[en] A small portion of the oxygen consumed by aerobic cells is converted to superoxide anion at the level of the mitochondrial respiratory chain. If produced in excess, this harmful radical is considered to impair cellular structures and functions. Damage at the level of mitochondria have been reported after ischemia and reperfusion of organs. However, the complexity of the in vivo system prevents from understanding and describing precise mechanisms and locations of mitochondrial impairment. An in vitro model of isolated-mitochondria anoxia-reoxygenation is used to investigate superoxide anion generation together with specific damage at the level of mitochondrial oxidative phosphorylation. Superoxide anion is detected by electron paramagnetic resonance spin trapping with POBN-ethanol. Mitochondrial respiratory parameters are calculated from oxygen consumption traces recorded with a Clark electrode. Respiring mitochondria produce superoxide anion in unstressed conditions, however, the production is raised during postanoxic reoxygenation. Several respiratory parameters are impaired after reoxygenation, as shown by decreases of phosphorylating and uncoupled respiration rates and of ADP/O ratio and by increase of resting respiration. Partial protection of mitochondrial function by POBN suggests that functional damage is related and secondary to superoxide anion production by the mitochondria in vitro.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Du, G.
Mouithys-Mickalad, Ange ; Université de Liège > Centre de l'oxygène : Recherche et développement (C.O.R.D.)
Sluse, Francis ; Université de Liège - ULiège > Département des sciences de la vie > Bioénergétique et physiologie cellulaire
Language :
English
Title :
Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro.
Publication date :
1998
Journal title :
Free Radical Biology and Medicine
ISSN :
0891-5849
eISSN :
1873-4596
Publisher :
Elsevier Science, Tarrytown, United States - New York
Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide general properties and effects of hyperbaric oxygen . Biochem. J. 134:1973;707-716.
Beyer R.E. The participation of coenzyme Q in free radical production and antioxidation. Free Radic. Biol. Med. 8:1990;545-565.
Turrens J.F., Boveris A. Generation of superoxide anion by NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191:1980;421-427.
Nohl H. Generation of superoxide radicals as byproduct of cellular respiration. Ann. Biol. Clin. 52:1994;199-204.
Boveris A., Cadenas E., Stoppani A.D.M. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156:1976;435-444.
Turrens J.F., Alexandre A., Lehninger A.L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237:1985;408-414.
Turrens J.F., McCord J.M. Free radical production by the mitochondrion. Crastes de Parlet A., Douste-Blazz L., Paoletti R. Free radicals, lipoproteins and membrane lipids. 1990;65-71 Plenum Press, New York.
Augustin W., Wiswedel I., Noack H., Reinheckel T., Reichelt O. Role of endogenous and exogenous antioxidants in the defence against functional damage and lipid peroxidation in rat liver mitochondria. Mol. Cell. Biochem. 174:1997;199-205.
Radi R., Turrens J.F., Chang L.Y., Bush K.M., Crapo J.D., Freeman B.A. Detection of catalase in rat heart mitochondria. J. Biol. Chem. 266:1991;22028-22034.
Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59:1979;527-605.
Piantadosi C.A., Zhang J. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke. 27:1996;327-332.
Ambrosio G., Zweier J.L., Duilio C., Kuppusamy P., Santoro G., Elia P.P., Tritto I., Cirillo P., Condorelli M., Chiariello M. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J. Biol. Chem. 268:1993;18532-18541.
Gonzalez-Flecha B., Boveris A. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. Biochim. Biophys. Acta. 1234:1995;361-366.
Lemasters J.J., Nieminen A.L. Mitochondrial oxygen radical formation during reductive and oxidative stress to intact hepatocytes. Biosci. Rep. 17:1997;281-291.
Konstantinov A.A., Peskin A.V., Popova E.Y., Khomutov G.B., Ruuge E.K. Superoxide generation by the respiratory chain of tumor mitochondria. Biochim. Biophys. Acta. 894:1987;1-10.
Das D.K., George A., Liu X.K., Rao P.S. Detection of hydroxyl radical in the mitochondria of ischemia-reperfused myocardium by trapping with salicylate. Biochem. Biophys. Res. Commun. 165:1989;1004-1009.
Gonzalez-Flecha B., Cutrin J.C., Boveris A. Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion. J. Clin. Invest. 91:1993;456-464.
Nishida T., Shibata H., Koseki M., Nakao K., Kawashhima Y., Yoshida Y., Tagawa K. Peroxidative injury of the mitochondrial respiratory chain during respiration of hypothermic rat liver. Biochim. Biophys. Acta. 890:1987;82-88.
Peterson G. A simplification of the protein assay method of Lowry et al, which is more general applicable. Analytic. Biochem. 83:1977;346-356.
Morel I., Sergent O., Cogrel P., Lescoat G., Pasdeloup N., Brissot P., Cillard P., Cillard J. EPR study of antioxidant activity of the iron chelators pyroverdin and hydroxypyrid-4-one in iron-loaded hepatocyte culture comparison with that of desferrioxamine . Free Radic. Biol. Med. 18:1995;303-310.
Britigan B.E., Ratcliffe H.R., Buettner G.R., Rosen G.M. Binding of myeloperoxidase to bacteria effect on hydroxyl radical formation and susceptibility to oxidant-mediated killing . Biochim. Biophys. Acta. 1290:1996;231-240.
Turrens J.F. Superoxide production by the mitochondrial respiratory chain. Bioscience Reports. 17:1997;3-8.
Khazanov V.A., Poborsky A.N., Kondrashova M.N. Air saturation of the medium reduces the rate of phosphorylating oxidation of succinate in isolated mitochondria. FEBS Lett. 314:1992;264-266.
Schild L., Plumeyer F., Reinheckel T., Augustin W. Micromolar calcium prevents isolated rat liver mitochondria from anoxia-reoxygenation injury. Biochem. Mol. Biol. Int. 43:1997;35-45.
Vercesi A.E., Kowaltowski A.J., Grijalba M.T., Meinicke A.R., Castilho R.F. The role of reactive oxygen species in mitochondrial permeability transition. Biosci. Rep. 17:1997;43-51.
Vercesi A.E. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria. Arch. Biochem. Biophys. 252:1986;171-178.
Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris). 75:1979;463-505.