Hundreds of risk loci for immune mediated inflammatory and infectious diseases have been identified by genome-wide association studies (GWAS). Yet, what causal variants and genes in risk loci underpin the observed associations remains poorly understood for most. The identification of colocalized cis-expression Quantitative Trait Loci (cis-eQTLs) is a promising way to identify candidate causative genes. The catalogue of cis-eQTLs of the immune system is likely incomplete as many cis-eQTLs may be context-specific. We built a large cohort of 406 healthy individuals and expanded the immune cis-regulome through their whole blood transcriptome obtained after stimulation with specific toll-like receptor (TLR) agonists and T-cell receptor (TCR) antagonist. We report three mechanisms that may explain why an eQTL could only be revealed after immune stimulation. More than half of the cis-eQTLs detected in this study would have been overlooked without specific immune stimulations. We then mined this new catalogue of response (r)eQTLs, with public GWAS summary statistics of three diseases through a colocalization approach: inflammatory bowel diseases, rheumatoid arthritis and COVID-19 disease. We identified reQTL-specific colocalizations for risk loci for which no matching eQTL were reported before, revealing interesting new candidate causal genes.
Disciplines :
Genetics & genetic processes
Author, co-author :
Liefferinckx, Claire ; Center for the study of IBD, Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, Belgium ; Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, HUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
Stern, David ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale
Perée, Hélène ; Université de Liège - ULiège > GIGA > GIGA Molecular & Computational Biology - Unit of Animal Genomics
Bottieau, Jérémie ; Center for the study of IBD, Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, Belgium
Mayer, Alice ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Dubussy, Christophe ; Université de Liège - ULiège > Département de mathématique > Didactique des sciences mathématiques
Quertinmont, Eric; Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, HUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
Tafciu, Vjola; Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, HUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
Minsart, Charlotte; Center for the study of IBD, Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, Belgium ; Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, HUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
Petrov, Vyacheslav; Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium
Kvasz, Alexander ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > GIGA-R : Génomique animale
Rahmouni, Souad ; Université de Liège - ULiège > GIGA > GIGA Molecular & Computational Biology - Unit of Animal Genomics
Georges, Michel ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) ; WEL Research Institute & Faculty of Veterinary Medicine, Liège, Belgium
Franchimont, Denis ; Université de Liège - ULiège > Département des sciences cliniques > Hépato-gastroentérologie ; Center for the study of IBD, Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, Belgium ; Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, HUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME, et al. A brief history of human disease genetics. Nature. 2020;577(7789):179–89. https://doi.org/10.1038/s41586-019-1879-7 PMID: 31915397
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5. https://doi.org/10.1126/science.1222794 PMID: 22955828
Gusev A, Lee S, Trynka G, Finucane H, Vilhjalmsson B, Xu H, et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. American Journal of Human Genetics. 2014;95(5):535–52.
Consortium GT. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30. https://doi. org/10.1126/science.aaz1776 PMID: 32913098
Umans BD, Battle A, Gilad Y. Where are the disease-associated eQTLs?. Trends in Genetics. 2021;37(2):109–24.
Momozawa Y, Dmitrieva J, Theatre E, Deffontaine V, Rahmouni S, Charloteaux B. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nature Communications. 2018;9(1):2427.
Mostafavi H, Spence JP, Naqvi S, Pritchard JK. Systematic differences in discovery of genetic effects on gene expression and complex traits. Nat Genet. 2023;55(11):1866–75. https://doi.org/10.1038/s41588-023-01529-1 PMID: 37857933
Lee MN, Ye C, Villani A-C, Raj T, Li W, Eisenhaure TM, et al. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science. 2014;343(6175):1246980. https://doi.org/10.1126/science.1246980 PMID: 24604203
Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science. 2014;343(6175):1246949. https://doi.org/10.1126/science.1246949 PMID: 24604202
Ye CJ, Feng T, Kwon H-K, Raj T, Wilson MT, Asinovski N, et al. Intersection of population variation and autoimmunity genetics in human T cell activation. Science. 2014;345(6202):1254665. https://doi.org/10.1126/science.1254665 PMID: 25214635
Kim S, Becker J, Bechheim M, Kaiser V, Noursadeghi M, Fricker N, et al. Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes. Nat Commun. 2014;5:5236. https://doi.org/10.1038/ncomms6236 PMID: 25327457
Quach H, Rotival M, Pothlichet J, Loh Y-HE, Dannemann M, Zidane N, et al. Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations. Cell. 2016;167(3):643-656.e17. https://doi.org/10.1016/j.cell.2016.09.024 PMID: 27768888
Kim-Hellmuth S, Bechheim M, Pütz B, Mohammadi P, Nédélec Y, Giangreco N, et al. Genetic regulatory effects modified by immune activation contribute to autoimmune disease associations. Nat Commun. 2017;8(1):266. https://doi.org/10.1038/s41467-017-00366-1 PMID: 28814792
Alasoo K, Rodrigues J, Mukhopadhyay S, Knights AJ, Mann AL, Kundu K, et al. Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nat Genet. 2018;50(3):424–31. https://doi.org/10.1038/s41588-018-0046-7 PMID: 29379200
Schmiedel BJ, Gonzalez-Colin C, Fajardo V, Rocha J, Madrigal A, Ramírez-Suástegui C, et al. Single-cell eQTL analysis of activated T cell subsets reveals activation and cell type-dependent effects of disease-risk variants. Sci Immunol. 2022;7(68):eabm2508. https://doi.org/10.1126/sciimmunol. abm2508 PMID: 35213211
Soskic B, Cano-Gamez E, Smyth DJ, Ambridge K, Ke Z, Matte JC, et al. Immune disease risk variants regulate gene expression dynamics during CD4+ T cell activation. Nat Genet. 2022;54(6):817–26. https://doi.org/10.1038/s41588-022-01066-3 PMID: 35618845
Häder A, Schäuble S, Gehlen J, Thielemann N, Buerfent BC, Schüller V, et al. Pathogen-specific innate immune response patterns are distinctly affected by genetic diversity. Nat Commun. 2023;14(1):3239. https://doi.org/10.1038/s41467-023-38994-5 PMID: 37277347
Kumasaka N, Rostom R, Huang N, Polanski K, Meyer KB, Patel S, et al. Mapping interindividual dynamics of innate immune response at single-cell resolution. Nat Genet. 2023;55(6):1066–75. https://doi.org/10.1038/s41588-023-01421-y PMID: 37308670
Liefferinckx C, De Grève Z, Toubeau J-F, Perée H, Quertinmont E, Tafciu V, et al. New approach to determine the healthy immune variations by combining clustering methods. Sci Rep. 2021;11(1):8917. https://doi.org/10.1038/s41598-021-88272-x PMID: 33903641
Aguirre-Gamboa R, de Klein N, di Tommaso J, Claringbould A, van der Wijst MG, de Vries D, et al. Deconvolution of bulk blood eQTL effects into immune cell subpopulations. BMC Bioinformatics. 2020;21(1):243. https://doi.org/10.1186/s12859-020-03576-5 PMID: 32532224
Nagelkerke S, Schmidt D, de Haas M, Kuijpers T. Genetic variation in low-to-medium-affinity Fcgamma receptors: Functional consequences, disease associations, and opportunities for personalized medicine. Frontiers in Immunology. 2019;10:2237.
Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol. 2014;14(2):94–108. https://doi.org/10.1038/nri3582 PMID: 24445665
Bredius RG, Fijen CA, De Haas M, Kuijper EJ, Weening RS, Van de Winkel JG, et al. Role of neutrophil Fc gamma RIIa (CD32) and Fc gamma RIIIb (CD16) polymorphic forms in phagocytosis of human IgG1- and IgG3-opsonized bacteria and erythrocytes. Immunology. 1994;83(4):624–30. PMID: 7875742
Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113(16):3716–25. https://doi.org/10.1182/blood-2008-09-179754 PMID: 19018092
Duffy D, Rouilly V, Libri V, Hasan M, Beitz B, David M, et al. Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. Immunity. 2014;40(3):436–50. https://doi.org/10.1016/j.immuni.2014.03.002 PMID: 24656047
Finco D, Grimaldi C, Fort M, Walker M, Kiessling A, Wolf B, et al. Cytokine release assays: current practices and future directions. Cytokine. 2014;66(2):143–55. https://doi.org/10.1016/j.cyto.2013.12.009 PMID: 24412476
Rowley TF, Peters SJ, Aylott M, Griffin R, Davies NL, Healy LJ, et al. Engineered hexavalent Fc proteins with enhanced Fc-gamma receptor avidity provide insights into immune-complex interactions. Commun Biol. 2018;1:146. https://doi.org/10.1038/s42003-018-0149-9 PMID: 30272022
Man A, Orasan M, Hoteiuc O, Olanescu-Vaida-Voevod M, Mocan T. Inflammation and psoriasis: A comprehensive review. International Journal of Molecular Sciences. n.d.;24(22):1–10. https://doi.org/10.3390/ijms24221234
Khouj E, Marafi D, Aljamal B, Hajiya A, Elshafie RM, Hashem MO, et al. Human “knockouts” of CSF3 display severe congenital neutropenia. Br J Haematol. 2023;203(3):477–80. https://doi.org/10.1111/bjh.19054 PMID: 37612131
Vignesh P, Rawat A, Kumar A, Suri D, Gupta A, Lau YL, et al. Chronic Granulomatous Disease Due to Neutrophil Cytosolic Factor (NCF2) Gene Mutations in Three Unrelated Families. J Clin Immunol. 2017;37(2):109–12. https://doi.org/10.1007/s10875-016-0366-2 PMID: 28035544
Zhang J, Mai S, Chen H-M, Kang K, Li XC, Chen S-H, et al. Leukocyte immunoglobulin-like receptors in human diseases: an overview of their distribution, function, and potential application for immunotherapies. J Leukoc Biol. 2017;102(2):351–60. https://doi.org/10.1189/jlb.5MR1216-534R PMID: 28351852
Marigorta U, Denson L, Hyams J, Mondal K, Prince J, Walters T, et al. Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn’s disease. Nature Genetics. 2017;49(10):1517–21.
de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49(2):256–61. https://doi.org/10.1038/ng.3760 PMID: 28067908
Ishigaki K, Sakaue S, Terao C, Luo Y, Sonehara K, Yamaguchi K, et al. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nature Genetics. 2022;54(11):1640–51. https://doi.org/10.1038/s41588-022-01045-5
Initiative C-H. A second update on mapping the human genetic architecture of COVID-19. Nature. 2023;621(7977):E7–26.
Mantovani S, Daga S, Fallerini C, Baldassarri M, Benetti E, Picchiotti N, et al. Rare variants in Toll-like receptor 7 results in functional impairment and downregulation of cytokine-mediated signaling in COVID-19 patients. Genes and Immunity. 2022;23(1):51–6.
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med. 2022;88:101106. https://doi.org/10.1016/j.mam.2022.101106 PMID: 35868042
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Studying the effects of haplotype partitioning methods on the RA-associated genomic results from the North American Rheumatoid Arthritis Consortium (NARAC) dataset. J Adv Res. 2019;18:113–26. https://doi.org/10.1016/j.jare.2019.01.006 PMID: 30891314
Franke A, McGovern D, Barrett J, Wang K, Radford-Smith G, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nature Genetics. 2010;42(12):1118–25. https://doi.org/10.1038/ng.2010.155
Luo S, Li X-F, Yang Y-L, Song B, Wu S, Niu X-N, et al. PLCL1 regulates fibroblast-like synoviocytes inflammation via NLRP3 inflammasomes in rheumatoid arthritis. Adv Rheumatol. 2022;62(1):25. https://doi.org/10.1186/s42358-022-00252-5 PMID: 35820936
Pairo-Castineira E, Rawlik K, Bretherick AD, Qi T, Wu Y, Nassiri I, et al. GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19. Nature. 2023;617(7962):764–8. https://doi.org/10.1038/s41586-023-06034-3 PMID: 37198478
Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol. 2017;17(1):21–9. https://doi.org/10.1038/nri.2016.125 PMID: 27916977
Li Y, Oosting M, Deelen P, Ricano-Ponce I, Smeekens S, Jaeger M, et al. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nature Medicine. 2016;22(8):952–60.
Thomas S, Rouilly V, Patin E, Alanio C, Dubois A, Delval C, et al. The Milieu Intérieur study - an integrative approach for study of human immunological variance. Clin Immunol. 2015;157(2):277–93. https://doi.org/10.1016/j.clim.2014.12.004 PMID: 25562703
Muller S, Kroger C, Schultze J, Aschenbrenner A. Whole blood stimulation as a tool for studying the human immune system. Eur J Immunol. 2024;54(2):e2350519.
Chandra V, Bhattacharyya S, Schmiedel BJ, Madrigal A, Gonzalez-Colin C, Fotsing S, et al. Promoter-interacting expression quantitative trait loci are enriched for functional genetic variants. Nat Genet. 2021;53(1):110–9. https://doi.org/10.1038/s41588-020-00745-3 PMID: 33349701
Novakovic B, Habibi E, Wang S-Y, Arts RJW, Davar R, Megchelenbrink W, et al. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell. 2016;167(5):1354-1368.e14. https://doi.org/10.1016/j.cell.2016.09.034 PMID: 27863248
Jeong R, Bulyk M. Chromatin accessibility variation provides insights into missing regulation underlying immune-mediated diseases. eLife. 2024.
Wu Y, Zeng J, Zhang F, Zhu Z, Qi T, Zheng Z, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nature Communications. n.d.;9(1):918. https://doi.org/10.1038/s41467-018-03210-4
Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383. https://doi.org/10.1371/journal.pgen.1004383 PMID: 24830394
Wallace C. Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses. PLoS Genet. 2020;16(4):e1008720. https://doi.org/10.1371/journal.pgen.1008720 PMID: 32310995
Wallace C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 2021;17(9):e1009440. https://doi. org/10.1371/journal.pgen.1009440 PMID: 34587156
Hormozdiari F, van de Bunt M, Segre AV, Li X, Joo JWJ, Bilow M, et al. Colocalization of GWAS and eQTL Signals Detects Target Genes. Am J Hum Genet. 2016;99(6):1245-60.
Wang G, Sarkar A, Carbonetto P, Stephens M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J R Stat Soc Series B Stat Methodol. 2020;82(5):1273–300. https://doi.org/10.1111/rssb.12388 PMID: 37220626
Vuckovic D, Bao EL, Akbari P, Lareau CA, Mousas A, Jiang T, et al. The polygenic and monogenic basis of blood traits and diseases. Cell. 2020;182(5):1214–31.
Delaneau O, Ongen H, Brown AA, Fort A, Panousis NI, Dermitzakis ET. A complete tool set for molecular QTL discovery and analysis. Nat Com mun. 2017;8:15452. https://doi.org/10.1038/ncomms15452 PMID: 28516912
Mu Z, Wei W, Fair B, Miao J, Zhu P, Li YI. The impact of cell type and context-dependent regulatory variants on human immune traits. Genome Biol. 2021;22(1):122. https://doi.org/10.1186/s13059-021-02334-x PMID: 33926512
Hu S, Uniken Venema WT, Westra H-J, Vich Vila A, Barbieri R, Voskuil MD, et al. Inflammation status modulates the effect of host genetic variation on intestinal gene expression in inflammatory bowel disease. Nat Commun. 2021;12(1):1122. https://doi.org/10.1038/s41467-021-21458-z PMID: 33602935
Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-Gonzalo J. Impact of genetic polymorphisms on human immune cell gene expression. Cell. n.d.;175(6):1701–15.
Momozawa Y, Dmitrieva J, Théâtre E, Deffontaine V, Rahmouni S, Charloteaux B, et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun. 2018;9(1):2427. https://doi.org/10.1038/s41467-018-04365-8 PMID: 29930244
Ni J, Wang P, Yin KJ, Yang XK, Cen H, Sui C, et al. Novel insight into the aetiology of rheumatoid arthritis gained by a cross-tissue transcriptomewide association study. RMD Open. 2022;8(2).
Ota M, Nagafuchi Y, Hatano H, Ishigaki K, Terao C, Takeshima Y, et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell. 2021;184(11):3006-3021.e17. https://doi.org/10.1016/j.cell.2021.03.056 PMID: 33930287
Schmiedel BJ, Rocha J, Gonzalez-Colin C, Bhattacharyya S, Madrigal A, Ottensmeier CH, et al. COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types. Nat Commun. 2021;12(1):6760. https://doi.org/10.1038/s41467-021-26888-3 PMID: 34799557
Zhou S, Butler-Laporte G, Nakanishi T, Morrison DR, Afilalo J, Afilalo M, et al. A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat Med. 2021;27(4):659–67. https://doi.org/10.1038/s41591-021-01281-1 PMID: 33633408