Ice Thickness-Induced Variations in Effective Pressure and Basal Conditions Influence Seasonal and Multi-Annual Ice Velocity at Sermeq Kujalleq (Jakobshavn Isbræ)
Lu, Xi; Sole, Andrew; Livingstone, Stephen J.et al.
[en] Acceleration of Sermeq Kujalleq has been linked to the retreat of its calving front. However, models consistently underestimate its ice-flow variability, indicating that important physical processes might be ignored, which introduces uncertainties in projecting its future mass loss and sea-level rise contribution. Using the Ice-sheet and Sea-level System Model, we simulate Sermeq Kujalleq from 2016 to 2022 constrained by sub-monthly ice front positions. Changes in front position explain >76% of the velocity variations but with a spatially and seasonally varying misfit between modeled and observed velocities up to 30 km upstream. This misfit significantly correlates with variations in height above flotation within 10 km of the terminus. Incorporating these variations into the model by scaling the basal shear stress reduces the average misfit by over 90%. This indicates that seasonal variations in ice thickness-induced effective pressure and basal conditions play a crucial role in controlling intra-annual and longer-term ice-flow variations.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lu, Xi; State Key Laboratory of Precision Geodesy, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China ; College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, China ; Department of Geography, University of Sheffield, Sheffield, United Kingdom
Sole, Andrew ; Department of Geography, University of Sheffield, Sheffield, United Kingdom
Livingstone, Stephen J. ; Department of Geography, University of Sheffield, Sheffield, United Kingdom
Cheng, Gong ; Department of Earth Sciences, Dartmouth College, Hanover, United States
Jiang, Liming ; State Key Laboratory of Precision Geodesy, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China ; College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, China
Chudley, Tom ; Department of Geography, Durham University, Durham, United Kingdom
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Li, Daan; College of Urban and Environmental Sciences, Yancheng Teachers University, Yancheng, China
Language :
English
Title :
Ice Thickness-Induced Variations in Effective Pressure and Basal Conditions Influence Seasonal and Multi-Annual Ice Velocity at Sermeq Kujalleq (Jakobshavn Isbræ)
Chinese Academy of Sciences F.R.S.-FNRS - Fonds de la Recherche Scientifique CSC - China Scholarship Council
Funding text :
This work was funded by the National Key R&D Program of China (Grant 2018YFC1406102 and 2017YFA0603103), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA19070104), and the National Natural Science Foundation of China (Grant 42174046). We also gratefully acknowledge financial support from China Scholarship Council. BN was funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS). GC acknowledges support from the Novo Nordisk Foundation under the Challenge Programme 2023 (Grant NNF23OC00807040).This work was funded by the National Key R&D Program of China (Grant 2018YFC1406102 and 2017YFA0603103), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA19070104), and the National Natural Science Foundation of China (Grant 42174046). We also gratefully acknowledge financial support from China Scholarship Council. BN was funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.\u2010FNRS). GC acknowledges support from the Novo Nordisk Foundation under the Challenge Programme 2023 (Grant NNF23OC00807040).
Åkesson, H., Morlighem, M., O'Regan, M., & Jakobsson, M. (2021). Future projections of Petermann Glacier under ocean warming depend strongly on friction law. Journal of Geophysical Research: Earth Surface, 126(6), e2020JF005921. https://doi.org/10.1029/2020JF005921
Andersen, M. L., Nettles, M., Elosegui, P., Larsen, T. B., Hamilton, G. S., & Stearns, L. A. (2017). Quantitative estimates of velocity sensitivity to surface melt variations at a large Greenland outlet glacier. Journal of Glaciology, 57(204), 609–620. https://doi.org/10.3189/002214311797409785
Block, A. E., & Bell, R. E. (2011). Geophysical evidence for soft bed sliding at Jakobshavn Isbrae, West Greenland. The Cryosphere Discussions, 2011, 339–366. https://doi.org/10.5194/tcd-5-339-2011
Bondzio, J. H., Morlighem, M., Seroussi, H., Kleiner, T., Rückamp, M., Mouginot, J., et al. (2017). The mechanisms behind Jakobshavn Isbrae's acceleration and mass loss: A 3-D thermomechanical model study. Geophysical Research Letters, 44(12), 6252–6260. https://doi.org/10.1002/2017gl073309
Bondzio, J. H., Seroussi, H., Morlighem, M., Kleiner, T., Rückamp, M., Humbert, A., & Larour, E. Y. (2016). Modelling calving front dynamics using a level-set method: Application to Jakobshavn Isbræ, West Greenland. The Cryosphere, 10(2), 497–510. https://doi.org/10.5194/tc-10-497-2016
Brondex, J., Gagliardini, O., Gillet-Chaulet, F., & Durand, G. (2017). Sensitivity of grounding line dynamics to the choice of the friction law. Journal of Glaciology, 63(241), 854–866. https://doi.org/10.1017/jog.2017.51
Budd, W. F., Keage, P. L., & Blundy, N. A. (1979). Empirical studies of ice sliding. Journal of Glaciology, 23(89), 157–170. https://doi.org/10.3189/S0022143000029804
Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M., Boettcher, M. S., De La PeÑA, S., & Howat, I. A. N. (2019). Non-linear glacier response to calving events, Jakobshavn Isbræ, Greenland. Journal of Glaciology, 65(249), 39–54. https://doi.org/10.1017/jog.2018.90
Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M., & Joughin, I. (2017). Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. Journal of Glaciology, 61(225), 76–88. https://doi.org/10.3189/2015JoG13J235
Cavanagh, J. P., Lampkin, D. J., & Moon, T. (2017). Seasonal variability in regional ice flow due to meltwater injection into the shear margins of Jakobshavn Isbræ. Journal of Geophysical Research: Earth Surface, 122(12), 2488–2505. https://doi.org/10.1002/2016jf004187
Cheng, G., Morlighem, M., Mouginot, J., & Cheng, D. (2022). Helheim Glacier's terminus position controls its seasonal and inter-annual ice flow variability. Geophysical Research Letters, 49(5), e2021GL097085. https://doi.org/10.1029/2021GL097085
Choi, Y., Morlighem, M., Rignot, E., & Wood, M. (2021). Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century. Communications Earth & Environment, 2(1), 26. https://doi.org/10.1038/s43247-021-00092-z
Chudley, T. R., & Howat, I. M. (2024). pDEMtools. In (Version 0.6). https://github.com/trchudley/pDEMtools
Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers (Ed. 4).
Davison, B. J., Sole, A. J., Cowton, T. R., Lea, J. M., Slater, D. A., Fahrner, D., & Nienow, P. W. (2020). Subglacial drainage evolution modulates seasonal ice flow variability of three tidewater glaciers in southwest Greenland. Journal of Geophysical Research: Earth Surface, 125(9), e2019JF005492. https://doi.org/10.1029/2019jf005492
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., & van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41(3), 866–872. https://doi.org/10.1002/2013GL059010
Felikson, D. G. A. C., Bartholomaus, T. C., Morlighem, M., & Noel, B. P. Y. (2021). Steep Glacier bed Knickpoints mitigate inland thinning in Greenland. Geophysical Research Letters, 48(2), e2020GL090112. https://doi.org/10.1029/2020GL090112
Gillet-Chaulet, F., Durand, G., Gagliardini, O., Mosbeux, C., Mouginot, J., Rémy, F., & Ritz, C. (2016). Assimilation of surface velocities acquired between 1996 and 2010 to constrain the form of the basal friction law under Pine Island Glacier. Geophysical Research Letters, 43(19), 310311–310321. https://doi.org/10.1002/2016GL069937
Glen, J. W. (1958). Union Géodésique et Géophysique Internationale. Association Internationale d'Hydrologie Scientifique. Symposium de Chamonix, 16–24 sept. 1958. Journal of Glaciology, 3, 965–978.
Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A., Aschwanden, A., et al. (2018). Design and results of the ice sheet model initialisation experiments initMIP-Greenland: An ISMIP6 intercomparison. The Cryosphere, 12(4), 1433–1460. https://doi.org/10.5194/tc-12-1433-2018
Habermann, M., Truffer, M., & Maxwell, D. (2013). Changing basal conditions during the speed-up of Jakobshavn Isbræ, Greenland. The Cryosphere, 7(6), 1679–1692. https://doi.org/10.5194/tc-7-1679-2013
Helanow, C., Iverson, N. R., Woodard, J. B., & Zoet, L. K. (2021). A slip law for hard-bedded glaciers derived from observed bed topography. Science Advances, 7(20), eabe7798. https://doi.org/10.1126/sciadv.abe7798
Helm, V., Humbert, A., & Miller, H. (2014). Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8(4), 1539–1559. https://doi.org/10.5194/tc-8-1539-2014
Iken, A. (1981). The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized case. Journal of Glaciology, 27(97), 407–421. https://doi.org/10.3189/S0022143000011448
ISSM Team. (2023). Ice-sheet and Sea-level System Model source code, v4.23 r27919. Zenodo. https://doi.org/10.5281/zenodo.8436924
Joughin, I., Abdalati, W., & Fahnestock, M. (2004). Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier. Nature, 432(7017), 608–610. https://doi.org/10.1038/nature03130
Joughin, I., Das, S. B., King, M. A., Smith, B. E., Howat, I. M., & Moon, T. (2008). Seasonal speedup along the western flank of the Greenland ice sheet. Science, 320(5877), 781–783. https://doi.org/10.1126/science.1153288
Joughin, I., Shean, D. E., Smith, B. E., & Floricioiu, D. (2020). A decade of variability on Jakobshavn Isbræ: Ocean temperatures pace speed through influence on mélange rigidity. The Cryosphere, 14(1), 211–227. https://doi.org/10.5194/tc-14-211-2020
Joughin, I., Smith, B. E., Howat, I. M., Floricioiu, D., Alley, R. B., Truffer, M., & Fahnestock, M. (2012). Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis. Journal of Geophysical Research, 117(F2). https://doi.org/10.1029/2011JF002110
Joughin, I., Smith, B. E., & Schoof, C. G. (2019). Regularized coulomb friction laws for ice sheet sliding: Application to pine island glacier, Antarctica. Geophysical Research Letters, 46(9), 4764–4771. https://doi.org/10.1029/2019GL082526
Khan, S. A., Bamber, J. L., Rignot, E., Helm, V., Aschwanden, A., Holland, D. M., et al. (2022). Greenland mass trends from airborne and satellite altimetry during 2011–2020. Journal of Geophysical Research: Earth Surface, 127(4), e2021JF006505. https://doi.org/10.1029/2021JF006505
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori, I., et al. (2019). Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nature Geoscience, 12(4), 277–283. https://doi.org/10.1038/s41561-019-0329-3
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël, B. P. Y., et al. (2020). Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Communications Earth & Environment, 1(1), 1. https://doi.org/10.1038/s43247-020-0001-2
Lampkin, D. J., Amador, N., Parizek, B. R., Farness, K., & Jezek, K. (2013). Drainage from water-filled crevasses along the margins of Jakobshavn Isbræ: A potential catalyst for catchment expansion. Journal of Geophysical Research: Earth Surface, 118(2), 795–813. https://doi.org/10.1002/jgrf.20039
Larour, E., Seroussi, H., Morlighem, M., & Rignot, E. (2012). Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). Journal of Geophysical Research, 117(F1). https://doi.org/10.1029/2011JF002140
Lea, J. M. (2018). The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification Tool (MaQiT) – Simple tools for the rapid mapping and quantification of changing Earth surface margins. Earth Surface Dynamics, 6(3), 551–561. https://doi.org/10.5194/esurf-6-551-2018
Lemos, A., Shepherd, A., McMillan, M., Hogg, A. E., Hatton, E., & Joughin, I. (2018). Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery. The Cryosphere, 12(6), 2087–2097. https://doi.org/10.5194/tc-12-2087-2018
Lippert, E. Y. H., Morlighem, M., Cheng, G., & Khan, S. A. (2024). Modeling a century of change: Kangerlussuaq Glacier's mass loss from 1933 to 2021. Geophysical Research Letters, 51(4), e2023GL106286. https://doi.org/10.1029/2023GL106286
Maier, N., Gimbert, F., Gillet-Chaulet, F., & Gilbert, A. (2021). Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland. The Cryosphere, 15(3), 1435–1451. https://doi.org/10.5194/tc-15-1435-2021
Mankoff, K. D., Noël, B., Fettweis, X., Ahlstrøm, A. P., Colgan, W., Kondo, K., et al. (2020). Greenland liquid water discharge from 1958 through 2019. Earth System Science Data, 12(4), 2811–2841. https://doi.org/10.5194/essd-12-2811-2020
McArthur, K., McCormack, F. S., & Dow, C. F. (2023). Basal conditions of Denman Glacier from glacier hydrology and ice dynamics modeling. The Cryosphere, 17(11), 4705–4727. https://doi.org/10.5194/tc-17-4705-2023
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., & Aubry, D. (2010). Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophysical Research Letters, 37(14). https://doi.org/10.1029/2010gl043853
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., et al. (2022). IceBridge BedMachine Greenland version 5 NASA national snow and ice data center. Distributed Active Archive Center. https://doi.org/10.5067/GMEVBWFLWA7X
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., et al. (2017). BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophysical Research Letters, 44(21), 11051–011061. https://doi.org/10.1002/2017GL074954
Mouginot, J., Rignot, E., Bjork, A. A., van den Broeke, M., Millan, R., Morlighem, M., et al. (2019). Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences of the U S A, 116(19), 9239–9244. https://doi.org/10.1073/pnas.1904242116
Nick, F. M., Vieli, A., Howat, I. M., & Joughin, I. (2009). Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geoscience, 2(2), 110–114. https://doi.org/10.1038/ngeo394
Noël, B., van de Berg, W. J., Lhermitte, S., & van den Broeke, M. R. (2019). Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 5(9), eaaw0123. https://doi.org/10.1126/sciadv.aaw0123
Podrasky, D., Truffer, M., Fahnestock, M., Amundson, J. M., Cassotto, R., & Joughin, I. (2012). Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland. Journal of Glaciology, 58(212), 1212–1226. https://doi.org/10.3189/2012JoG12J065
Porter, C., Howat, I., Noh, M.-J., Husby, E., Khuvis, S., Danish, E., et al. (2023). ArcticDEM—mosaics, version 4.1 version V1) [digital elevation model]. Harvard Dataverse. https://doi.org/10.7910/DVN/3VDC4W
Rosenau, R., Schwalbe, E., Maas, H.-G., Baessler, M., & Dietrich, R. (2013). Grounding line migration and high-resolution calving dynamics of Jakobshavn Isbræ, West Greenland. Journal of Geophysical Research: Earth Surface, 118(2), 382–395. https://doi.org/10.1029/2012JF002515
Schoof, C. (2005). The effect of cavitation on glacier sliding. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2055), 609–627. https://doi.org/10.1098/rspa.2004.1350
Schoof, C. (2010). Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803–806. https://doi.org/10.1038/nature09618
Shapero, D. R., Joughin, I. R., Poinar, K., Morlighem, M., & Gillet-Chaulet, F. (2016). Basal resistance for three of the largest Greenland outlet glaciers. Journal of Geophysical Research-Earth Surface, 121(1), 168–180. https://doi.org/10.1002/2015jf003643
Solgaard, A., Kusk, A., Merryman Boncori, J. P., Dall, J., Mankoff, K. D., Ahlstrøm, A. P., et al. (2021). Greenland ice velocity maps from the PROMICE project. Earth System Science Data, 13(7), 3491–3512. https://doi.org/10.5194/essd-13-3491-2021
Stearns, L. A., & van der Veen, C. J. (2018). Friction at the bed does not control fast glacier flow. Science, 361(6399), 273–277. https://doi.org/10.1126/science.aat2217
Straneo, F., & Heimbach, P. (2013). North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature, 504(7478), 36–43. https://doi.org/10.1038/nature12854
Tulaczyk, S., Kamb, W. B., & Engelhardt, H. F. (2000). Basal mechanics of ice stream B, west Antarctica: 1. Till mechanics. Journal of Geophysical Research, 105(B1), 463–481. https://doi.org/10.1029/1999JB900329
Vieli, A., & Nick, F. M. (2011). Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: Issues and implications. Surveys in Geophysics, 32(4), 437–458. https://doi.org/10.1007/s10712-011-9132-4
Walter, F., Chaput, J., & Lüthi, M. P. (2014). Thick sediments beneath Greenland's ablation zone and their potential role in future ice sheet dynamics. Geology, 42(6), 487–490. https://doi.org/10.1130/g35492.1
Weertman, J. (1957). On the sliding of glaciers. Journal of Glaciology, 3(21), 33–38. https://doi.org/10.3189/S0022143000024709
Wild, C. T., Alley, K. E., Muto, A., Truffer, M., Scambos, T. A., & Pettit, E. C. (2022). Weakening of the pinning point buttressing Thwaites glacier, West Antarctica. The Cryosphere, 16(2), 397–417. https://doi.org/10.5194/tc-16-397-2022
Wood, M., Rignot, E., Fenty, I., An, L., Bjork, A., van den Broeke, M., et al. (2021). Ocean forcing drives glacier retreat in Greenland. Science Advances, 7(1), eaba7282. https://doi.org/10.1126/sciadv.aba7282
Xi, L., Andrew, S., Stephen, J. L., Gong, C., & Liming, J. (2024). Simulating seasonal to inter-annual variability of Sermeq Kujalleq Glacier using ISSM. https://doi.org/10.5281/zenodo.12606538
Zoet, L. K., & Iverson, N. R. (2020). A slip law for glaciers on deformable beds. Science, 368(6486), 76–78. https://doi.org/10.1126/science.aaz1183
Nuth, C., & Kääb, A. (2011). Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5(1), 271–290. https://doi.org/10.5194/tc-5-271-2011