[en] In the present work, we investigate the effects of N and Mg doping on the optical and electrical properties of Cu2O thin films deposited using radiofrequency magnetron sputtering at room temperature. Additionally, crystalline phases are studied through complementary X-ray diffraction and energy dispersive X-ray spectroscopy measurements. It is shown that nitrogen incorporation enhances both the electrical and optical properties, with resistivity reaching a value as low as 1.15 Ωcm and an average transmittance in the visible range of 31.74%. Raman spectroscopy measurements indicate an increase in the number of (N2)Cu shallow acceptor point defects, explaining the probed enhancement of p-type majority charge carriers. Also, in Mg-doped samples, marginal improvement of the optoelectrical properties is established. Conversely, we demonstrate that co-doping with Mg and N degrades the material crystallinity, leading to a reduction of thin film conductivity that could be attributed to high nitrogen incorporation. Subsequently, the influence of dopants on the electrical and optical properties is discussed via the analysis of the correlation between defects and Raman activities in the studied copper oxide thin films. This work contributes to the assessment of Mg and N as doping species, unveiling the dominant behavior of specific point defects. The results obtained in the study can therefore benefit future developments in copper-based p-type semiconducting oxides with enhanced optical and electrical properties.
Disciplines :
Physics
Author, co-author :
Ratz, Thomas ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Fourneau, Emile ; Université de Liège - ULiège > Département GxABT
Sliti, Naama ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Malherbe, Cédric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Dixon, S. C.; Scanlon, D. O.; Carmalt, C. J.; Parkin, I. P. n-Type doped transparent conducting binary oxides: an overview. Journal of Materials Chemistry C 2016, 4, 6946- 6961, 10.1039/C6TC01881E
Zhang, K. H.; Xi, K.; Blamire, M. G.; Egdell, R. G. P-type transparent conducting oxides. J. Phys.: Condens. Matter 2016, 28, 383002, 10.1088/0953-8984/28/38/383002
Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G.-M.; Gonze, X. Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 2013, 4, 2292, 10.1038/ncomms3292
Meyer, B.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M. Binary copper oxide semiconductors: From materials towards devices. physica status solidi (b) 2012, 249, 1487- 1509, 10.1002/pssb.201248128
Lakshmanan, A.; Alex, Z. C.; Meher, S. Recent advances in cuprous oxide thin film based photovoltaics. Materials Today Sustainability 2022, 20, 100244, 10.1016/j.mtsust.2022.100244
Rühle, S. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139- 147, 10.1016/j.solener.2016.02.015
Jolk, A.; Klingshirn, C. Linear and nonlinear excitonic absorption and photoluminescence spectra in Cu2O: line shape analysis and exciton drift. physica status solidi (b) 1998, 206, 841- 850, 10.1002/(SICI)1521-3951(199804)206:2<841::AID-PSSB841>3.0.CO;2-N
Wang, Y.; Pierson, J. F. Binary copper oxides as photovoltaic absorbers: recent progress in materials and applications. Journal of Physics D: Applied Physics 2021, 54, 263002 10.1088/1361-6463/abf165.
Mittiga, A.; Salza, E.; Sarto, F.; Tucci, M.; Vasanthi, R. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Applied physics letters 2006, 88, 163502, 10.1063/1.2194315
Shibasaki, S.; Honishi, Y.; Nakagawa, N.; Yamazaki, M.; Mizuno, Y.; Nishida, Y.; Sugimoto, K.; Yamamoto, K. Highly transparent Cu2O absorbing layer for thin film solar cells. Appl. Phys. Lett. 2021, 119, 242102, 10.1063/5.0072310
Tanaka, H.; Shimakawa, T.; Miyata, T.; Sato, H.; Minami, T. Electrical and optical properties of TCO-Cu2O heterojunction devices. Thin solid films 2004, 469, 80- 85, 10.1016/j.tsf.2004.06.180
Minami, T.; Nishi, Y.; Miyata, T.; Nomoto, J.-i. High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets. Applied physics express 2011, 4, 062301, 10.1143/APEX.4.062301
Nishi, Y.; Miyata, T.; Minami, T. Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu2O heterojunction solar cells. Journal of Vacuum Science & Technology A 2012, 30, 04D103, 10.1116/1.3698596
Minami, T.; Nishi, Y.; Miyata, T. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Applied Physics Express 2013, 6, 044101, 10.7567/APEX.6.044101
Minami, T.; Nishi, Y.; Miyata, T. Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications. Appl. Phys. Lett. 2014, 105, 212104, 10.1063/1.4902879
Minami, T.; Miyata, T.; Nishi, Y. Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 85- 93, 10.1016/j.solmat.2015.11.033
Minami, T.; Nishi, Y.; Miyata, T. Efficiency enhancement using a Zn1-xGexO thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Applied Physics Express 2016, 9, 052301, 10.7567/APEX.9.052301
Wong, T. K.; Zhuk, S.; Masudy-Panah, S.; Dalapati, G. K. Current status and future prospects of copper oxide heterojunction solar cells. Materials 2016, 9, 271, 10.3390/ma9040271
Isseroff, L. Y.; Carter, E. A. Electronic structure of pure and doped cuprous oxide with copper vacancies: suppression of trap states. Chem. Mater. 2013, 25, 253- 265, 10.1021/cm3040278
Resende, J.; Jimenez, C.; Nguyen, N. D.; Deschanvres, J.-L. Magnesium-doped cuprous oxide (Mg:Cu2O) thin films as a transparent p-type semiconductor. physica status solidi (a) 2016, 213, 2296- 2302, 10.1002/pssa.201532870
Nolan, M.; Elliott, S. D. The p-type conduction mechanism in Cu2O: a first principles study. Phys. Chem. Chem. Phys. 2006, 8, 5350- 5358, 10.1039/b611969g
Malerba, C.; Ricardo, C. L. A.; D’Incau, M.; Biccari, F.; Scardi, P.; Mittiga, A. Nitrogen doped Cu2O: A possible material for intermediate band solar cells. Sol. Energy Mater. Sol. Cells 2012, 105, 192- 195, 10.1016/j.solmat.2012.06.017
T-Thienprasert, J.; Limpijumnong, S. Identification of nitrogen acceptor in Cu2O: First-principles study. Appl. Phys. Lett. 2015, 107, 221905, 10.1063/1.4936760
Paul, G.; Nawa, Y.; Sato, H.; Sakurai, T.; Akimoto, K. Defects in Cu2O studied by deep level transient spectroscopy. Applied physics letters 2006, 88, 141901, 10.1063/1.2175492
Sander, T.; Reindl, C.; Giar, M.; Eifert, B.; Heinemann, M.; Heiliger, C.; Klar, P. Correlation of intrinsic point defects and the Raman modes of cuprous oxide. Phys. Rev. B 2014, 90, 045203, 10.1103/PhysRevB.90.045203
Scanlon, D. O.; Morgan, B. J.; Watson, G. W.; Walsh, A. Acceptor levels in p-type Cu2O: rationalizing theory and experiment. Physical review letters 2009, 103, 096405, 10.1103/PhysRevLett.103.096405
Sekkat, A.; Liedke, M. O.; Nguyen, V. H.; Butterling, M.; Baiutti, F.; Sirvent Veru, J. d. D.; Weber, M.; Rapenne, L.; Bellet, D.; Chichignoud, G. Chemical deposition of Cu2O films with ultra-low resistivity: correlation with the defect landscape. Nat. Commun. 2022, 13, 5322, 10.1038/s41467-022-32943-4
Raebiger, H.; Lany, S.; Zunger, A. Origins of the p-type nature and cation deficiency in Cu2O and related materials. Phys. Rev. B 2007, 76, 045209, 10.1103/PhysRevB.76.045209
Zhao, Z.; He, X.; Yi, J.; Ma, C.; Cao, Y.; Qiu, J. First-principles study on the doping effects of nitrogen on the electronic structure and optical properties of Cu2O. RSC Adv. 2013, 3, 84- 90, 10.1039/C2RA22297C
Reimann, K.; Syassen, K. Raman scattering and photoluminescence in Cu2O under hydrostatic pressure. Phys. Rev. B 1989, 39, 11113, 10.1103/PhysRevB.39.11113
Wright, A.; Nelson, J. Theory of the copper vacancy in cuprous oxide. J. Appl. Phys. 2002, 92, 5849- 5851, 10.1063/1.1516620
Sekkat, A.; Nguyen, V. H.; Masse de La Huerta, C. A.; Rapenne, L.; Bellet, D.; Kaminski-Cachopo, A.; Chichignoud, G.; Muñoz-Rojas, D. Open-air printing of Cu2O thin films with high hole mobility for semitransparent solar harvesters. Communications Materials 2021, 2, 78, 10.1038/s43246-021-00181-8
Resende, J.; Chaix-Pluchery, O.; Rovezzi, M.; Malier, Y.; Renevier, H.; Nguyen, N. D.; Deschanvres, J.-L.; Jimenez, C. Resilience of cuprous oxide under oxidizing thermal treatments via magnesium doping. J. Phys. Chem. C 2019, 123, 8663- 8670, 10.1021/acs.jpcc.9b00408
Sliti, N.; Fourneau, E.; Ratz, T.; Touihri, S.; Nguyen, N. D. Mg-doped Cu2O thin films with enhanced functional properties grown by magnetron sputtering under optimized pressure conditions. Ceram. Int. 2022, 48, 23748- 23754, 10.1016/j.ceramint.2022.05.028
Resende, J.; Nguyen, V.-S.; Fleischmann, C.; Bottiglieri, L.; Brochen, S.; Vandervorst, W.; Favre, W.; Jimenez, C.; Deschanvres, J.-L.; Nguyen, N. D. Grain-boundary segregation of magnesium in doped cuprous oxide and impact on electrical transport properties. Sci. Rep. 2021, 11, 7788, 10.1038/s41598-021-86969-7
Ishizuka, S.; Kato, S.; Maruyama, T.; Akimoto, K. Nitrogen doping into Cu2O thin films deposited by reactive radio-frequency magnetron sputtering. Jpn. J. Appl. Phys. 2001, 40, 2765, 10.1143/JJAP.40.2765
Lai, G.; Wu, Y.; Lin, L.; Qu, Y.; Lai, F. Low resistivity of N-doped Cu2O thin films deposited by rf-magnetron sputtering. Appl. Surf. Sci. 2013, 285, 755- 758, 10.1016/j.apsusc.2013.08.122
Mudhaffar, A.; Sultan, B.; Shalaan, E.; Al-Jawhari, H. Switching enhancement in copper oxide thin film transistors via molybdenum trioxide buffering and nitrogen doping. J. Electron. Mater. 2023, 52, 3446- 3454, 10.1007/s11664-023-10334-9
Ahmadi, M.; Asemi, M.; Ghanaatshoar, M. Mg and N co-doped CuCrO2: A record breaking p-type TCO. Appl. Phys. Lett. 2018, 113, 242101, 10.1063/1.5051730
Almazán, C.; Vigueras Santiago, E.; Lopez, R.; Hernández Lopez, S.; Castrejon Sánchez, V. H.; Esparza, A.; Gomez, C. E. Cu4O3 thin films deposited by non-reactive rf-magnetron sputtering from a copper oxide target. Revista mexicana de fisica 2021, 67, 495- 499
Tadjine, R.; Houimi, A.; Alim, M. M.; Oudini, N. Oxygen flow rate effect on copper oxide thin films deposited by radio frequency magnetron sputtering. Thin Solid Films 2022, 741, 139013, 10.1016/j.tsf.2021.139013
Patwary, M. A. M.; Saito, K.; Guo, Q.; Tanaka, T.; Man Yu, K.; Walukiewicz, W. Nitrogen doping effect in Cu4O3 thin films fabricated by radio frequency magnetron sputtering. physica status solidi (b) 2020, 257, 1900363, 10.1002/pssb.201900363
Russ, J. C. Fundamentals of energy dispersive X-ray analysis: Butterworths monographs in materials; Butterworth-Heinemann, 2013.
Jacob, S. S. K.; Kulandaisamy, I.; Valanarasu, S.; Arulanantham, A.; Ganesh, V.; AlFaify, S.; Kathalingam, A. Enhanced optoelectronic properties of Mg doped Cu2O thin films prepared by nebulizer pyrolysis technique. Journal of Materials Science: Materials in Electronics 2019, 30, 10532- 10542, 10.1007/s10854-019-01397-8
Debbichi, L.; Marco de Lucas, M.; Pierson, J.; Kruger, P. Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. J. Phys. Chem. C 2012, 116, 10232- 10237, 10.1021/jp303096m
Wang, Y.; Ghanbaja, J.; Soldera, F.; Migot, S.; Boulet, P.; Horwat, D.; Mücklich, F.; Pierson, J. Tuning the structure and preferred orientation in reactively sputtered copper oxide thin films. Appl. Surf. Sci. 2015, 335, 85- 91, 10.1016/j.apsusc.2015.02.028
Wang, Y.; Ghanbaja, J.; Bruyere, S.; Soldera, F.; Horwat, D.; Mücklich, F.; Pierson, J. Room temperature self-assembled growth of vertically aligned columnar copper oxide nanocomposite thin films on unmatched substrates. Sci. Rep. 2017, 7, 11122, 10.1038/s41598-017-10540-6
Umar, M.; Swinkels, M. Y.; De Luca, M.; Fasolato, C.; Moser, L.; Gadea, G.; Marot, L.; Glatzel, T.; Zardo, I. Morphological and stoichiometric optimization of Cu2O thin films by deposition conditions and post-growth annealing. Thin Solid Films 2021, 732, 138763, 10.1016/j.tsf.2021.138763