mil, T., Meeus, S., Rousseau, M., Toirambe, B., Bolaluembe, P.-C., Ndjele, L., & Beeckman, H. (2019). Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of The Congo basin semi-deciduous forest. Forests, 11(1), 35. https://doi.org/10.3390/f11010035
Kitajima, K., & Poorter, L. (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist, 186(3), 708–721. https://doi.org/10.1111/j.1469-8137.2010.03212.x
Koch, G. W., Sillett, S. C., Jennings, G. M., & Davis, S. D. (2004). The limits to tree height. Nature, 428(6985), Article 6985. https://doi.org/10.1038/nature02417
Koenen, E. J. M., Clarkson, J. J., Pennington, T. D., & Chatrou, L. W. (2015). Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. New Phytologist, 207(2), 327–339. https://doi.org/10.1111/nph.13490
Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O., & van der Bank, M. (2013). Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Botanical Journal of the Linnean Society, 172(4), 500–523. https://doi.org/10.1111/boj.12047
Lachenbruch, B., Moore, J. R., & Evans, R. (2011). Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. In F. C. Meinzer, B. Lachenbruch, & T. E. Dawson (Eds.), Size- and age-related changes in tree structure and function (pp. 121–164). Springer Netherlands. https://doi.org/10.1007/978-94-007-1242-3_5
Lenth, R. V., Buerkner, P., Herve, M., Love, J., Riebl, H., & Singmann, H. (2021). emmeans: Estimated marginal means, aka least-squares means (1.7.0) [Computer software]. https://CRAN.R-project.org/package=emmeans
Liang, X., Ye, Q., Liu, H., & Brodribb, T. J. (2021). Wood density predicts mortality threshold for diverse trees. New Phytologist, 229(6), 3053–3057. https://doi.org/10.1111/nph.17117
Liu, H., Xu, Q., He, P., Santiago, L. S., Yang, K., & Ye, Q. (2015). Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Scientific Reports, 5(1), 12246. https://doi.org/10.1038/srep12246
Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11(10), 995–1003. https://doi.org/10.1111/j.1461-0248.2008.01229.x
Loubota Panzou, G. J., Ligot, G., Gourlet-Fleury, S., Doucet, J.-L., Forni, E., Loumeto, J.-J., & Fayolle, A. (2018). Architectural differences associated with functional traits among 45 coexisting tree species in Central Africa. Functional Ecology, 32(11), 2583–2593. https://doi.org/10.1111/1365-2435.13198
Maharjan, S. K., Poorter, L., Holmgren, M., Bongers, F., Wieringa, J. J., & Hawthorne, W. D. (2011). Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient. Biotropica, 43(5), 552–561. https://doi.org/10.1111/j.1744-7429.2010.00747.x
Maniatis, D., Saint André, L., Temmerman, M., Malhi, Y., & Beeckman, H. (2011). The potential of using xylarium wood samples for wood density calculations: A comparison of approaches for volume measurement. iForest - Biogeosciences and Forestry, 4(4), 150–159. https://doi.org/10.3832/ifor0575-004
Markesteijn, L., & Poorter, L. (2009). Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology, 97(2), 311–325. https://doi.org/10.1111/j.1365-2745.2008.01466.x
Markesteijn, L., Poorter, L., Bongers, F., Paz, H., & Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: Coordination of species' drought and shade tolerance. New Phytologist, 191(2), 480–495. https://doi.org/10.1111/j.1469-8137.2011.03708.x
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., & Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743–756. https://doi.org/10.1111/j.2041-210X.2012.00196.x
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
Noce, S., Caporaso, L., & Santini, M. (2020). A new global dataset of bioclimatic indicators. Scientific Data, 7(1), Article 1. https://doi.org/10.1038/s41597-020-00726-5
Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt, P. R., Almanza, Y., Barros, F. d. V., Cordoba, E. C., Fagundes, M. V., Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti, J., Rodrigues-Souza, J., & Poorter, L. (2019). Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist, 221(3), 1457–1465. https://doi.org/10.1111/nph.15463
Oliveira, R. S., Eller, C. B., Barros, F. d. V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266
Olson, M. E., Soriano, D., Rosell, J. A., Anfodillo, T., Donoghue, M. J., Edwards, E. J., León-Gómez, C., Dawson, T., Martínez, J. J. C., Castorena, M., Echeverría, A., Espinosa, C. I., Fajardo, A., Gazol, A., Isnard, S., Lima, R. S., Marcati, C. R., & Méndez-Alonzo, R. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 115(29), 7551–7556. https://doi.org/10.1073/pnas.1721728115
Ouédraogo, D.-Y., Fayolle, A., Gourlet-Fleury, S., Mortier, F., Freycon, V., Fauvet, N., Rabaud, S., Cornu, G., Bénédet, F., Gillet, J.-F., Oslisly, R., Doucet, J.-L., Lejeune, P., & Favier, C. (2016). The determinants of tropical forest deciduousness: Disentangling the effects of rainfall and geology in central Africa. Journal of Ecology, 104(4), 924–935. https://doi.org/10.1111/1365-2745.12589
Poorter, L., Rozendaal, D. M. A., Bongers, F., de Almeida-Cortez, J. S., Almeyda Zambrano, A. M., Álvarez, F. S., Andrade, J. L., Villa, L. F. A., Balvanera, P., Becknell, J. M., Bentos, T. V., Bhaskar, R., Boukili, V., Brancalion, P. H. S., Broadbent, E. N., César, R. G., Chave, J., Chazdon, R. L., Colletta, G. D., … Westoby, M. (2019). Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology & Evolution, 3(6), 928–934. https://doi.org/10.1038/s41559-019-0882-6
Reich, P. B. (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102(2), 275–301. https://doi.org/10.1111/1365-2745.12211
Réjou-Méchain, M., Mortier, F., Bastin, J.-F., Cornu, G., Barbier, N., Bayol, N., Bénédet, F., Bry, X., Dauby, G., Deblauwe, V., Doucet, J.-L., Doumenge, C., Fayolle, A., Garcia, C., Kibambe Lubamba, J.-P., Loumeto, J.-J., Ngomanda, A., Ploton, P., Sonké, B., … Gourlet-Fleury, S. (2021). Unveiling African rainforest composition and vulnerability to global change. Nature, 593(7857), Article 7857. https://doi.org/10.1038/s41586-021-03483-6
Ringelberg, J. J., Koenen, E. J. M., Sauter, B., Aebli, A., Rando, J. G., Iganci, J. R., de Queiroz, L. P., Murphy, D. J., Gaudeul, M., Bruneau, A., Luckow, M., Lewis, G. P., Miller, J. T., Simon, M. F., Jordão, L. S. B., Morales, M., Bailey, C. D., Nageswara-Rao, M., Nicholls, J. A., … Hughes, C. E. (2023). Precipitation is the main axis of tropical plant phylogenetic turnover across space and time. Science Advances, 9(7), eade4954. https://doi.org/10.1126/sciadv.ade4954
Rowland, L., da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks, O. J., Oliveira, A. A. R., Pullen, A. M., Doughty, C. E., Metcalfe, D. B., Vasconcelos, S. S., Ferreira, L. V., Malhi, Y., Grace, J., Mencuccini, M., & Meir, P. (2015). Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528(7580), 119–122I.
Sanchez-Martinez, P., Martínez-Vilalta, J., Dexter, K. G., Segovia, R. A., & Mencuccini, M. (2020). Adaptation and coordinated evolution of plant hydraulic traits. Ecology Letters, 23(11), 1599–1610. https://doi.org/10.1111/ele.13584
Sankaran, M. (2019). Droughts and the ecological future of tropical savanna vegetation. Journal of Ecology, 107(4), 1531–1549. https://doi.org/10.1111/1365-2745.13195
Seghieri, J., Do, F. C., Devineau, J.-L., & Fournier, A. (2012). Phenology of woody species along the climatic gradient in West Tropical Africa. In X. Zhang (Ed.), Phenology and climate change. InTech. https://doi.org/10.5772/33729
Silva de Miranda, P. L., Dexter, K. G., Swaine, M. D., de Oliveira-Filho, A. T., Hardy, O. J., & Fayolle, A. (2022). Dissecting the difference in tree species richness between Africa and South America. Proceedings of the National Academy of Sciences of the United States of America, 119(14), e2112336119. https://doi.org/10.1073/pnas.2112336119
Sterck, F. J., Poorter, L., & Schieving, F. (2006). Leaf traits determine the growth-survival trade-off across rain forest tree species. The American Naturalist, 167(5), 758–765.
Swenson, N. G., & Enquist, B. J. (2007). Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation. American Journal of Botany, 94(3), 451–459. https://doi.org/10.3732/ajb.94.3.451
Thiery, W., Lange, S., Rogelj, J., Schleussner, C.-F., Gudmundsson, L., Seneviratne, S. I., Andrijevic, M., Frieler, K., Emanuel, K., Geiger, T., Bresch, D. N., Zhao, F., Willner, S. N., Büchner, M., Volkholz, J., Bauer, N., Chang, J., Ciais, P., Dury, M., … Wada, Y. (2021). Intergenerational inequities in exposure to climate extremes. Science, 374(6564), 158–160. https://doi.org/10.1126/science.abi7339
Vieilledent, G., Fischer, F. J., Chave, J., Guibal, D., Langbour, P., & Gérard, J. (2018). New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. American Journal of Botany, 105(10), 1653–1661. https://doi.org/10.1002/ajb2.1175
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199(2), 213–227. https://doi.org/10.1023/A:1004327224729
White, F. (1978). The taxonomy, ecology and chorology of African Ebenaceae I. The Guineo-Congolian species. Bulletin Du Jardin Botanique National de Belgique/Bulletin van de National Plantentuin van België, 48(3/4), 245. https://doi.org/10.2307/3667933
White, F. (1979). The Guineo-Congolian region and its relationships to other phytochoria. Bulletin Du Jardin Botanique National de Belgique/Bulletin van de National Plantentuin van België, 49(1/2), 11. https://doi.org/10.2307/3667815
White, F. (1988). The taxonomy, ecology and chorology of African Ebenaceae II. The non-Guineo-Congolian species of diospyros (excluding sect. Royena). Bulletin Du Jardin Botanique National de Belgique/Bulletin van de National Plantentuin van België, 58(3/4), 325. https://doi.org/10.2307/3668296
Wright, S. J., & Calderon, O. (1995). Phylogenetic patterns among tropical flowering phenologies. Journal of Ecology, 83(6), 937–948. https://doi.org/10.2307/2261176
Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth—Mortality trade-off in tropical trees. Ecology, 91(12), 3664–3674. https://doi.org/10.2307/29779549
Zhang, S.-B., Wen, G.-J., Qu, Y.-Y., Yang, L.-Y., & Song, Y. (2022). Trade-offs between xylem hydraulic efficiency and mechanical strength in Chinese evergreen and deciduous savanna species. Tree Physiology, 42(7), 1337–1349. https://doi.org/10.1093/treephys/tpac017
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database. Dryad Identifier. http://hdl.handle.net/10255/dryad.235
Amshoff, G. J. H., Aubréville, A., & Aymonin, G. (1961). Flore du Gabon (Vol. 1-10). Muséum national d'histoire naturelle.
Arbonnier, M. (2002). Arbres, arbustes et lianes des zones sèches d'Afrique de l'Ouest. CIRAD.
Aubréville, A. (1959). La flore forestière de la Côte D'ivoire (Vol. 1-3). Centre Technique Forestier Tropical (CTFT).
Balle, S., Boutique, R., Cronquist, A., et al. (1948). Flore du Congo belge et du Ruanda-Urundi (Vol. 1-10). Institut national pour l'étude agronomique du Congo (belge).
Bamps, P. (1970). Spermatophytes. Guttiferae. In P. Bamps, R. Boutique, D. Geerinck, et al. (Eds.), Flore du Congo, du Rwanda et du Burundi (p. 74). Jardin botanique national de Belgique.
Bamps, P. (1974). Spermatophytes, Araliaceae. In P. Bamps, F. Billiet, R. Boutique, et al. (Eds.), Flore d'Afrique Centrale (Zaïre - Rwanda - Burundi) (p. 30). Jardin botanique national de Belgique.
Bamps, P., & Farron, C. (1967). Spermatophytes. Ochnaceae. In P. Bamps, R. Boutique, D. Geerinck, et al. (Eds.), Flore du Congo, du Rwanda et du Burundi (p. 65). Jardin botanique national de Belgique.
Brink, M., & PROTA Network Office Europe. (2007). Premna angolensis Gürke. http://www.prota4u.org/
De Bie, S., Ketner, P., Paasse, M., & Geerling, C. (1998). Woody plant phenology in the West Africa savanna. Journal of Biogeography, 25(5), 883–900.
Doucet, J.-L. (2003). L'alliance délicate de la gestion forestière et de la biodiversité dans les forêts du centre du Gabon. (Unpublished PhD Thesis). Universitaire des Sciences Agronomiques.
Dowsett-Lemaire, F., & Pannell, C. M. (1996). A new diospyros (Ebenaceae) from The Congo republic. Bulletin du Jardin Botanique National de Belgique, 65(3/4), 399–403.
Fayolle, A., Picard, N., Doucet, J.-L., Swaine, M., Bayol, N., Bénédet, F., & Gourlet-Fleury, S. (2014). A new insight in the structure, composition and functioning of central African moist forests. Forest Ecology and Management, 329, 195–205.
Gillet, J.-F., & Doucet, J.-L. (2012). A commented checklist of woody plants in the Northern Republic of Congo. Plant Ecology and Evolution, 145, 258–271.
Hawthorne, W. D. (1995). Ecological profiles of Ghanaian forest trees (p. 29). Oxford Forestry Institute.
Hawthorne, W. D., & Jongkind, C. C. H. (2008). Woody plants of Western African forests: A guide to the forest trees, shrubs and Lianes from Senegal to Ghana. Kew Publishing Royal Botanic Gardens.
Leeuwenberg, A. J. M., & Bamps, P. (1979). Spermatophytes, Loganiaceae. In P. Bamps, F. Billiet, R. Boutique, et al. (Eds.), Flore d'Afrique Centrale (Zaïre - Rwanda - Burundi) (p. 149). Jardin botanique national de Belgique.
Leonard, J. (1995). Spermatophytes, Euphorbiaceae (deuxième partie). In P. Bamps, F. Billiet, R. Boutique, et al. (Eds.), Flore d'Afrique Centrale (Zaïre - Rwanda - Burundi) (p. 115). Jardin botanique national de Belgique.
Leonard, J. (1996). Spermatophytes, Euphorbiaceae (troisième partie). In P. Bamps, F. Billiet, R. Boutique, et al. (Eds.), Flore d'Afrique Centrale (Zaïre - Rwanda - Burundi) (p. 74). Jardin botanique national de Belgique.
Liben, L. (1971). Spermatophytes, Lecythidaceae. In P. Bamps, R. Boutique, D. Geerinck, et al. (Eds.), Flore du Congo, du Rwanda et du Burundi (p. 9). Jardin botanique national de Belgique.
Liben, L. (1977). Spermatophytes, Bignoniaceae. In P. Bamps, F. Billiet, R. Boutique, et al. (Eds.), Flore d'Afrique Centrale (Zaïre - Rwanda - Burundi) (p. 39). Jardin botanique national de Belgique.
Liben, L. (1987). Spermatophytes, Rhizophoraceae. In P. Bamps, F. Billiet, R. Boutique, et al. (Eds.), Flore d'Afrique Centrale (Zaïre - Rwanda - Burundi) (p. 36). Jardin botanique national de Belgique.
Livre blanc - wetenschappelijke bijdrage van België tot de ontwikkeling van Centraal-Afrika - apport scientifique de la Belgique au développement de l'Afrique centrale, 2. (1962). Sciences naturelles et médicales/Natuur- en Geneeskundige Wetenschappen. (506-956-XVI pp.).
Louppe, D., & PROTA Network Office Europe. (2005). Tectona grandis L.f. http://www.prota4u.org/
Mankou, G. S., Ligot, G., Panzou, G. J. L., Boyemba, F., Loumeto, J. J., Ngomanda, A., Loubota Panzou, G. J., Obiang, D., Rossi, V., Sonke, B., Yongo, O. D., & Fayolle, A. (2021). Tropical tree allometry and crown allocation, and their relationship with species traits in central Africa. Forest Ecology and Management, 493, 119262. https://doi.org/10.1016/j.foreco.2021.119262
Masia, N. D., Stevens, N., & Archibald, S. (2018). Identifying phenological functional types in savanna trees. African Journal of Range & Forage Science, 35(2), 81–88.
Meunier, Q., Lemmens, R., & Morin, A. (2010). Alternatives to exotic species in Uganda: Growth and cultivation of 85 indigenous trees.
Palgrave, K. C. (2002). Trees of southern Africa. Struik Publishers.
PlantZAfrica. (2023). http://pza.sanbi.org/about.
Robyns, A. (1975). Spermatophytes, Thymelaeaceae. In P. Bamps, F. Billiet, R. Boutique, et al. (Eds.), Flore d'Afrique Centrale (Zaïre - Rwanda - Burundi) (p. 68). Jardin botanique national de Belgique.
Robyns, A. (1976). Spermatophytes, Huaceae. In P. Bamps, F. Billiet, R. Boutique, et al. (Eds.), Flore d'Afrique Centrale (Zaïre - Rwanda - Burundi) (p. 10). Jardin botanique national de Belgique.
Seghieri, J., Do, F. C., Devineau, J.-L., & Fournier, A. (2012). Phenology of woody species along the climatic gradient in West Tropical Africa. In X. Zhang (Ed.), Phenology and climate change. InTech. https://doi.org/10.5772/33729
Sleumer, H., & Bamps, P. (1976). Spermatophytes, Flacourtiaceae (seconde partie): Tribus Homalieae, Paropsieae, Pangieae et Casearieae. In P. Bamps, F. Billiet, R. Boutique, et al. (Eds.), Flore d'Afrique Centrale (Zaïre - Rwanda - Burundi) (p. 45). Jardin botanique national de Belgique.
Sonké, B. (1998). Etudes floristiques et structurales des forêts de la Réserve de Faune du Dja (Cameoun). (Unpublished PhD Thesis). Université Libre de Bruxelles, Laboratoire de Botanique Systématique et de Phytosociologie.
Swaine, M. (2012). CoForChange WP5 study. (Unpublished raw data).
Taton, A. (1969). Spermatophytes, Violaceae. In P. Bamps, R. Boutique, D. Geerinck, et al. (Eds.), Flore du Congo, du Rwanda et du Burundi (p. 77). Jardin botanique national de Belgique.
Taton, A. (1971). Spermatophytes, Boraginaceae. In P. Bamps, R. Boutique, D. Geerinck, et al. (Eds.), Flore du Congo, du Rwanda et du Burundi (p. 82). Jardin botanique national de Belgique.
Vivien, J., & Faure, J. J. (1985). Arbres des forêts denses d'Afrique Centrale. ACCT-Agence de Coopération Culturelle et Technique.
White, F. (1983). The vegetation of Africa: A descriptive memoir to accompany the Unesco/Aetfat/Unso vegetation map of Africa and map. UNESCO.
Wieringa, J. J. (1999). Monopetalanthus exit. A systematic study of Aphanocalyx, Bikinia, Icuria, Michelsonia and Tetraberlinia (Leguminosae, Caesalpinoideae). Wageningen Agricultural University Papers.
Yongo, O. D. (2002). Contribution Aux Études Floristique, Phytogéographique Et Phytosociologique De La Forêt De Ngotto (République Centrafricaine). (Unpublished PhD Thesis). Université de Lille 2 & Université Libre de Bruxelles.