Thiamine; energy metabolism; phosphorylated derivatives; thiamine deficiency diseases
Abstract :
[en] Vitamin B1 is an indispensable food factor for the human and animal body. In animals, vitamin B1 is found in the form of thiamine and its phosphate esters - thiamine mono-, di- and triphosphate, as well as an adenylated derivative - adenosine thiamine triphosphate. At present, the only vitamin B1 form with biochemical functions being elucidated is thiamine diphosphate, which serves as a coenzyme for several important enzymes involved in carbohydrate, amino acid, fatty acid and energy metabolism. Here we review the latest developments in the field of vitamin B1 research in animals. Transport, metabolism and biological role of thiamine and its derivatives are considered as well as the involvement of vitamin B1-dependent processes in human diseases and its therapeutic issues, a field that has gained momentum with several important recent developments.
Research Center/Unit :
GIGA Neurosciences-Neurophysiology - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Makarchikov, Alexander F; Grodno State Agrarian University, 28 Tereshkova St., 230005 Grodno, Belarus, Institute of Biochemistry of Biologically Active Compounds of NAS of Belarus, 7 Antoni Tyzenhauz Square, 230023 Grodno, Belarus
Wins, Pierre ; Université de Liège - ULiège > Département des sciences cliniques
Bettendorff, Lucien ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Language :
English
Title :
BIOCHEMICAL AND MEDICAL ASPECTS OF VITAMIN B1 RESEARCH.
Aleshin, V.A., Mkrtchyan, G.V., Bunik, V.I., Mechanisms of non-coenzyme action of thiamine: protein targets and medical significance. Biochemistry 84 (2019), 829–850, 10.1134/S0006297919080017.
Alexander-Kaufman, K., Harper, C., Transketolase: observations in alcohol-related brain damage research. Int. J. Biochem. Cell Biol. 41 (2009), 717–720.
Alfadhel, M., Almuntashri, M., Jadah, R.H., Bashiri, F.A., Al Rifai, M.T., Al Shalaan, H., Al Balwi, M., Al Rumayan, A., Eyaid, W., Al-Twaijri, W., Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J. Rare Dis., 8, 2013, 83, 10.1186/1750-1172-8-83.
Alfadhel, M., Tabarki, B., SLC19A3 gene defects sorting the phenotype and acronyms: review. Neuropediatrics 49 (2018), 83–92, 10.1055/s-0037-1607191.
Alho, I., Costa, L., Bicho, M., Coelho, C., The role of low-molecular-weight protein tyrosine phosphatase (LMW-PTP ACP1) in oncogenesis. Tumour Biol. 34 (2013), 1979–1989, 10.1007/s13277-013-0784-1.
Baker, L.J., Dorocke, J.A., Harris, R.A., Timm, D.E., The crystal structure of yeast thiamin pyrophosphokinase. Structure 9 (2001), 539–546.
Balaghi, M., Pearson, W.N., Tissue and intracellular distribution of radioactive thiamine in normal and thiamine-deficient rats. J. Nutr. 89 (1966), 127–132.
Barnerias, C., Saudubray, J.M., Touati, G., De Lonlay, P., Dulac, O., Ponsot, G., Marsac, C., Brivet, M., Desguerre, I., Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev. Med. Child Neurol. 52 (2010), e1–e9.
Bashir, B., Mittal, S., Muthukumar, A., Vishwas, S., Pandey, N.K., Gulati, M., Gupta, G., Dhanasekaran, M., Kumar, P., Dureja, H., Veiga, F., Paiva-Santos, A.C., Adams, J., Dua, K., Singh, S.K., Harnessing the neuroprotective effect of oral administration of benfotiamine in MPTP induced Parkinson's disease in rats. Eur. J. Pharmacol., 962, 2024, 176234, 10.1016/j.ejphar.2023.176234.
Basiri, B., Sutton, J.M., Hanberry, B.S., Zastre, J.A., Bartlett, M.G., Ion pair liquid chromatography method for the determination of thiamine (vitamin B1) homeostasis. Biomed. Chromatogr. 30 (2016), 35–41, 10.1002/bmc.3544.
Bellali, S., Lagier, J.-C., Million, M., Anani, H., Haddad, G., Francis, R., Kuete Yimagou, E., Khelaifia, S., Levasseur, A., Raoult, D., Bou Khalil, J., Running after ghosts: are dead bacteria the dark matter of the human gut microbiota?. Gut Microbes 13 (2021), 1–12, 10.1080/19490976.2021.1897208.
Bender, D.A., Cunningham, S.M.C., Introduction to Nutrition and Metabolism. sixth ed., 2021, CRC Press, Boca Raton, 10.1201/9781003139157.
Berman, K., Fishman, R.A., Thiamine phosphate metabolism and possible coenzyme-independent functions of thiamine in brain. J. Neurochem. 24 (1975), 457–465.
Bettendorff, L., Synthetic thioesters of thiamine: promising tools for slowing progression of neurodegenerative diseases. Int. J. Mol. Sci., 24, 2023, 11296, 10.3390/ijms241411296.
Bettendorff, L., Update on thiamine triphosphorylated derivatives and metabolizing enzymatic complexes. Biomolecules, 11, 2021, 1645, 10.3390/biom11111645.
Bettendorff, L., The compartmentation of phosphorylated thiamine derivatives in cultured neuroblastoma cells. Biochim. Biophys. Acta 1222 (1994), 7–14.
Bettendorff, L., Grandfils, C., De Rycker, C., Schoffeniels, E., Determination of thiamine and its phosphate esters in human blood serum at femtomole levels. J. Chromatogr. 382 (1986), 297–302.
Bettendorff, L., Lakaye, B., Kohn, G., Wins, P., Thiamine triphosphate: a ubiquitous molecule in search of a physiological role. Metab. Brain Dis. 29 (2014), 1069–1082, 10.1007/s11011-014-9509-4.
Bettendorff, L., Mastrogiacomo, F., Kish, S.J., Grisar, T., Thiamine, thiamine phosphates, and their metabolizing enzymes in human brain. J. Neurochem. 66 (1996), 250–258.
Bettendorff, L., Michel-Cahay, C., Grandfils, C., De Rycker, C., Schoffeniels, E., Thiamine triphosphate and membrane-associated thiamine phosphatases in the electric organ of Electrophorus electricus. J. Neurochem. 49 (1987), 495–502.
Bettendorff, L., Peeters, M., Jouan, C., Wins, P., Schoffeniels, E., Determination of thiamin and its phosphate esters in cultured neurons and astrocytes using an ion-pair reversed-phase high-performance liquid chromatographic method. Anal. Biochem. 198 (1991), 52–59.
Bettendorff, L., Wins, P., Thiamine triphosphatase and the CYTH superfamily of proteins. FEBS J. 280 (2013), 6443–6455, 10.1111/febs.12498.
Bettendorff, L., Wins, P., Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors. FEBS J. 276 (2009), 2917–2925.
Bettendorff, L., Wins, P., Lesourd, M., Subcellular localization and compartmentation of thiamine derivatives in rat brain. Biochim. Biophys. Acta 1222 (1994), 1–6.
Bettendorff, L., Wirtzfeld, B., Makarchikov, A.F., Mazzucchelli, G., Frédérich, M., Gigliobianco, T., Gangolf, M., De Pauw, E., Angenot, L., Wins, P., Discovery of a natural thiamine adenine nucleotide. Nat. Chem. Biol. 3 (2007), 211–212.
Bontemps, J., Philippe, P., Bettendorff, L., Lombet, J., Dandrifosse, G., Schoffeniels, E., Crommen, J., Determination of thiamine and thiamine phosphates in excitable tissues as thiochrome derivatives by reversed-phase high-performance liquid chromatography on octadecyl silica. J. Chromatogr. 307 (1984), 283–294.
Bottini, N., Bottini, E., Gloria-Bottini, F., Mustelin, T., Low-molecular-weight protein tyrosine phosphatase and human disease: in search of biochemical mechanisms. Arch. Immunol. Ther. Exp. 50 (2002), 95–104.
Boyko, A.I., Karlina, I.S., Zavileyskiy, L.G., Aleshin, V.A., Artiukhov, A.V., Kaehne, T., Ksenofontov, A.L., Ryabov, S.I., Graf, A.V., Tramonti, A., Bunik, V.I., Delayed impact of 2-oxoadipate dehydrogenase inhibition on the rat brain metabolism is linked to protein glutarylation. Front. Med., 9, 2022, 10.3389/fmed.2022.896263.
Brautigam, C.A., Wynn, R.M., Chuang, J.L., Chuang, D.T., Subunit and catalytic component stoichiometries of an in vitro reconstituted human pyruvate dehydrogenase complex. J. Biol. Chem. 284 (2009), 13086–13098, 10.1074/jbc.M806563200.
Bugiardini, E., Pope, S., Feichtinger, R.G., Poole, O.V., Pittman, A.M., Woodward, C.E., Heales, S., Quinlivan, R., Houlden, H., Mayr, J.A., Hanna, M.G., Pitceathly, R.D.S., Utility of whole blood thiamine pyrophosphate evaluation in TPK1-related diseases. J. Clin. Med., 8, 2019, 991, 10.3390/jcm8070991.
Bunik, V., Aleshin, V., Nogues, I., Kähne, T., Parroni, A., Contestabile, R., Salvo, M.L., Graf, A., Tramonti, A., Thiamine-dependent regulation of mammalian brain pyridoxal kinase in vitro and in vivo. J. Neurochem. 161 (2022), 20–39, 10.1111/jnc.15576.
Bunik, V.I., Degtyarev, D., Structure-function relationships in the 2-oxo acid dehydrogenase family: substrate-specific signatures and functional predictions for the 2-oxoglutarate dehydrogenase-like proteins. Proteins 71 (2007), 874–890.
Butterworth, R.F., Giguere, J.F., Besnard, A.M., Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. alpha-Ketoglutarate dehydrogenase. Neurochem. Res. 11 (1986), 567–577.
Butterworth, R.F., Kril, J.J., Harper, C.G., Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome. Alcohol Clin. Exp. Res. 17 (1993), 1084–1088.
Calingasan, N.Y., Gibson, G.E., Dietary restriction attenuates the neuronal loss, induction of heme oxygenase-1 and blood-brain barrier breakdown induced by impaired oxidative metabolism. Brain Res. 885 (2000), 62–69.
Calingasan, N.Y., Gibson, G.E., Vascular endothelium is a site of free radical production and inflammation in areas of neuronal loss in thiamine-deficient brain. Ann. N. Y. Acad. Sci. 903 (2000), 353–356.
Calingasan, N.Y., Huang, P.L., Chun, H.S., Fabian, A., Gibson, G.E., Vascular factors are critical in selective neuronal loss in an animal model of impaired oxidative metabolism. J. Neuropathol. Exp. Neurol. 59 (2000), 207–217, 10.1093/jnen/59.3.207.
Cardinali, C.A.E.F., Martins, Y.A., Moraes, R.C.M., Costa, A.P., Alencar, M.B., Silber, A.M., Torrão, A.S., Exploring the therapeutic potential of benfotiamine in a sporadic alzheimer's-like disease rat model: insights into insulin signaling and cognitive function. ACS Chem. Neurosci., 2024, 10.1021/acschemneuro.4c00113.
Carpenter, K.J., The discovery of thiamin. Ann. Nutr. Metab. 61 (2012), 219–223, 10.1159/000343109.
Caselli, A., Paoli, P., Santi, A., Mugnaioni, C., Toti, A., Camici, G., Cirri, P., Low molecular weight protein tyrosine phosphatase: multifaceted functions of an evolutionarily conserved enzyme. Biochim. Biophys. Acta 1864 (2016), 1339–1355, 10.1016/j.bbapap.2016.07.001.
Casteels, M., Sniekers, M., Fraccascia, P., Mannaerts, G.P., Van Veldhoven, P.P., The role of 2-hydroxyacyl-CoA lyase, a thiamin pyrophosphate-dependent enzyme, in the peroxisomal metabolism of 3-methyl-branched fatty acids and 2-hydroxy straight-chain fatty acids. Biochem. Soc. Trans. 35 (2007), 876–880, 10.1042/BST0350876.
Chen, H., Denton, T.T., Xu, H., Calingasan, N., Beal, M.F., Gibson, G.E., Reductions in the mitochondrial enzyme α-ketoglutarate dehydrogenase complex in neurodegenerative disease - beneficial or detrimental?. J. Neurochem. 139 (2016), 823–838, 10.1111/jnc.13836.
Chen, L., Shu, Y., Liang, X., Chen, E.C., Yee, S.W., Zur, A.A., Li, S., Xu, L., Keshari, K.R., Lin, M.J., Chien, H.C., Zhang, Y., Morrissey, K.M., Liu, J., Ostrem, J., Younger, N.S., Kurhanewicz, J., Shokat, K.M., Ashrafi, K., Giacomini, K.M., OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 9983–9988.
Chuang, D.T., Chuang, J.L., Wynn, R.M., Lessons from genetic disorders of branched-chain amino acid metabolism. J. Nutr., 136, 2006, 10.1093/jn/136.1.243S 243S–9S.
Chuang, J.L., Wynn, R.M., Chuang, D.T., The C-terminal hinge region of lipoic acid-bearing domain of E2b is essential for domain interaction with branched-chain alpha-keto acid dehydrogenase kinase. J. Biol. Chem. 277 (2002), 36905–36908, 10.1074/jbc.C200430200.
Cooper, J.R., Nishino, K., Nishino, N., Piros, K., The enzymatic synthesis of thiamin triphosphate. Ann. N. Y. Acad. Sci. 378 (1982), 177–187.
Cooper, J.R., Pincus, J.H., The role of thiamine in nervous tissue. Neurochem. Res. 4 (1979), 223–239.
Coy, J.F., Dressler, D., Wilde, J., Schubert, P., Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin. Lab. 51 (2005), 257–273.
Coy, J.F., Dubel, S., Kioschis, P., Thomas, K., Micklem, G., Delius, H., Poustka, A., Molecular cloning of tissue-specific transcripts of a transketolase-related gene: implications for the evolution of new vertebrate genes. Genomics 32 (1996), 309–316.
Dang, Y., Zhou, D., Du, X., Zhao, H., Lee, C.-H., Yang, J., Wang, Y., Qin, C., Guo, Z., Zhang, Z., Molecular mechanism of substrate recognition by folate transporter SLC19A1. Cell Discov., 8, 2022, 141, 10.1038/s41421-022-00508-w.
Danhauser, K., Sauer, S.W., Haack, T.B., Wieland, T., Staufner, C., Graf, E., Zschocke, J., Strom, T.M., Traub, T., Okun, J.G., Meitinger, T., Hoffmann, G.F., Prokisch, H., Kölker, S., DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am. J. Hum. Genet. 91 (2012), 1082–1087, 10.1016/j.ajhg.2012.10.006.
De Caro, L., Rindi, G., De Giuseppe, L., Contents in rat tissue of thiamine and its phosphates during dietary thiamine deificiency. Int. Z Vitaminforsch 31 (1961), 333–340.
Debs, R., Depienne, C., Rastetter, A., Bellanger, A., Degos, B., Galanaud, D., Keren, B., Lyon-Caen, O., Brice, A., Sedel, F., Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Arch. Neurol. 67 (2010), 126–130.
Delvaux, D., Kerff, F., Murty, M.R., Lakaye, B., Czerniecki, J., Kohn, G., Wins, P., Herman, R., Gabelica, V., Heuze, F., Tordoir, X., Maree, R., Matagne, A., Charlier, P., De Pauw, E., Bettendorff, L., Structural determinants of specificity and catalytic mechanism in mammalian 25-kDa thiamine triphosphatase. Biochim. Biophys. Acta 1830 (2013), 4513–4523.
Deshpande, G.P., Patterton, H.-G., Faadiel Essop, M., The human transketolase-like proteins TKTL1 and TKTL2 are bona fide transketolases. BMC Struct. Biol., 19, 2019, 2, 10.1186/s12900-018-0099-y.
Dhir, S., Tarasenko, M., Napoli, E., Giulivi, C., Neurological, psychiatric, and biochemical aspects of thiamine deficiency in children and adults. Front. Psychiatr., 10, 2019, 207, 10.3389/fpsyt.2019.00207.
Diaz, G.A., Banikazemi, M., Oishi, K., Desnick, R.J., Gelb, B.D., Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat. Genet. 22 (1999), 309–312, 10.1038/10385.
Dingwall, K.M., Delima, J.F., Binks, P., Batey, R., Bowden, S.C., What is the optimum thiamine dose to treat or prevent Wernicke's encephalopathy or Wernicke-Korsakoff syndrome? Results of a randomized controlled trial. Alcohol Clin. Exp. Res. 46 (2022), 1133–1147, 10.1111/acer.14843.
Dutta, B., Huang, W., Molero, M., Kekuda, R., Leibach, F.H., Devoe, L.D., Ganapathy, V., Prasad, P.D., Cloning of the human thiamine transporter, a member of the folate transporter family. J. Biol. Chem. 274 (1999), 31925–31929.
Eaton, R.H., Moss, D.W., Organic pyrophosphates as substrates for human alkaline phosphatases. Biochem. J. 105 (1967), 1307–1312.
Eckert, T., Möbus, W., Uber eine ATP:thiaminediphosphat-phosphotransferase — Aktivität im Nervengewebe. Physiol. Chem. 338 (1964), 286–288.
Eggersdorfer, M., Laudert, D., Létinois, U., McClymont, T., Medlock, J., Netscher, T., Bonrath, W., One hundred years of vitamins-a success story of the natural sciences. Angew Chem. Int. Ed. Engl. 51 (2012), 12960–12990, 10.1002/anie.201205886.
Egi, Y., Koyama, S., Shikata, H., Yamada, K., Kawasaki, T., Content of thiamin phosphate esters in mammalian tissues - an extremely high concentration of thiamin triphosphate in pig skeletal muscle. Biochem. Int. 12 (1986), 385–390.
Eudy, J.D., Spiegelstein, O., Barber, R.C., Wlodarczyk, B.J., Talbot, J., Finnell, R.H., Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes. Mol. Genet. Metabol. 71 (2000), 581–590.
Fitzpatrick, T.B., Dalvit, I., Chang, F., Wang, K., Fudge, J.B., Chang, S., Maillot, B., Gruissem, W., Vitamin B 1 enhancement in the endosperm of rice through thiamine sequestration. Plant Biotechnol. J., 14348, 2024, 10.1111/pbi.14348.
Fleming, J.C., Steinkamp, M.P., Kawatsuji, R., Tartaglini, E., Pinkus, J.L., Pinkus, G.S., Fleming, M.D., Neufeld, E.J., Characterization of a murine high-affinity thiamine transporter, Slc19a2. Mol. Genet. Metabol. 74 (2001), 273–280.
Fleming, J.C., Tartaglini, E., Steinkamp, M.P., Schorderet, D.F., Cohen, N., Neufeld, E.J., The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat. Genet. 22 (1999), 305–308.
Folda, A., Scalcon, V., Tonolo, F., Rigobello, M.P., Bindoli, A., Thiamine disulfide derivatives in thiol redox regulation: role of thioredoxin and glutathione systems. Biofactors, 2024, 10.1002/biof.2121.
Foulon, V., Antonenkov, V.D., Croes, K., Waelkens, E., Mannaerts, G.P., Van Veldhoven, P.P., Casteels, M., Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during alpha-oxidation of 3- methyl-branched fatty acids. Proc. Natl. Acad. Sci. USA 96 (1999), 10039–10044.
Fraccascia, P., Casteels, M., De Schryver, E., Van Veldhoven, P.P., Role of thiamine pyrophosphate in oligomerisation, functioning and import of peroxisomal 2-hydroxyacyl-CoA lyase. Biochim. Biophys. Acta 1814 (2011), 1226–1233.
Fraccascia, P., Sniekers, M., Casteels, M., Van Veldhoven, P.P., Presence of thiamine pyrophosphate in mammalian peroxisomes. BMC Biochem., 8, 2007, 10.
Frank, L.L., Thiamin in clinical practice. JPEN - J. Parenter. Enter. Nutr. 39 (2015), 503–520, 10.1177/0148607114565245.
Fraser, J.L., Vanderver, A., Yang, S., Chang, T., Cramp, L., Vezina, G., Lichter-Konecki, U., Cusmano-Ozog, K.P., Smpokou, P., Chapman, K.A., Zand, D.J., Thiamine pyrophosphokinase deficiency causes a Leigh Disease like phenotype in a sibling pair: identification through whole exome sequencing and management strategies. Mol. Genet Metab. Rep. 1 (2014), 66–70, 10.1016/j.ymgmr.2013.12.007.
Frédérich, M., Delvaux, D., Gigliobianco, T., Gangolf, M., Dive, G., Mazzucchelli, G., Elias, B., De Pauw, E., Angenot, L., Wins, P., Bettendorff, L., Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence. FEBS J. 276 (2009), 3256–3268.
Funk, C., On the chemical nature of the substance which cures polyneuritis in birds induced by a diet of polished rice. J. Physiol. 43 (1911), 395–400.
Furuta, E., Okuda, H., Kobayashi, A., Watabe, K., Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim. Biophys. Acta 1805 (2010), 141–152, 10.1016/j.bbcan.2010.01.005.
Galvin, R., Bråthen, G., Ivashynka, A., Hillbom, M., Tanasescu, R., Leone, M.A., EFNS. EFNS guidelines for diagnosis, therapy and prevention of Wernicke encephalopathy. Eur. J. Neurol. 17 (2010), 1408–1418, 10.1111/j.1468-1331.2010.03153.x.
Gangolf, M., Czerniecki, J., Radermecker, M., Detry, O., Nisolle, M., Jouan, C., Martin, D., Chantraine, F., Lakaye, B., Wins, P., Grisar, T., Bettendorff, L., Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One, 5, 2010, e13616.
Gangolf, M., Wins, P., Thiry, M., El Moualij, B., Bettendorff, L., Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain. J. Biol. Chem. 285 (2010), 583–594.
Giacomini, M.M., Hao, J., Liang, X., Chandrasekhar, J., Twelves, J., Whitney, J.A., Lepist, E.-I., Ray, A.S., Interaction of 2,4-diaminopyrimidine-containing drugs including fedratinib and trimethoprim with thiamine transporters. Drug Metab. Dispos. 45 (2017), 76–85, 10.1124/dmd.116.073338.
Gibson, G.E., Feldman, H.H., Zhang, S., Flowers, S.A., Luchsinger, J.A., Pharmacological thiamine levels as a therapeutic approach in Alzheimer's disease. Front. Med., 9, 2022, 1033272, 10.3389/fmed.2022.1033272.
Gigliobianco, T., Gangolf, M., Lakaye, B., Pirson, B., von Ballmoos, C., Wins, P., Bettendorff, L., An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate. Sci. Rep., 3, 2013, 1071.
Gigliobianco, T., Lakaye, B., Wins, P., El Moualij, B., Zorzi, W., Bettendorff, L., Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress. BMC Microbiol., 10, 2010, 148.
Goldfischer, S., Essner, E., Schiller, B., Nucleoside diphosphatase and thiamine pyrophosphatase activities in the endoplasmic reticulum and golgi apparatus. J. Histochem. Cytochem. 19 (1971), 349–360.
Gomes, F., Bergeron, G., Bourassa, M.W., Fischer, P.R., Thiamine deficiency unrelated to alcohol consumption in high-income countries: a literature review. Ann. N. Y. Acad. Sci. 1498 (2021), 46–56, 10.1111/nyas.14569.
Haas, R.H., Thiamin and the brain. Annu. Rev. Nutr. 8 (1988), 483–515.
Hagen, J., te Brinke, H., Wanders, R.J.A., Knegt, A.C., Oussoren, E., Hoogeboom, A.J.M., Ruijter, G.J.G., Becker, D., Schwab, K.O., Franke, I., Duran, M., Waterham, H.R., Sass, J.O., Houten, S.M., Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria. J. Inherit. Metab. Dis. 38 (2015), 873–879, 10.1007/s10545-015-9841-9.
Hansen, G.E., Gibson, G.E., The α-ketoglutarate dehydrogenase complex as a hub of plasticity in neurodegeneration and regeneration. Int. J. Mol. Sci., 23, 2022, 12403, 10.3390/ijms232012403.
Harris, R.A., Zhang, B., Goodwin, G.W., Kuntz, M.J., Shimomura, Y., Rougraff, P., Dexter, P., Zhao, Y., Gibson, R., Crabb, D.W., Regulation of the branched-chain alpha-ketoacid dehydrogenase and elucidation of a molecular basis for maple syrup urine disease. Adv. Enzym. Regul. 30 (1990), 245–263.
Hayat, F., Makarov, M.V., Belfleur, L., Migaud, M.E., Synthesis of mixed dinucleotides by mechanochemistry. Molecules, 27, 2022, 3229, 10.3390/molecules27103229.
Hazell, A.S., Butterworth, R.F., Region-selective permeability of the blood-brain barrier to α-aminoisobutyric acid during thiamine deficiency and following its reversal. Metab. Brain Dis. 36 (2021), 239–246, 10.1007/s11011-020-00644-w.
Hazell, A.S., Butterworth, R.F., Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation. Alcohol Alcohol 44 (2009), 141–147.
Hernandez-Vazquez, A. de J., Garcia-Sanchez, J.A., Moreno-Arriola, E., Salvador-Adriano, A., Ortega-Cuellar, D., Velazquez-Arellano, A., Thiamine deprivation produces a liver ATP deficit and metabolic and genomic effects in mice: findings are parallel to those of biotin deficiency and have implications for energy disorders. J. Nutrigenet. Nutrigenomics 9 (2016), 287–299, 10.1159/000456663.
Hiromasa, Y., Fujisawa, T., Aso, Y., Roche, T.E., Organization of the cores of the mammalian pyruvate dehydrogenase complex formed by E2 and E2 plus the E3-binding protein and their capacities to bind the E1 and E3 components. J. Biol. Chem. 279 (2004), 6921–6933, 10.1074/jbc.M308172200.
Hofer, A., Marques, E., Kieliger, N., Gatter, S.-K.N., Jordi, S., Ferrari, E., Hofmann, M., Fitzpatrick, T.B., Hottiger, M.O., Jessen, H.J., Chemoselective dimerization of phosphates. Org. Lett. 18 (2016), 3222–3225, 10.1021/acs.orglett.6b01466.
Hofmann, M., Loubéry, S., Fitzpatrick, T.B., On the nature of thiamine triphosphate in Arabidopsis. Plant Direct, 4, 2020, e00258, 10.1002/pld3.258.
Ishii, K., Sarai, K., Sanemori, H., Kawasaki, T., Analysis of thiamine and its phosphate esters by high-performance liquid chromatography. Anal. Biochem. 97 (1979), 191–195.
Iwata, H., Matsuda, T., Tonomura, H., Improved high-performance liquid chromatographic determination of thiamine and its phosphate esters in animal tissues. J. Chromatogr. 450 (1988), 317–323.
Iwata, M., [Central nervous system diseases associated with alcoholism]. Nippon Rinsho 46 (1988), 1686–1690.
Jansen, B.C.P., Donath, W.F., On the isolation of anti-beriberi vitamin. Proc. K. Ned. Akad. Wet. 29 (1926), 1390–1400.
Jensen, O., Matthaei, J., Blome, F., Schwab, M., Tzvetkov, M.V., Brockmöller, J., Variability and heritability of thiamine pharmacokinetics with focus on OCT1 effects on membrane transport and pharmacokinetics in humans. Clin. Pharmacol. Ther., 2019, 10.1002/cpt.1666.
Johnson, C.R., Fischer, P.R., Thacher, T.D., Topazian, M.D., Bourassa, M.W., Combs, G.F., Thiamin deficiency in low- and middle-income countries: disorders, prevalences, previous interventions and current recommendations. Nutr. Health 25 (2019), 127–151, 10.1177/0260106019830847.
Johnson, L.R., Gubler, C.J., Studies on the physiological functions of thiamine. 3. The phosphorylation of thiamine in brain. Biochim. Biophys. Acta 156 (1968), 85–96.
Kämmerer, U., Gires, O., Pfetzer, N., Wiegering, A., Klement, R.J., Otto, C., TKTL1 expression in human malign and benign cell lines. BMC Cancer, 15, 2015, 2, 10.1186/1471-2407-15-2.
Kato, K., Mori, H., Kito, T., Yokochi, M., Ito, S., Inoue, K., Yonezawa, A., Katsura, T., Kumagai, Y., Yuasa, H., Moriyama, Y., Inui, K., Kusuhara, H., Sugiyama, Y., Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins. Pharm. Res. 31 (2014), 136–147.
Kato, K., Moriyama, C., Ito, N., Zhang, X., Hachiuma, K., Hagima, N., Iwata, K., Yamaguchi, J., Maeda, K., Ito, K., Suzuki, H., Sugiyama, Y., Kusuhara, H., Involvement of organic cation transporters in the clearance and milk secretion of thiamine in mice. Pharm. Res. 32 (2015), 2192–2204, 10.1007/s11095-014-1608-8.
Kelley, R.I., Robinson, D., Puffenberger, E.G., Strauss, K.A., Morton, D.H., Amish lethal microcephaly: a new metabolic disorder with severe congenital microcephaly and 2-ketoglutaric aciduria. Am. J. Med. Genet. 112 (2002), 318–326, 10.1002/ajmg.10529.
Kim, J., Jonus, H.C., Zastre, J.A., Bartlett, M.G., Development of an IPRP-LC-MS/MS method to determine the fate of intracellular thiamine in cancer cells. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 1124 (2019), 247–255, 10.1016/j.jchromb.2019.05.037.
Knyihar-Csillik, E., Bezzegh, A., Boti, S., Csillik, B., Thiamine monophosphatase: a genuine marker for transganglionic regulation of primary sensory neurons. J. Histochem. Cytochem. 34 (1986), 363–371.
Kochetov, G.A., Solovjeva, O.N., Structure and functioning mechanism of transketolase. Biochim. Biophys. Acta 1844 (2014), 1608–1618.
Koepsell, H., Organic cation transporters in health and disease. Pharmacol. Rev. 72 (2020), 253–319, 10.1124/pr.118.015578.
Kolas, I.K., Makarchikov, A.F., Identification of thiamine monophosphate hydrolyzing enzymes in chicken liver. Ukr.Biochem.J. 86 (2014), 39–49, 10.15407/ubj86.06.039.
Kolas, I.K., Yantsevich, A.V., Ivanchick, A.V., Shkel, T.V., Usanov, S.A., Makarchikov, A.F., Molecular identification of thiamine monophosphatase. Modern Problems of Biochemistry and Molecular Biology, 2018, Minfin DPC, Minsk, 233–239.
Kowalska, A., Figura, M., Zawadka, M., Koziorowski, D., Pyruvate dehydrogenase-E1α deficiency presenting as generalized dystonia: a genetic diagnosis with important clinical implications. Clin. Neurol. Neurosurg., 241, 2024, 108307, 10.1016/j.clineuro.2024.108307.
Labay, V., Raz, T., Baron, D., Mandel, H., Williams, H., Barrett, T., Szargel, R., McDonald, L., Shalata, A., Nosaka, K., Gregory, S., Cohen, N., Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat. Genet. 22 (1999), 300–304, 10.1038/10372.
Lakaye, B., Makarchikov, A.F., Antunes, A.F., Zorzi, W., Coumans, B., De Pauw, E., Wins, P., Grisar, T., Bettendorff, L., Molecular characterization of a specific thiamine triphosphatase widely expressed in mammalian tissues. J. Biol. Chem. 277 (2002), 13771–13777.
Lakaye, B., Wirtzfeld, B., Wins, P., Grisar, T., Bettendorff, L., Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation. J. Biol. Chem. 279 (2004), 17142–17147.
Leandro, J., Dodatko, T., Aten, J., Nemeria, N.S., Zhang, X., Jordan, F., Hendrickson, R.C., Sanchez, R., Yu, C., DeVita, R.J., Houten, S.M., DHTKD1 and OGDH display substrate overlap in cultured cells and form a hybrid 2-oxo acid dehydrogenase complex in vivo. Hum. Mol. Genet. 29 (2020), 1168–1179, 10.1093/hmg/ddaa037.
Leder, I.G., Thiamine, Biosynthesis and Function. 1975, Academic Press, New York.
Lee, J.S., Yoo, T., Lee, M., Lee, Y., Jeon, E., Kim, S.Y., Lim, B.C., Kim, K.J., Choi, M., Chae, J.-H., Genetic heterogeneity in Leigh syndrome: highlighting treatable and novel genetic causes. Clin. Genet. 97 (2020), 586–594, 10.1111/cge.13713.
Lemos, C., Faria, A., Meireles, M., Martel, F., Monteiro, R., Calhau, C., Thiamine is a substrate of organic cation transporters in Caco-2 cells. Eur. J. Pharmacol. 682 (2012), 37–42.
Li, Y., Yao, C.-F., Xu, F.-J., Qu, Y.-Y., Li, J.-T., Lin, Y., Cao, Z.-L., Lin, P.-C., Xu, W., Zhao, S.-M., Zhao, J.-Y., APC/CCDH1 synchronizes ribose-5-phosphate levels and DNA synthesis to cell cycle progression. Nat. Commun., 10, 2019, 2502, 10.1038/s41467-019-10375-x.
Liang, X., Chien, H.-C., Yee, S.W., Giacomini, M.M., Chen, E.C., Piao, M., Hao, J., Twelves, J., Lepist, E.-I., Ray, A.S., Giacomini, K.M., Metformin is a substrate and inhibitor of the human thiamine transporter, THTR-2 (SLC19A3). Mol. Pharm. 12 (2015), 4301–4310, 10.1021/acs.molpharmaceut.5b00501.
Lin, S.-J., Vona, B., Lau, T., Huang, K., Zaki, M.S., Aldeen, H.S., Karimiani, E.G., Rocca, C., Noureldeen, M.M., Saad, A.K., Petree, C., Bartolomaeus, T., Abou Jamra, R., Zifarelli, G., Gotkhindikar, A., Wentzensen, I.M., Liao, M., Cork, E.E., Varshney, P., Hashemi, N., Mohammadi, M.H., Rad, A., Neira, J., Toosi, M.B., Knopp, C., Kurth, I., Challman, T.D., Smith, R., Abdalla, A., Haaf, T., Suri, M., Joshi, M., Chung, W.K., Moreno-De-Luca, A., Houlden, H., Maroofian, R., Varshney, G.K., Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity. Genome Med., 15, 2023, 102, 10.1186/s13073-023-01258-4.
Lindhurst, M.J., Fiermonte, G., Song, S., Struys, E., De Leonardis, F., Schwartzberg, P.L., Chen, A., Castegna, A., Verhoeven, N., Mathews, C.K., Palmieri, F., Biesecker, L.G., Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 15927–15932.
Liu, J.Y., Timm, D.E., Hurley, T.D., Pyrithiamine as a substrate for thiamine pyrophosphokinase. J. Biol. Chem. 281 (2006), 6601–6607.
Lockman, P.R., Mumper, R.J., Allen, D.D., Evaluation of blood-brain barrier thiamine efflux using the in situ rat brain perfusion method. J. Neurochem. 86 (2003), 627–634.
Lohmann, K., Schuster, P., Untersuchungen über die Cocarboxylase. Biochem. Z., 294, 1937, 188.
Lu, J., Frank, E.L., Rapid HPLC measurement of thiamine and its phosphate esters in whole blood. Clin. Chem. 54 (2008), 901–906.
Maccari, R., Ottanà, R., Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents. J. Med. Chem. 55 (2012), 2–22, 10.1021/jm200607g.
Makarchikov, A.F., [The rate of molecular evolution of mammalian soluble thiamine triphosphatase]. Ukr. Biokhim. Zh. 81:1999 (2009), 26–42.
Makarchikov, A.F., Thiamine triphosphate hydrolysis in non-excitable tissues: purification and properties of thiamine triphosphatase from bovine kidney. J. Biochem. Mol. Biol. Biophys. 5 (2001), 75–82.
Makarchikov, A.F., Brans, A., Bettendorff, L., Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate. BMC Biochem., 8, 2007, 17.
Makarchikov, A.F., Chernikevich, I.P., Purification and characterization of thiamine triphosphatase from bovine brain. Biochim. Biophys. Acta 1117 (1992), 326–332.
Makarchikov, A.F., Kudyrka, T.G., Luchko, T.A., Yantsevich, A.V., Rusina, I.M., Makar, A.A., Kolas, I.K., Usanov, S.A., Synthesis, physico-chemical properties and effect of adenosine thiamine triphosphate on vitamin B1 metabolism in the liver of alloxan diabetic rats. Biochim. Biophys. Acta Gen. Subj., 1866, 2022, 130086, 10.1016/j.bbagen.2022.130086.
Makarchikov, A.F., Lakaye, B., Gulyai, I.E., Czerniecki, J., Coumans, B., Wins, P., Grisar, T., Bettendorff, L., Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals. Cell. Mol. Life Sci. 60 (2003), 1477–1488.
Mani, S., Chandak, G.R., Singh, K.K., Singh, R., Narasimha Rao, S., Novel p.P298L SURF1 mutation in thiamine deficient Leigh syndrome patients compromises cytochrome c oxidase activity. Mitochondrion, 2020, 10.1016/j.mito.2020.04.009.
Mann, R.H., Impaired thiamine metabolism in amyotrophic lateral sclerosis and its potential treatment with benfotiamine: a case report and a review of the literature. Cureus, 15, 2023, e40511, 10.7759/cureus.40511.
Mano, Y., Studies on enzymatic synthesis of cocarboxylase in animal tissue. III. Purification and properties of thiaminokinase from rat liver. J. Biochem. 47 (1960), 283–289.
Marcé-Grau, A., Martí-Sánchez, L., Baide-Mairena, H., Ortigoza-Escobar, J.D., Pérez-Dueñas, B., Genetic defects of thiamine transport and metabolism: a review of clinical phenotypes, genetics, and functional studies. J. Inherit. Metab. Dis. 42 (2019), 581–597, 10.1002/jimd.12125.
Mastrogiacomo, F., Bettendorff, L., Grisar, T., Kish, S.J., Brain thiamine, its phosphate esters, and its metabolizing enzymes in Alzheimer's disease. Ann. Neurol. 39 (1996), 585–591.
Mayr, J.A., Freisinger, P., Schlachter, K., Rolinski, B., Zimmermann, F.A., Scheffner, T., Haack, T.B., Koch, J., Ahting, U., Prokisch, H., Sperl, W., Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am. J. Hum. Genet. 89 (2011), 806–812.
McCandless, D.W., Thiamine Deficiency and Associated Clinical Disorders. first ed., 2010, Contemporary Clinical Neuroscience. Humana Press, a part of Springer Science+Business Media, LLC.
McGing, J.J., Radford, S.J., Francis, S.T., Serres, S., Greenhaff, P.L., Moran, G.W., Review article: the aetiology of fatigue in inflammatory bowel disease and potential therapeutic management strategies. Aliment. Pharmacol. Ther. 54 (2021), 368–387, 10.1111/apt.16465.
Menon, D., Nashi, S., Mohanty, M., Dubbal, R., Mk, F., Vengalil, S., Thomas, A., Kumar, V., Baskar, D., Arunachal, G., Nalini, A., A Novel DHTKD1 Gene Mutation with ALS like Presentation: a Case Report, vol. 25, 2024, Amyotroph Lateral Scler Frontotemporal Degener, 413–415, 10.1080/21678421.2023.2273366.
Meyer, M.J., Tuerkova, A., Römer, S., Wenzel, C., Seitz, T., Gaedcke, J., Oswald, S., Brockmöller, J., Zdrazil, B., Tzvetkov, M.V., Differences in metformin and thiamine uptake between human and mouse organic cation transporter OCT1:structural determinants and potential consequences for intrahepatic concentrations. Drug Metab. Dispos., 2020, 10.1124/dmd.120.000170.
Mezzar, S., De Schryver, E., Asselberghs, S., Meyhi, E., Morvay, P.L., Baes, M., Van Veldhoven, P.P., Phytol-induced pathology in 2-hydroxyacyl-CoA lyase (HACL1) deficient mice. Evidence for a second non-HACL1-related lyase. Biochim. Biophys. Acta 1862 (2017), 972–990, 10.1016/j.bbalip.2017.06.004.
Mitschke, L., Parthier, C., Schroder-Tittmann, K., Coy, J., Ludtke, S., Tittmann, K., The crystal structure of human transketolase and new insights into its mode of action. J. Biol. Chem. 285 (2010), 31559–31570.
Miyake, K., Yasujima, T., Takahashi, S., Yamashiro, T., Yuasa, H., Identification of the amino acid residues involved in the species-dependent differences in the pyridoxine transport function of SLC19A3. J. Biol. Chem., 298, 2022, 102161, 10.1016/j.jbc.2022.102161.
Miyoshi, K., Egi, Y., Shioda, T., Kawasaki, T., Evidence for in vivo synthesis of thiamin triphosphate by cytosolic adenylate kinase in chicken skeletal muscle. J. Biochem. 108 (1990), 267–270.
Mkrtchyan, G., Aleshin, V., Parkhomenko, Y., Kaehne, T., Luigi Di Salvo, M., Parroni, A., Contestabile, R., Vovk, A., Bettendorff, L., Bunik, V., Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis. Sci. Rep., 5, 2015, 12583, 10.1038/srep12583.
Möhler, M., Höfer, K., Jäschke, A., Synthesis of 5’-thiamine-capped RNA. Molecules, 25, 2020, e5492, 10.3390/molecules25235492.
Mohsen-Pour, N., Naderi, N., Ghasemi, S., Hesami, M., Maleki, M., Kalayinia, S., Whole-exome sequencing revealed a pathogenic nonsense variant in the SLC19A2 gene in an Iranian family with thiamine-responsive megaloblastic anemia. Lab. Med. 53 (2022), 640–650, 10.1093/labmed/lmac040.
Moseley, R.H., Vashi, P.G., Jarose, S.M., Dickinson, C.J., Permoad, P.A., Thiamine transport by basolateral rat liver plasma membrane vesicles. Gastroenterology 103 (1992), 1056–1065, 10.1016/0016-5085(92)90043-x.
Murata, T., Omata, N., Fujibayashi, Y., Waki, A., Sadato, N., Yoshimoto, M., Omori, M., Isaki, K., Yonekura, Y., Dynamic changes in glucose metabolism induced by thiamine deficiency and its replenishment as revealed by a positron autoradiography technique using rat living brain slices. J. Neurol. Sci. 164 (1999), 29–36.
Nabokina, S.M., Inoue, K., Subramanian, V.S., Valle, J.E., Yuasa, H., Said, H.M., Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter. J. Biol. Chem. 289 (2014), 4405–4416.
Nabokina, S.M., Said, H.M., A high-affinity and specific carrier-mediated mechanism for uptake of thiamine pyrophosphate by human colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 303 (2012), G389–G395.
Nagy, B., Polak, M., Ozohanics, O., Zambo, Z., Szabo, E., Hubert, A., Jordan, F., Novaček, J., Adam-Vizi, V., Ambrus, A., Structure of the dihydrolipoamide succinyltransferase (E2) component of the human alpha-ketoglutarate dehydrogenase complex (hKGDHc) revealed by cryo-EM and cross-linking mass spectrometry: implications for the overall hKGDHc structure. Biochim. Biophys. Acta Gen. Subj., 1865, 2021, 129889, 10.1016/j.bbagen.2021.129889.
Navarro, A., Sánchez Del Pino, M.J., Gómez, C., Peralta, J.L., Boveris, A., Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282 (2002), R985–R992, 10.1152/ajpregu.00537.2001.
Nemeria, N.S., Gerfen, G., Nareddy, P.R., Yang, L., Zhang, X., Szostak, M., Jordan, F., The mitochondrial 2-oxoadipate and 2-oxoglutarate dehydrogenase complexes share their E2 and E3 components for their function and both generate reactive oxygen species. Free Radic. Biol. Med. 115 (2018), 136–145, 10.1016/j.freeradbiomed.2017.11.018.
Nemeria, N.S., Nagy, B., Sanchez, R., Zhang, X., Leandro, J., Ambrus, A., Houten, S.M., Jordan, F., Functional versatility of the human 2-oxoadipate dehydrogenase in the L-lysine degradation pathway toward its non-cognate substrate 2-oxopimelic acid. Int. J. Mol. Sci., 23, 2022, 8213, 10.3390/ijms23158213.
Nishino, K., Itokawa, Y., Nishino, N., Piros, K., Cooper, J.R., Enzyme system involved in the synthesis of thiamin triphosphate. I. Purification and characterization of protein-bound thiamin diphosphate: ATP phosphoryltransferase. J. Biol. Chem. 258 (1983), 11871–11878.
Niu, H., Maruoka, M., Noguchi, Y., Kosako, H., Suzuki, J., Phospholipid scrambling induced by an ion channel/metabolite transporter complex. Nat. Commun., 15, 2024, 7566, 10.1038/s41467-024-51939-w.
Nosaka, K., Onozuka, M., Nishino, H., Nishimura, H., Kawasaki, Y., Ueyama, H., Molecular cloning and expression of a mouse thiamin pyrophosphokinase cDNA. J. Biol. Chem. 274 (1999), 34129–34133.
O'Brien, N.L., Quadri, G., Lightley, I., Sharp, S.I., Guerrini, I., Smith, I., Heydtmann, M., Morgan, M.Y., Thomson, A.D., Bass, N.J., McHugh, P.C., McQuillin, A., SLC19A1 genetic variation leads to altered thiamine diphosphate transport: implications for the risk of developing wernicke-korsakoff's syndrome. Alcohol Alcohol 57 (2022), 581–588, 10.1093/alcalc/agac032.
Ogawa, K., Sakai, M., Inomata, K., Recent findings on ultracytochemistry of thiamin phosphatases. Ann. N. Y. Acad. Sci. 378 (1982), 188–214.
Ohkubo, I., Ishibashi, T., Taniguchi, N., Makita, A., Purification and characterization of nucleoside diphosphatase from rat-liver microsomes. Evidence for metalloenzyme and glycoprotein. Eur. J. Biochem. 112 (1980), 111–118, 10.1111/j.1432-1033.1980.tb04992.x.
Oishi, K., Hirai, T., Gelb, B.D., Diaz, G.A., Slc19a2: cloning and characterization of the murine thiamin transporter cDNA and genomic sequence, the orthologue of the human TRMA gene. Mol. Genet. Metabol. 73 (2001), 149–159.
Onozuka, M., Nosaka, K., Steady-state kinetics and mutational studies of recombinant human thiamin pyrophosphokinase. J. Nutr. Sci. Vitaminol. 49 (2003), 156–162.
Oudman, E., Wijnia, J.W., Oey, M.J., van Dam, M., Postma, A., Wernicke-Korsakoff syndrome despite no alcohol abuse: a summary of systematic reports. J. Neurol. Sci., 426, 2021, 117482, 10.1016/j.jns.2021.117482.
Page, M.G., Ankoma-Sey, V., Coulson, W.F., Bender, D.A., Brain glutamate and gamma-aminobutyrate (GABA) metabolism in thiamine-deficient rats. Br. J. Nutr. 62 (1989), 245–253.
Palmieri, F., Scarcia, P., Monné, M., Diseases caused by mutations in mitochondrial carrier genes SLC25: a review. Biomolecules, 10, 2020, 655, 10.3390/biom10040655.
Pan, X., Gong, N., Zhao, J., Yu, Z., Gu, F., Chen, J., Sun, X., Zhao, L., Yu, M., Xu, Z., Dong, W., Qin, Y., Fei, G., Zhong, C., Xu, T.L., Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 133 (2010), 1342–1351.
Pan, X., Nan, X., Yang, L., Jiang, L., Xiong, B., Thiamine status, metabolism and application in dairy cows: a review. Br. J. Nutr. 120 (2018), 491–499, 10.1017/S0007114518001666.
Park, J., Hosomi, K., Kawashima, H., Chen, Y.-A., Mohsen, A., Ohno, H., Konishi, K., Tanisawa, K., Kifushi, M., Kogawa, M., Takeyama, H., Murakami, H., Kubota, T., Miyachi, M., Kunisawa, J., Mizuguchi, K., Dietary vitamin B1 intake influences gut microbial community and the consequent production of short-chain fatty acids. Nutrients, 14, 2022, 2078, 10.3390/nu14102078.
Park, L.C., Zhang, H., Gibson, G.E., Co-culture with astrocytes or microglia protects metabolically impaired neurons. Mech. Ageing Dev. 123 (2001), 21–27.
Patel, H., Nemeria, N.S., Andrews, F.H., McLeish, M.J., Jordan, F., Identification of charge transfer transitions related to thiamin-bound intermediates on enzymes provides a plethora of signatures useful in mechanistic studies. Biochemistry 53 (2014), 2145–2152.
Patel, K.P., O'Brien, T.W., Subramony, S.H., Shuster, J., Stacpoole, P.W., The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol. Genet. Metabol. 105 (2012), 34–43, 10.1016/j.ymgme.2011.09.032.
Patel, M.S., Korotchkina, L.G., Regulation of the pyruvate dehydrogenase complex. Biochem. Soc. Trans. 34 (2006), 217–222, 10.1042/BST20060217.
Pavlova, O., Stepanenko, S., Chehivska, L., Sambon, M., Bettendorff, L., Yu, P., Thiamine deficiency in rats affects thiamine metabolism possibly through the formation of oxidized thiamine pyrophosphate. Biochim. Biophys. Acta Gen. Subj., 2021, 129980, 10.1016/j.bbagen.2021.129980.
Pereira, M.J., Andersson‐Assarsson, J.C., Jacobson, P., Kamble, P., Taube, M., Sjöholm, K., Carlsson, L.M.S., Svensson, P., Human adipose tissue gene expression of solute carrier family 19 member 3 (SLC19A3); relation to obesity and weight‐loss. Obes. Sci. Pract. 8 (2021), 21–31, 10.1002/osp4.541.
Peters, R.A., The biochemical lesion in vitamin B1 deficiency. Application of modern biochemical analysis in its diagnosis. Lancet 1 (1936), 1161–1164.
Peterson, J.W., Gubler, C.J., Kuby, S.A., Partial purification and properties of thiamine pyrophosphokinase from pig brain. Biochim. Biophys. Acta 397 (1975), 377–394.
Prajapati, S., Rabe von Pappenheim, F., Tittmann, K., Frontiers in the enzymology of thiamin diphosphate-dependent enzymes. Curr. Opin. Struct. Biol., 76, 2022, 102441, 10.1016/j.sbi.2022.102441.
Probert, F., Gorlova, A., Deikin, A., Bettendorff, L., Veniaminova, E., Nedorubov, A., Chaprov, K.D., Ivanova, T.A., Anthony, D.C., Strekalova, T., In FUS[1−359]‐tg mice O,S-dibenzoyl thiamine reduces muscle atrophy, decreases glycogen synthase kinase 3 beta, and normalizes the metabolome. Biomed. Pharmacother., 156, 2022, 113986, 10.1016/j.biopha.2022.113986.
Quintero, I.B., Araujo, C.L., Pulkka, A.E., Wirkkala, R.S., Herrala, A.M., Eskelinen, E.-L., Jokitalo, E., Hellström, P.A., Tuominen, H.J., Hirvikoski, P.P., Vihko, P.T., Prostatic acid phosphatase is not a prostate specific target. Cancer Res. 67 (2007), 6549–6554, 10.1158/0008-5472.CAN-07-1651.
Rajgopal, A., Edmondnson, A., Goldman, I.D., Zhao, R., SLC19A3 encodes a second thiamine transporter ThTr2. Biochim. Biophys. Acta 1537 (2001), 175–178.
Ramamoorthy, K., Yoshimura, R., Al-Juburi, S., Anandam, K.Y., Kapadia, R., Alachkar, A., Abbott, G.W., Said, H.M., Alzheimer's disease is associated with disruption in thiamin transport physiology: a potential role for neuroinflammation. Neurobiol. Dis., 171, 2022, 105799, 10.1016/j.nbd.2022.105799.
Raugei, G., Ramponi, G., Chiarugi, P., Low molecular weight protein tyrosine phosphatases: small, but smart. Cell. Mol. Life Sci. 59 (2002), 941–949, 10.1007/s00018-002-8481-z.
Reed, L.J., A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes. J. Biol. Chem. 276 (2001), 38329–38336, 10.1074/jbc.R100026200.
Rindi, G., Comincioli, V., Reggiani, C., Patrini, C., Nervous tissue thiamine metabolism in vivo. II. Thiamine and its phosphoesters dynamics in different brain regions and sciatic nerve of the rat. Brain Res. 293 (1984), 329–342.
Rindi, G., De Giuseppe, L., Sciorelli, G., Thiamine monophosphate, a normal constituent of rat plasma. J. Nutr. 94 (1968), 447–454, 10.1093/jn/94.4.447.
Rindi, G., Patrini, C., Comincioli, V., Reggiani, C., Thiamine content and turnover rates of some rat nervous regions, using labeled thiamine as a tracer. Brain Res. 181 (1980), 369–380.
Rindi, G., Patrini, C., Poloni, M., Monophosphate, the only phosphoric ester of thiamin in the cerebro-spinal fluid. Experientia 37 (1981), 975–976.
Rossi-Fanelli, A., Siliprandi, N., Fasella, P., On the presence of the triphosphothiamine (TPT) in the liver. Science 116 (1952), 711–713.
Rostami, F.N., Sadeghi, H., Hashemi-Gorji, F., Fateh, S.T., Mirfakhraie, R., Karimzadeh, P., Davarpanah, M., Jamshidi, S., Madannejad, R., Moghimi, P., Ekrami, M., Miryounesi, M., Ghasemi, M.-R., Identification of novel mutations in TPK1 and SLC19A3 genes in families exhibiting thiamine metabolism dysfunction syndrome. Heliyon, 10, 2024, e27434, 10.1016/j.heliyon.2024.e27434.
Rüsch, C.T., Wortmann, S.B., Kovacs-Nagy, R., Grehten, P., Häberle, J., Latal, B., Stettner, G.M., Thiamine pyrophosphokinase deficiency due to mutations in the TPK1 gene: a rare, treatable neurodegenerative disorder. Neuropediatrics 52 (2021), 126–132, 10.1055/s-0040-1715628.
Sabui, S., Anthonymuthu, S., Ramamoorthy, K., Skupsky, J., Jennings, T.S.K., Rahmatpanah, F., Fleckenstein, J.M., Said, H.M., Effect of knocking out mouse Slc44a4 on colonic uptake of the microbiota-generated thiamine pyrophosphate and colon physiology. Am. J. Physiol. Gastrointest. Liver Physiol. 327 (2024), G36–G46, 10.1152/ajpgi.00065.2024.
Sahu, U., Villa, E., Reczek, C.R., Zhao, Z., O'Hara, B.P., Torno, M.D., Mishra, R., Shannon, W.D., Asara, J.M., Gao, P., Shilatifard, A., Chandel, N.S., Ben-Sahra, I., Pyrimidines maintain mitochondrial pyruvate oxidation to support de novo lipogenesis. Science 383 (2024), 1484–1492, 10.1126/science.adh2771.
Said, H.M., Balamurugan, K., Subramanian, V.S., Marchant, J.S., Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 286 (2004), G491–G498.
Said, H.M., Reidling, J.C., Ortiz, A., Cellular and molecular aspects of thiamin uptake by human liver cells: studies with cultured HepG2 cells. Biochim. Biophys. Acta 1567 (2002), 106–112.
Sako, S., Tsunogai, T., Oishi, K., Thiamine-responsive megaloblastic anemia syndrome. GeneReviews® [Internet], 2022, University of Washington, Seattle.
Sambon, M., Gorlova, A., Demelenne, A., Alhama-Riba, J., Coumans, B., Lakaye, B., Wins, P., Fillet, M., Anthony, D.C., Strekalova, T., Bettendorff, L., Dibenzoylthiamine has powerful antioxidant and anti-inflammatory properties in cultured cells and in mouse models of stress and neurodegeneration. Biomedicines, 8, 2020, 361, 10.3390/biomedicines8090361.
Sambon, M., Napp, A., Demelenne, A., Vignisse, J., Wins, P., Fillet, M., Bettendorff, L., Thiamine and benfotiamine protect neuroblastoma cells against paraquat and β-amyloid toxicity by a coenzyme-independent mechanism. Heliyon, 5, 2019, e01710, 10.1016/j.heliyon.2019.e01710.
Sambon, M., Pavlova, O., Alhama-Riba, J., Wins, P., Brans, A., Bettendorff, L., Product inhibition of mammalian thiamine pyrophosphokinase is an important mechanism for maintaining thiamine diphosphate homeostasis. Biochim. Biophys. Acta Gen. Subj., 1866, 2022, 130071, 10.1016/j.bbagen.2021.130071.
Samur, B.M., Gümüş, G., Canpolat, M., Gümüş, H., Per, H., Cağlayan, A.O., Clinical and genetic studies of thiamine metabolism dysfunction syndrome-4: case series and review of the literature. Clin. Dysmorphol. 31 (2022), 125–131, 10.1097/MCD.0000000000000411.
Sano, S., Matsuda, Y., Miyamoto, S., Nakagawa, H., Thiamine pyrophosphatase and nucleoside diphosphatase in rat brain. Biochem. Biophys. Res. Commun. 118 (1984), 292–298.
Sano, S., Matsuda, Y., Nakagawa, H., Thiamine pyrophosphatase (nucleoside diphosphatase) in the Golgi apparatus is distinct from microsomal nucleoside diphosphatase. J. Biochem. 103 (1988), 678–681.
Sarkar, S., Liachenko, S., Paule, M.G., Bowyer, J., Hanig, J.P., Brain endothelial dysfunction following pyrithiamine induced thiamine deficiency in the rat. Neurotoxicology 57 (2016), 298–309, 10.1016/j.neuro.2016.10.014.
Scharfe, C., Hauschild, M., Klopstock, T., Janssen, A.J., Heidemann, P.H., Meitinger, T., Jaksch, M., A novel mutation in the thiamine responsive megaloblastic anaemia gene SLC19A2 in a patient with deficiency of respiratory chain complex I. J. Med. Genet. 37 (2000), 674–679.
Schenk, G., Duggleby, R.G., Nixon, P.F., Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int. J. Biochem. Cell Biol. 30 (1998), 1297–1318, 10.1016/s1357-2725(98)00095-8.
Schneider, S., Lüdtke, S., Schröder-Tittmann, K., Wechsler, C., Meyer, D., Tittmann, K., A δ38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity. PLoS One, 7, 2012, e48321, 10.1371/journal.pone.0048321.
Schrijver, J., Dias, T., Hommes, F.A., Studies on ATP: thiamine diphosphate phosphotransferase activity in rat brain. Neurochem. Res. 3 (1978), 699–709.
Sherrill, J.D., Kc, K., Wang, X., Wen, T., Chamberlin, A., Stucke, E.M., Collins, M.H., Abonia, J.P., Peng, Y., Wu, Q., Putnam, P.E., Dexheimer, P.J., Aronow, B.J., Kottyan, L.C., Kaufman, K.M., Harley, J.B., Huang, T., Rothenberg, M.E., Whole-exome sequencing uncovers oxidoreductases DHTKD1 and OGDHL as linkers between mitochondrial dysfunction and eosinophilic esophagitis [WWW Document]. https://doi.org/10.1172/jci.insight.99922, 2018.
Shioda, T., Egi, Y., Yamada, K., Kawasaki, T., Properties of thiamin triphosphate-synthesizing activity of chicken cytosolic adenylate kinase and the effect of adenine nucleotides. Biochim. Biophys. Acta 1115 (1991), 30–35.
Smith, H., McCoy, M., Varughese, K., Reinert, J.P., Thiamine dosing for the treatment of alcohol-induced Wernicke's encephalopathy: a review of the literature. J. Pharm. Technol. 37 (2021), 107–113, 10.1177/8755122520962859.
Song, J., Bettendorff, L., Tonelli, M., Markley, J.L., Structural basis for the catalytic mechanism of mammalian 25-kDa thiamine triphosphatase. J. Biol. Chem. 283 (2008), 10939–10948.
Sperl, W., Fleuren, L., Freisinger, P., Haack, T.B., Ribes, A., Feichtinger, R.G., Rodenburg, R.J., Zimmermann, F.A., Koch, J., Rivera, I., Prokisch, H., Smeitink, J.A., Mayr, J.A., The spectrum of pyruvate oxidation defects in the diagnosis of mitochondrial disorders. J. Inherit. Metab. Dis. 38 (2015), 391–403, 10.1007/s10545-014-9787-3.
Sriram, K., Manzanares, W., Joseph, K., Thiamine in nutrition therapy. Nutr. Clin. Pract. 27 (2012), 41–50.
Szabo, E., Nagy, B., Czajlik, A., Komlodi, T., Ozohanics, O., Tretter, L., Ambrus, A., Mitochondrial alpha-keto acid dehydrogenase complexes: recent developments on structure and function in health and disease. Subcell. Biochem. 104 (2024), 295–381, 10.1007/978-3-031-58843-3_13.
Szyniarowski, P., Lakaye, B., Czerniecki, J., Makarchikov, A.F., Wins, P., Margineanu, I., Coumans, B., Grisar, T., Bettendorff, L., Pig tissues express a catalytically inefficient 25-kDa thiamine triphosphatase: insight in the catalytic mechanisms of this enzyme. Biochim. Biophys. Acta 1725 (2005), 93–102.
Tabarki, B., Alfadhel, M., AlShahwan, S., Hundallah, K., AlShafi, S., AlHashem, A., Treatment of biotin-responsive basal ganglia disease: open comparative study between the combination of biotin plus thiamine versus thiamine alone. Eur. J. Paediatr. Neurol. 19 (2015), 547–552, 10.1016/j.ejpn.2015.05.008.
Tabarki, B., Al-Hashem, A., Alfadhel, M., Biotin-thiamine-responsive basal ganglia disease. GeneReviews® [Internet], 2020, University of Washington, Seattle.
Tanaka, T., Yamamoto, D., Sato, T., Tanaka, S., Usui, K., Manabe, M., Aoki, Y., Iwashima, Y., Saito, Y., Mino, Y., Deguchi, H., Adenosine thiamine triphosphate (AThTP) inhibits poly(ADP-ribose) polymerase-1 (PARP-1) activity. J. Nutr. Sci. Vitaminol. 57 (2011), 192–196.
Tapias, V., González-Andrés, P., Peña, L.F., Barbero, A., Núñez, L., Villalobos, C., Therapeutic potential of heterocyclic compounds targeting mitochondrial calcium homeostasis and signaling in Alzheimer's disease and Parkinson's disease. Antioxidants, 12, 2023, 1282, 10.3390/antiox12061282.
Tapias, V., Jainuddin, S., Ahuja, M., Stack, C., Elipenahli, C., Vignisse, J., Gerges, M., Starkova, N., Xu, H., Starkov, A.A., Bettendorff, L., Hushpulian, D.M., Smirnova, N.A., Gazaryan, I.G., Kaidery, N.A., Wakade, S., Calingasan, N.Y., Thomas, B., Gibson, G.E., Dumont, M., Beal, M.F., Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Hum. Mol. Genet. 27 (2018), 2874–2892, 10.1093/hmg/ddy201.
Timm, D.E., Liu, J.Y., Baker, L.J., Harris, R.A., Crystal structure of thiamin pyrophosphokinase. J. Mol. Biol. 310 (2001), 195–204.
Tretter, L., Adam-Vizi, V., Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360 (2005), 2335–2345.
Tylicki, A., Bunik, V.I., Strumiło, S., [2-Oxoglutarate dehydrogenase complex and its multipoint control]. Postepy Biochem. 57 (2011), 304–313.
Valle, M.L., Anderson, Y.T., Grimsey, N., Zastre, J., Thiamine insufficiency induces Hypoxia Inducible Factor-1α as an upstream mediator for neurotoxicity and AD-like pathology. Mol. Cell. Neurosci., 123, 2022, 103785, 10.1016/j.mcn.2022.103785.
Velluz, L., Amiard, G., Bartos, J., Acide thiamine-triphosphorique. C. R. Acad. Sci. 226 (1948), 735–736.
Vernau, K., Napoli, E., Wong, S., Ross-Inta, C., Cameron, J., Bannasch, D., Bollen, A., Dickinson, P., Giulivi, C., Thiamine deficiency-mediated brain mitochondrial pathology in alaskan huskies with mutation in SLC19A3.1. Brain Pathol. 25 (2015), 441–452, 10.1111/bpa.12188.
Verstraete, J., Strobbe, S., Van Der Straeten, D., Stove, C., The first comprehensive LC-MS/MS method allowing dissection of the thiamine pathway in plants. Anal. Chem. 92 (2020), 4073–4081, 10.1021/acs.analchem.9b05717.
Vetreno, R.P., Hall, J.M., Savage, L.M., Alcohol-related amnesia and dementia: animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiol. Learn. Mem. 96 (2011), 596–608.
Vignisse, J., Sambon, M., Gorlova, A., Pavlov, D., Caron, N., Malgrange, B., Shevtsova, E., Svistunov, A., Anthony, D.C., Markova, N., Bazhenova, N., Coumans, B., Lakaye, B., Wins, P., Strekalova, T., Bettendorff, L., Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels. Mol. Cell. Neurosci. 82 (2017), 126–136, 10.1016/j.mcn.2017.05.005.
Vinogradov, V.V., Stress and Pathology. 2007, Belorusskaya Nauka, Minsk.
Volvert, M.L., Seyen, S., Piette, M., Evrard, B., Gangolf, M., Plumier, J.C., Bettendorff, L., Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol., 8, 2008, 10.
Voskoboev, A.I., Chernikevich, I.P., Biosynthesis, Degradation and Transport of Thiamine Phosphate Esters. 1987, Nauka I Tekhnika, Minsk.
Voskoboev, A.I., Chernikevich, I.P., Biosynthesis of thiamine triphosphate and identification of thiamine diphosphate-binding protein of rat liver hyaloplasm. Biokhimiya 50 (1985), 1421–1427.
Voskoboyev, A.I., Ostrovsky, Y.M., Thiamin pyrophosphokinase: structure, properties, and role in thiamin metabolism. Ann. N. Y. Acad. Sci. 378 (1982), 161–176.
Vovk, A.I., Babiĭ, L.V., Murav'eva, I.V., [Relative reactivity of thiamine monophosphate and thiamine diphosphate upon interaction with alkaline phosphatase]. Ukr. Biokhim. Zh. 74 (2002), 93–96.
Wade, F., Quijada, P., Al-Haffar, K.M.A., Awad, S.M., Kunhi, M., Toko, H., Marashly, Q., Belhaj, K., Zahid, I., Al-Mohanna, F., Stanford, S.M., Alvarez, R., Liu, Y., Colak, D., Jordan, M.C., Roos, K.P., Assiri, A., Al-Habeeb, W., Sussman, M., Bottini, N., Poizat, C., Deletion of low molecular weight protein tyrosine phosphatase (Acp1) protects against stress-induced cardiomyopathy. J. Pathol. 237 (2015), 482–494, 10.1002/path.4594.
Wang, C., Calcutt, M.W., Ferguson, J.F., Knock-out of DHTKD1 alters mitochondrial respiration and function, and may represent a novel pathway in cardiometabolic disease risk. Front. Endocrinol., 12, 2021, 710698, 10.3389/fendo.2021.710698.
Wang, C., Fei, G., Pan, X., Sang, S., Wang, L., Zhong, C., Jin, L., High thiamine diphosphate level as a protective factor for Alzheimer's disease. Neurol. Res., 2018, 1–8, 10.1080/01616412.2018.1460704.
Wang, K., Han, C., Yang, J., Xu, W., Wang, L., Li, H., Wang, Y., Benfotiamine protects MPTP-induced Parkinson's disease mouse model via activating Nrf2 signaling pathway. PLoS One, 19, 2024, e0307012, 10.1371/journal.pone.0307012.
Whitfield, K.C., Bourassa, M.W., Adamolekun, B., Bergeron, G., Bettendorff, L., Brown, K.H., Cox, L., Fattal-Valevski, A., Fischer, P.R., Frank, E.L., Hiffler, L., Hlaing, L.M., Jefferds, M.E., Kapner, H., Kounnavong, S., Mousavi, M.P.S., Roth, D.E., Tsaloglou, M.-N., Wieringa, F., Combs, G.F., Thiamine deficiency disorders: diagnosis, prevalence, and a roadmap for global control programs. Ann. N. Y. Acad. Sci. 1430 (2018), 3–43, 10.1111/nyas.13919.
Williams, R.R., The chemistry and biological significance of thiamin. Science 87 (1938), 559–563, 10.1126/science.87.2269.559.
Williams, R.R., Cline, J.K., Synthesis of vitamin B1. J. Am. Chem. Soc. 58 (1936), 1504–1505.
Wu, H.H.L., McDonnell, T., Chinnadurai, R., Physiological associations between vitamin B deficiency and diabetic kidney disease. Biomedicines, 11, 2023, 1153, 10.3390/biomedicines11041153.
Wynn, R.M., Li, J., Brautigam, C.A., Chuang, J.L., Chuang, D.T., Structural and biochemical characterization of human mitochondrial branched-chain α-ketoacid dehydrogenase phosphatase. J. Biol. Chem. 287 (2012), 9178–9192, 10.1074/jbc.M111.314963.
Xia, Y., Qian, T., Fei, G., Cheng, X., Zhao, L., Sang, S., Zhong, C., Low expression of thiamine pyrophosphokinase-1 contributes to brain susceptibility to thiamine deficiency. Neuroreport, 2024, 10.1097/WNR.0000000000002094.
Xu, W., Gu, M., Sun, L., Guo, W., Zhu, H., Ma, J., Yuan, W., Kuang, Y., Ji, B., Wu, X., Chen, Y., Zhang, H., Sun, F., Huang, W., Huang, L., Chen, S., Wang, Z., A nonsense mutation in DHTKD1 causes charcot-marie-tooth disease type 2 in a large Chinese pedigree. Am. J. Hum. Genet. 91 (2012), 1088–1094, 10.1016/j.ajhg.2012.09.018.
Yamashiro, T., Yasujima, T., Said, H.M., Yuasa, H., pH-dependent pyridoxine transport by SLC19A2 and SLC19A3: implications for absorption in acidic microclimates. J. Biol. Chem., 2020, 10.1074/jbc.RA120.013610.
Yamashiro, T., Yasujima, T., Yuasa, H., Animal species differences in the pyridoxine transport function of SLC19A3: absence of Slc19a3-mediated pyridoxine uptake in the rat small intestine. Drug Metabol. Pharmacokinet., 44, 2022, 100456, 10.1016/j.dmpk.2022.100456.
Yamazaki, M., Hayaishi, O., Allosteric properties of nucleoside diphosphatase and its identity with thiamine pyrophosphatase. J. Biol. Chem. 243 (1968), 2934–2942.
Zambuzzi, W.F., Granjeiro, J.M., Parikh, K., Yuvaraj, S., Peppelenbosch, M.P., Ferreira, C.V., Modulation of Src activity by low molecular weight protein tyrosine phosphatase during osteoblast differentiation. Cell. Physiol. Biochem. 22 (2008), 497–506, 10.1159/000185506.
Zdanowicz, R., Afanasyev, P., Pruška, A., Harrison, J.A., Giese, C., Boehringer, D., Leitner, A., Zenobi, R., Glockshuber, R., Stoichiometry and architecture of the human pyruvate dehydrogenase complex. Sci. Adv., 10, 2024, eadn4582, 10.1126/sciadv.adn4582.
Zeng, W.Q., Al-Yamani, E., Acierno, J.S. Jr., Slaugenhaupt, S., Gillis, T., MacDonald, M.E., Ozand, P.T., Gusella, J.F., Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am. J. Hum. Genet. 77 (2005), 16–26.
Zeng, Y.C., Sobti, M., Quinn, A., Smith, N.J., Brown, S.H.J., Vandenberg, J.I., Ryan, R.M., O'Mara, M.L., Stewart, A.G., Structural basis of promiscuous substrate transport by Organic Cation Transporter 1. Nat. Commun., 14, 2023, 6374, 10.1038/s41467-023-42086-9.
Zhang, K., Huentelman, M.J., Rao, F., Sun, E.I., Corneveaux, J.J., Schork, A.J., Wei, Z., Waalen, J., Miramontes-Gonzalez, J.P., Hightower, C.M., Maihofer, A.X., Mahata, M., Pastinen, T., Ehret, G.B., International Consortium for Blood Pressure Genome-Wide Association. S, Schork, N.J., Eskin, E., Nievergelt, C.M., Saier, M.H. Jr., O'Connor, D.T., Genetic implication of a novel thiamine transporter in human hypertension. J. Am. Coll. Cardiol. 63 (2014), 1542–1555.
Zhang, Y., Chen, M., Chen, X., Zhang, M., Yin, J., Yang, Z., Gao, X., Zhang, S., Yang, M., Molecular architecture of the mammalian 2-oxoglutarate dehydrogenase complex. Nat. Commun., 15, 2024, 8407, 10.1038/s41467-024-52792-7.
Zhao, D., Liu, M., Jiang, H., Song, T., Xu, C., Duan, X., Duan, R., Xu, H., Liu, Z., Fang, F., Thiamine pyrophosphokinase deficiency: report of two Chinese cases and a literature review. Front Pediatr, 11, 2023, 1173787, 10.3389/fped.2023.1173787.
Zhao, R., Gao, F., Goldman, I.D., Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells. Am. J. Physiol. Cell Physiol. 282 (2002), C1512–C1517.
Zhao, R., Gao, F., Wang, Y., Diaz, G.A., Gelb, B.D., Goldman, I.D., Impact of the reduced folate carrier on the accumulation of active thiamin metabolites in murine leukemia cells. J. Biol. Chem. 276 (2001), 1114–1118.
Zhao, R., Goldman, I.D., Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol. Aspect. Med. 34 (2013), 373–385, 10.1016/j.mam.2012.07.006.
Zimmermann, H., Zebisch, M., Sträter, N., Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 8 (2012), 437–502, 10.1007/s11302-012-9309-4.
Zoremba, N., Homola, A., Rossaint, R., Syková, E., Interstitial lactate, lactate/pyruvate and glucose in rat muscle before, during and in the recovery from global hypoxia. Acta Vet. Scand., 56, 2014, 72, 10.1186/s13028-014-0072-0.
Zylka, M.J., Sowa, N.A., Taylor-Blake, B., Twomey, M.A., Herrala, A., Voikar, V., Vihko, P., Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60 (2008), 111–122.