[en] [en] UNLABELLED: The mechanisms underlying metabolic adaptation of pancreatic ductal adenocarcinoma (PDA) cells to pharmacologic inhibition of RAS-MAPK signaling are largely unknown. Using transcriptome and chromatin immunoprecipitation profiling of PDA cells treated with the MEK inhibitor (MEKi) trametinib, we identify transcriptional antagonism between c-MYC and the master transcription factors for lysosome gene expression, the MiT/TFE proteins. Under baseline conditions, c-MYC and MiT/TFE factors compete for binding to lysosome gene promoters to fine-tune gene expression. Treatment of PDA cells or patient organoids with MEKi leads to c-MYC downregulation and increased MiT/TFE-dependent lysosome biogenesis. Quantitative proteomics of immunopurified lysosomes uncovered reliance on ferritinophagy, the selective degradation of the iron storage complex ferritin, in MEKi-treated cells. Ferritinophagy promotes mitochondrial iron-sulfur cluster protein synthesis and enhanced mitochondrial respiration. Accordingly, suppressing iron utilization sensitizes PDA cells to MEKi, highlighting a critical and targetable reliance on lysosome-dependent iron supply during adaptation to KRAS-MAPK inhibition.
SIGNIFICANCE: Reduced c-MYC levels following MAPK pathway suppression facilitate the upregulation of autophagy and lysosome biogenesis. Increased autophagy-lysosome activity is required for increased ferritinophagy-mediated iron supply, which supports mitochondrial respiration under therapy stress. Disruption of ferritinophagy synergizes with KRAS-MAPK inhibition and blocks PDA growth, thus highlighting a key targetable metabolic dependency. See related commentary by Jain and Amaravadi, p. 2023. See related article by Santana-Codina et al., p. 2180. This article is highlighted in the In This Issue feature, p. 2007.
Disciplines :
Oncology
Author, co-author :
Ravichandran, Mirunalini ; Department of Anatomy, University of California, San Francisco, San Francisco, California ; Department of Pathology, University of California, San Francisco, San Francisco, California
Hu, Jingjie ; Department of Anatomy, University of California, San Francisco, San Francisco, California ; Department of Pathology, University of California, San Francisco, San Francisco, California
Cai, Charles ; Department of Neurology, Institute for Human Genetics, University of California, San Francisco, San Francisco, California
Ward, Nathan P ; Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida
Venida, Anthony ; Department of Anatomy, University of California, San Francisco, San Francisco, California ; Department of Pathology, University of California, San Francisco, San Francisco, California
Foakes, Callum ; Department of Anatomy, University of California, San Francisco, San Francisco, California ; Department of Pathology, University of California, San Francisco, San Francisco, California
Kuljanin, Miljan ; Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
Yang, Annan ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
Hennessey, Connor J ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
Yang, Yang ; Department of Anatomy, University of California, San Francisco, San Francisco, California ; Department of Pathology, University of California, San Francisco, San Francisco, California
Desousa, Brandon R ; Department of Biochemistry, University of California, San Francisco, San Francisco, California ; Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, California
Rademaker, Gilles ; Department of Anatomy, University of California, San Francisco, San Francisco, California ; Department of Pathology, University of California, San Francisco, San Francisco, California
Staes, Annelot A L ; Department of Anatomy, University of California, San Francisco, San Francisco, California ; Department of Pathology, University of California, San Francisco, San Francisco, California
Cakir, Zeynep ; Department of Anatomy, University of California, San Francisco, San Francisco, California ; Department of Pathology, University of California, San Francisco, San Francisco, California
Jain, Isha H ; Department of Biochemistry, University of California, San Francisco, San Francisco, California ; Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, California
Aguirre, Andrew J ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
Mancias, Joseph D ; Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
Shen, Yin ; Department of Neurology, Institute for Human Genetics, University of California, San Francisco, San Francisco, California
DeNicola, Gina M ; Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida
Perera, Rushika M ; Department of Anatomy, University of California, San Francisco, San Francisco, California ; Department of Pathology, University of California, San Francisco, San Francisco, California ; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
Coordinated Transcriptional and Catabolic Programs Support Iron-Dependent Adaptation to RAS-MAPK Pathway Inhibition in Pancreatic Cancer.
Publication date :
02 September 2022
Journal title :
Cancer Discovery
ISSN :
2159-8274
eISSN :
2159-8290
Publisher :
American Association for Cancer Research Inc., United States
Volume :
12
Issue :
9
Pages :
2198 - 2219
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NIH. NCI - National Institutes of Health. National Cancer Institute
Funding text :
This work was supported by NCI grants R01CA240603 and R01CA260249, a Damon Runyon-Rachleff Innovation Award, NIH Director\u2019s New Innovator Award (DP2CA216364), the Shorenstein Fund, the Helen Diller Family Comprehensive Cancer Center, and the Ed Marra Passion to Win Fund (to R.M. Perera); NCI grant R37CA230042 (to G.M. DeNicola); and the Lustgarten Foundation, Dana-Farber Cancer Institute Hale Family Center for Pancreatic Cancer Research, the Doris Duke Charitable Foundation, the Pancreatic Cancer Action Network, and NIH/NCI K08 CA21842002 and P50CA127003 (to A.J. Aguirre). We thank Hani Goodarzi and Sohit Miglani for advice on ChIP-seq analysis as well as Suprit Gupta and Grace Hernandez for technical assistance. We thank Lenka Maliskova and Walter L. Eckalbar from the UCSF Genomics CoLab for assistance with RNA-seq and ChIP-seq library preparations.
Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov 2020; 19:533–52.
Papke B, Der CJ. Drugging RAS: know the enemy. Science 2017;355: 1158–63.
Collins MA, Bednar F, Zhang Y, Brisset JC, Galban S, Galban CJ, et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 2012;122:639–53.
Collisson EA, Trejo CL, Silva JM, Gu S, Korkola JE, Heiser LM, et al. A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov 2012;2:685–93.
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012;149:656–70.
Kun E, Tsang YTM, Ng CW, Gershenson DM, Wong KK. MEK inhibi-tor resistance mechanisms and recent developments in combination trials. Cancer Treat Rev 2021;92:102137.
Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat Med 2013;19:1401–9.
Xue JY, Zhao Y, Aronowitz J, Mai TT, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 2020;577:421–5.
Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab 2017;25:1037–43.
Perera RM, Bardeesy N. Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov 2015;5:1247–61.
Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med 2019;25:628–40.
Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med 2019;25:620–7.
Lee CS, Lee LC, Yuan TL, Chakka S, Fellmann C, Lowe SW, et al. MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proc Natl Acad Sci U S A 2019;116:4508–17.
Mele L, Del Vecchio V, Liccardo D, Prisco C, Schwerdtfeger M, Robinson N, et al. The role of autophagy in resistance to targeted therapies. Cancer Treat Rev 2020;88:102043.
Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014;514:628–32.
Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 2015;524:361–5.
Perera RM, Di Malta C, Ballabio A. MiT/TFE family of transcription factors, lysosomes, and cancer. Annu Rev Cancer Biol 2019;3:203–22.
Martina JA, Diab HI, Lishu L, Jeong AL, Patange S, Raben N, et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 2014;7:ra9.
Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011;20:3852–66.
Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science 2009;325:473–7.
Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011; 332:1429–33.
Santana-Codina N, Chandhoke AS, Yu Q, Malachowska B, Kuljanin M, Gikandi A, et al. Defining and targeting adaptations to oncogenic KRAS(G12C) inhibition using quantitative temporal proteomics. Cell Rep 2020;30:4584–99e4.
Zeng M, Lu J, Li L, Feru F, Quan C, Gero TW, et al. Potent and selective covalent quinazoline inhibitors of KRAS G12C. Cell Chem Biol 2017;24:1005–16.
Dang CV. MYC on the path to cancer. Cell 2012;149:22–35.
Hessmann E, Schneider G, Ellenrieder V, Siveke JT. MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies. Oncogene 2016;35:1609–18.
Skoudy A, Hernandez-Munoz I, Navarro P. Pancreatic ductal adeno-carcinoma and transcription factors: role of c-Myc. J Gastrointest Cancer 2011;42:76–84.
Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020;21:607–32.
Farrell AS, Sears RC. MYC degradation. Cold Spring Harb Perspect Med 2014;4:a014365.
Hayes TK, Neel NF, Hu C, Gautam P, Chenard M, Long B, et al. Long-term ERK inhibition in KRAS-mutant pancreatic cancer is associated with MYC degradation and senescence-like growth suppression. Cancer Cell 2016;29:75–89.
Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein sta-bility. Genes Dev 2000;14:2501–14.
Halazonetis TD, Kandil AN. Determination of the c-MYC DNA-binding site. Proc Natl Acad Sci U S A 1991;88:6162–6.
Annunziata I, van de Vlekkert D, Wolf E, Finkelstein D, Neale G, Machado E, et al. MYC competes with MiT/TFE in regulating lyso-somal biogenesis and autophagy through an epigenetic rheostat. Nat Commun 2019;10:3623.
Gupta S, Yano J, Mercier V, Htwe HH, Shin HR, Rademaker G, et al. Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth. Nat Cell Biol 2021;23:232–42.
Plays M, Muller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics 2021;13:mfab021.
Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 2014;16:1069–79.
Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014;509:105–9.
Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell 2017;168:344–61.
Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L. Mechanisms of mammalian iron homeostasis. Biochemistry 2012;51:5705–24.
Puig S, Ramos-Alonso L, Romero AM, Martinez-Pastor MT. The ele-mental role of iron in DNA synthesis and repair. Metallomics 2017; 9:1483–500.
Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 2008;455:992–6.
Touret N, Furuya W, Forbes J, Gros P, Grinstein S. Dynamic traffic through the recycling compartment couples the metal transporter Nramp2 (DMT1) with the transferrin receptor. J Biol Chem 2003; 278:25548–57.
Weber RA, Yen FS, Nicholson SPV, Alwaseem H, Bayraktar EC, Alam M, et al. Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation. Mol Cell 2020;77:645–55e7.
Yambire KF, Rostosky C, Watanabe T, Pacheu-Grau D, Torres-Odio S, Sanchez-Guerrero A, et al. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. Elife 2019;8:e51031.
Jiang H, Muir RK, Gonciarz RL, Olshen AB, Yeh I, Hann BC, et al. Ferrous iron-activatable drug conjugate achieves potent MAPK blockade in KRAS-driven tumors. J Exp Med 2022;219:e20210739.
Torti SV, Torti FM. Iron and cancer: 2020 vision. Cancer Res 2020; 80:5435–48.
Wu KJ, Polack A, Dalla-Favera R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 1999;283: 676–9.
Stehling O, Lill R. The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol 2013;5:a011312.
den Brave F, Becker T. Supercomplex formation boosts respiration. EMBO Rep 2020;21:e51830.
Wagner S, Vlachogiannis G, De Haven Brandon A, Valenti M, Box G, Jenkins L, et al. Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer. Oncogene 2019;38:1717–33.
Ruscetti M, Leibold J, Bott MJ, Fennell M, Kulick A, Salgado NR, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 2018;362:1416–22.
Kimmelman AC. Metabolic dependencies in RAS-driven cancers. Clin Cancer Res 2015;21:1828–34.
Hemesath TJ, Steingrimsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA, et al. Microphthalmia, a critical factor in melano-cyte development, defines a discrete transcription factor family. Genes Dev 1994;8:2770–80.
Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabo-lism, and cancer. Cancer Discov 2015;5:1024–39.
Yun S, Vincelette ND, Yu X, Watson GW, Fernandez MR, Yang C, et al. TFEB links MYC signaling to epigenetic control of myeloid differentiation and acute myeloid leukemia. Blood Cancer Discov 2021;2:162–85.
Garcia-Prat L, Kaufmann KB, Schneiter F, Voisin V, Murison A, Chen J, et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 2021;28:1838–50e10.
Das A, Nag S, Mason AB, Barroso MM. Endosome-mitochondria interactions are modulated by iron release from transferrin. J Cell Biol 2016;214:831–45.
Shin HR, Zoncu R. The lysosome at the intersection of cellular growth and destruction. Dev Cell 2020;54:226–38.
Thelen AM, Zoncu R. Emerging roles for the lysosome in lipid metabolism. Trends Cell Biol 2017;27:833–50.
Lim CY, Zoncu R. The lysosome as a command-and-control center for cellular metabolism. J Cell Biol 2016;214:653–64.
Perera RM, Zoncu R. The lysosome as a regulatory hub. Annu Rev Cell Dev Biol 2016;32:223–53.
Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol 2015;77:57–80.
Adams CR, Htwe HH, Marsh T, Wang AL, Montoya ML, Subbaraj L, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. Elife 2019;8:e45313.
Lim CY, Davis OB, Shin HR, Zhang J, Berdan CA, Jiang X, et al. ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat Cell Biol 2019;21:1206–18.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29: 15–21.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545–50.
Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, et al. Gencode 2021. Nucleic Acids Res 2021;49:D916–D23.
Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 2016;44:W160–5.
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res 2002;12: 996–1006.
McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 2014;86:7150–8.
Schweppe DK, Eng JK, Yu Q, Bailey D, Rad R, Navarrete-Perea J, et al. Full-featured, real-time database searching platform enables fast and accurate multiplexed quantitative proteomics. J Proteome Res 2020;19:2026–34.
Eng JK, Hoopmann MR, Jahan TA, Egertson JD, Noble WS, MacCoss MJ. A deeper look into Comet—implementation and features. J Am Soc Mass Spectrom 2015;26:1865–74.
Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 2010;143:1174–89.
Acin-Perez R, Benador IY, Petcherski A, Veliova M, Benavides GA, Lagarrigue S, et al. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J 2020;39:e104073.
Salabei JK, Gibb AA, Hill BG. Comprehensive measurement of respir-atory activity in permeabilized cells using extracellular flux analysis. Nat Protoc 2014;9:421–38.
Tiriac H, Bucobo JC, Tzimas D, Grewel S, Lacomb JF, Rowehl LM, et al. Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment. Gastrointest Endosc 2018;87:1474–80.