[en] Oncogenic protein dosage is tightly regulated to enable cancer formation but how this is regulated by translational control remains unknown. The Myc oncogene is a paradigm of an exquisitely regulated oncogene and a driver of pancreatic ductal adenocarcinoma (PDAC). Here we use a CRISPR interference screen in PDAC cells to identify activators of selective MYC translation. The top hit, the RNA-binding protein RBM42, is highly expressed in PDAC and predicts poor survival. We show that RBM42 binds and selectively regulates the translation of MYC and a precise suite of pro-oncogenic transcripts, including JUN and EGFR. Mechanistically, we find that RBM42 binds and remodels the MYC 5' untranslated region structure, facilitating the formation of the translation pre-initiation complex. Importantly, RBM42 is necessary for PDAC tumorigenesis in a Myc-dependent manner in vivo. This work transforms the understanding of the translational code in cancer and illuminates therapeutic openings to target the expression of oncogenes.
Disciplines :
Oncology
Author, co-author :
Kovalski, Joanna R ; Department of Urology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
Sarioglu, Goksu ; Department of Urology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
Subramanyam, Vishvak; Department of Urology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA ; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
Hernandez, Grace; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA ; Department of Anatomy, University of California San Francisco, San Francisco, CA, USA ; Department of Pathology, University of California San Francisco, San Francisco, CA, USA
Rademaker, Gilles ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA ; Department of Anatomy, University of California San Francisco, San Francisco, CA, USA ; Department of Pathology, University of California San Francisco, San Francisco, CA, USA
Oses-Prieto, Juan A ; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
Slota, Macey ; Department of Urology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
Mohan, Nimmy; Department of Urology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
Yiakis, Kaylee; Department of Urology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
Liu, Isabelle ; Department of Urology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA ; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
Wen, Kwun Wah; Department of Pathology, University of California San Francisco, San Francisco, CA, USA
Kim, Grace E ; Department of Pathology, University of California San Francisco, San Francisco, CA, USA
Miglani, Sohit ; Department of Urology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA ; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
Burlingame, Alma L; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
Goodarzi, Hani ; Department of Urology, University of California San Francisco, San Francisco, CA, USA ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA ; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA ; Arc Institute, Palo Alto, CA, USA
Perera, Rushika M ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA ; Department of Anatomy, University of California San Francisco, San Francisco, CA, USA ; Department of Pathology, University of California San Francisco, San Francisco, CA, USA
Ruggero, Davide ; Department of Urology, University of California San Francisco, San Francisco, CA, USA. davide.ruggero@ucsf.edu ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA. davide.ruggero@ucsf.edu ; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA. davide.ruggero@ucsf.edu
Functional screen identifies RBM42 as a mediator of oncogenic mRNA translation specificity.
Publication date :
04 February 2025
Journal title :
Nature Cell Biology
ISSN :
1465-7392
eISSN :
1476-4679
Publisher :
Nature, England
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NIH. NCI - National Institutes of Health. National Cancer Institute ACS - American Cancer Society ACF - Association of Charitable Foundations
Funding text :
We thank all of the members of the Ruggero laboratory, especially D. Kuzuoglu-Öztürk, for critical discussion of the project and for manuscript feedback. We thank H. Karner (UCSF) for technical support for the CLIP experiments and B. Zarnegar (Stanford University) for CLIP advice and irCLIP reagents. Sequencing was performed at the UCSF CAT, supported by UCSF PBBR, RRP IMIA and NIH 1S10OD028511-01 grants. Fluorescence-activated cell sorting and BC43 spinning disk confocal microscopy were conducted in the HDFCCC Laboratory for Cell Analysis Shared Resource Facility through a grant from NIH (P30CA082103). Mass spectrometry was provided by the Mass Spectrometry Resource at UCSF (A. L. Burlingame, Director), supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. J.R.K. was funded by an American Cancer Society postdoctoral fellowship (133966‐PF‐20‐009‐01‐RMC) and a UCSF Mentored Scientist Award in Pancreas Cancer (RAP 7031426). G.H. was supported by the National Science Foundation Graduate Research Fellowship Program (NSF2034836). H.G. is an Arc Institute Core Investigator. Research in the H.G. laboratory is supported by the Arc Institute. R.M.P. is funded by R01CA240603 (NCI; NIH), an AACR-MPM Oncology Charitable Foundation Transformative Cancer Research Grant and an Ed Marra Passion to Win Fund. D.R. is funded by the NIH (R35CA242986) and the American Cancer Society (American Cancer Society Research Professor Award). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
A.L. Wolfe et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer Nature 513 65 70 1:CAS:528:DC%2BC2cXhsVyhurvI 25079319 4492470 10.1038/nature13485
M.L. Truitt et al. Differential requirements for eIF4E dose in normal development and cancer Cell 162 59 71 1:CAS:528:DC%2BC2MXhtV2it7vP 26095252 4491046 10.1016/j.cell.2015.05.049
J.R. Kovalski D. Kuzuoglu-Ozturk D. Ruggero Protein synthesis control in cancer: selectivity and therapeutic targeting EMBO J. 41 e109823 1:CAS:528:DC%2BB38XnslWhtrY%3D 35315941 9016353 10.15252/embj.2021109823
D.J. Murphy et al. Distinct thresholds govern Myc’s biological output in vivo Cancer Cell 14 447 457 1:CAS:528:DC%2BD1cXhsFahsrfK 19061836 10.1016/j.ccr.2008.10.018
N.M. Sodir et al. Reversible Myc hypomorphism identifies a key Myc-dependency in early cancer evolution Nat. Commun. 13 1:CAS:528:DC%2BB38XivVOisLfK 36351945 9646778 10.1038/s41467-022-34079-x 6782
X.-X. Sun Y. Li R.C. Sears M.-S. Dai Targeting the MYC ubiquitination-proteasome degradation pathway for cancer therapy Front. Oncol. 11 679445 1:CAS:528:DC%2BB3sXht1KgsrrF 34178666 8226175 10.3389/fonc.2021.679445
B. Pereira M. Billaud R. Almeida RNA-binding proteins in cancer: old players and new actors Trends Cancer 3 506 528 1:CAS:528:DC%2BC1MXksVOrtg%3D%3D 28718405 10.1016/j.trecan.2017.05.003
P.S. Ray et al. A stress-responsive RNA switch regulates VEGFA expression Nature 457 915 919 1:CAS:528:DC%2BD1MXht1ehsb4%3D 19098893 10.1038/nature07598
C.V. Dang MYC on the path to cancer Cell 149 22 35 1:CAS:528:DC%2BC38XltVehu78%3D 22464321 3345192 10.1016/j.cell.2012.03.003
L. Boike et al. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC Cell Chem. Biol. 28 4 13 1:CAS:528:DC%2BB3cXhvFWnu7zL 32966806 10.1016/j.chembiol.2020.09.001
J.R. Whitfield L. Soucek The long journey to bring a Myc inhibitor to the clinic J. Cell Biol. 220 1:CAS:528:DC%2BB3MXhvFKisbjJ 34160558 8240852 10.1083/jcb.202103090 e202103090
R.L. Siegel A.N. Giaquinto A. Jemal Cancer statistics, 2024 CA Cancer J. Clin. 74 12 49 38230766 10.3322/caac.21820
E. Hessmann G. Schneider V. Ellenrieder J.T. Siveke MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies Oncogene 35 1609 1618 1:CAS:528:DC%2BC2MXhtFaitr%2FK 26119937 10.1038/onc.2015.216
A.S. Farrell et al. MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance Nat. Commun. 8 29170413 5701042 10.1038/s41467-017-01967-6 1728
G. Schneider M. Wirth U. Keller D. Saur Rationale for MYC imaging and targeting in pancreatic cancer EJNMMI Res. 11 1:CAS:528:DC%2BB38XksVSrurg%3D 34637026 8511206 10.1186/s13550-021-00843-1 104
B.L. Allen-Petersen et al. Activation of PP2A and inhibition of mTOR synergistically reduce MYC signaling and decrease tumor growth in pancreatic ductal adenocarcinoma Cancer Res. 79 209 219 1:CAS:528:DC%2BC1MXotFGgt7o%3D 30389701 10.1158/0008-5472.CAN-18-0717
E. Parasido et al. The sustained induction of c-MYC drives nab-paclitaxel resistance in primary pancreatic ductal carcinoma cells Mol. Cancer Res. 17 1815 1827 1:CAS:528:DC%2BC1MXisVSjsrvM 31164413 6726538 10.1158/1541-7786.MCR-19-0191
J. Dilly et al. Mechanisms of resistance to oncogenic kras inhibition in pancreatic cancer Cancer Discov. 14 2135 2161 38975874 11528210 10.1158/2159-8290.CD-24-0177
J.R. Evans et al. Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo Oncogene 22 8012 8020 12970749 10.1038/sj.onc.1206645
K. Singh et al. Targeting eIF4A-dependent translation of KRAS signaling molecules Cancer Res. 81 2002 2014 1:CAS:528:DC%2BB3MXhtF2itb7I 33632898 8137674 10.1158/0008-5472.CAN-20-2929
H. Manjunath et al. Suppression of ribosomal pausing by eIF5A is necessary to maintain the fidelity of start codon selection Cell Rep. 29 3134 3146 1:CAS:528:DC%2BC1MXitlejtLvI 31801078 6917043 10.1016/j.celrep.2019.10.129
Y. Xu et al. ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance Cell 184 5215 5229 1:CAS:528:DC%2BB3MXitFSmur%2FK 34559986 8547373 10.1016/j.cell.2021.08.036
O. Oksuz et al. Transcription factors interact with RNA to regulate genes Mol. Cell 83 2449 2463 1:CAS:528:DC%2BB3sXhtlKlsbbI 37402367 10529847 10.1016/j.molcel.2023.06.012
X. Bao et al. Capturing the interactome of newly transcribed RNA Nat. Methods 15 213 220 1:CAS:528:DC%2BC1cXisFCiurk%3D 29431736 5967874 10.1038/nmeth.4595
M.W. Hentze A. Castello T. Schwarzl T. Preiss A brave new world of RNA-binding proteins Nat. Rev. Mol. Cell Biol. 19 327 341 1:CAS:528:DC%2BC1cXhtVKqsb8%3D 29339797 10.1038/nrm.2017.130
R. Huang M. Han L. Meng X. Chen Transcriptome-wide discovery of coding and noncoding RNA-binding proteins Proc. Natl Acad. Sci. USA 115 E3879 E3887 1:CAS:528:DC%2BC1cXhvVKjtrnO 29636419 5924899 10.1073/pnas.1718406115
R.M.L. Queiroz et al. Comprehensive identification of RNA–protein interactions in any organism using orthogonal organic phase separation (OOPS) Nat. Biotechnol. 37 169 178 1:CAS:528:DC%2BC1MXosV2rurw%3D 30607034 6591131 10.1038/s41587-018-0001-2
E.C. Urdaneta et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction Nat. Commun. 10 30824702 6397201 10.1038/s41467-019-08942-3 990
E.-C. Luo et al. Large-scale tethered function assays identify factors that regulate mRNA stability and translation Nat. Struct. Mol. Biol. 27 989 1000 1:CAS:528:DC%2BB3cXhs1aiurrL 32807991 8221285 10.1038/s41594-020-0477-6
L. Guerber E. Pangou I. Sumara Ubiquitin binding protein 2-like (UBAP2L): is it so NICE after all? Front. Cell Dev. Biol. 10 931115 35794863 9250975 10.3389/fcell.2022.931115
J. Hong K. Xu J.H. Lee Biological roles of the RNA m6A modification and its implications in cancer Exp. Mol. Med. 54 1822 1832 1:CAS:528:DC%2BB38XivF2jsrrF 36446846 9722703 10.1038/s12276-022-00897-8
S. Lin J. Choe P. Du R. Triboulet R.I. Gregory The m6A methyltransferase METTL3 promotes translation in human cancer cells Mol. Cell 62 335 345 1:CAS:528:DC%2BC28XmslSju7k%3D 27117702 4860043 10.1016/j.molcel.2016.03.021
H. Sheng et al. YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation Carcinogenesis 41 541 550 1:CAS:528:DC%2BB3cXisVyltLbI 31504235 10.1093/carcin/bgz152
L. Cao et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma Cell 184 5031 5052 1:CAS:528:DC%2BB3MXitVGlsLrO 34534465 8654574 10.1016/j.cell.2021.08.023
K. Singh et al. c-MYC regulates mRNA translation efficiency and start-site selection in lymphoma J. Exp. Med. 216 1509 1524 1:CAS:528:DC%2BC1MXhvVOjt77P 31142587 6605752 10.1084/jem.20181726
B.M. Ben-Oz et al. A dual role of RBM42 in modulating splicing and translation of CDKN1A/p21 during DNA damage response Nat. Commun. 14 1:CAS:528:DC%2BB3sXisVert7nF 37993446 10665399 10.1038/s41467-023-43495-6 7628
M. Posta B. Győrffy Analysis of a large cohort of pancreatic cancer transcriptomic profiles to reveal the strongest prognostic factors Clin. Transl. Sci. 16 1479 1491 1:CAS:528:DC%2BB3sXhtF2isb%2FK 37260110 10432876 10.1111/cts.13563
S. Yang et al. A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2 Cancer Res. 76 3838 3850 1:CAS:528:DC%2BC28XhtVyit7nF 27197190 4930741 10.1158/0008-5472.CAN-15-2841
E.S. Suvorova et al. Discovery of a splicing regulator required for cell cycle progression PLoS Genet. 9 e1003305 1:CAS:528:DC%2BC3sXkt1Wntb4%3D 23437009 3578776 10.1371/journal.pgen.1003305
M. Wang et al. The RNA binding protein FgRbp1 regulates specific pre-mRNA splicing via interacting with U2AF23 in Fusarium Nat. Commun. 12 1:CAS:528:DC%2BB3MXhtFWgt7bL 33976182 8113354 10.1038/s41467-021-22917-3 2661
C. Charenton M.E. Wilkinson K. Nagai Mechanism of 5′ splice site transfer for human spliceosome activation Science 364 362 367 1:CAS:528:DC%2BC1MXnvFOrur0%3D 30975767 6525098 10.1126/science.aax3289
E.L. Van Nostrand et al. A large-scale binding and functional map of human RNA-binding proteins Nature 583 711 719 32728246 7410833 10.1038/s41586-020-2077-3
H. Dvinge J. Guenthoer P.L. Porter R.K. Bradley RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing Genome Res. 29 1591 1604 1:CAS:528:DC%2BC1MXisVags7zK 31434678 6771400 10.1101/gr.246678.118
M. Zubradt et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo Nat. Methods 14 75 82 1:CAS:528:DC%2BC28XhvVSiurfE 27819661 10.1038/nmeth.4057
J.P.C. Le Quesne M. Stoneley G.A. Fraser A.E. Willis Derivation of a structural model for the c-myc IRES11 J. Mol. Biol. 310 111 126 11419940 10.1006/jmbi.2001.4745
A. Shah Y. Qian S.M. Weyn-Vanhentenryck C. Zhang CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data Bioinformatics 33 566 567 1:CAS:528:DC%2BC1cXhvFagtrjL 27797762 10.1093/bioinformatics/btw653
J. Brito Querido I. Díaz-López V. Ramakrishnan The molecular basis of translation initiation and its regulation in eukaryotes Nat. Rev. Mol. Cell Biol. 25 168 186 38052923 10.1038/s41580-023-00624-9
C. Bellodi et al. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis Cancer Res. 70 6026 6035 1:CAS:528:DC%2BC3cXovVamsrs%3D 20587522 2913864 10.1158/0008-5472.CAN-09-4730
C.E. Antal et al. A super-enhancer-regulated RNA-binding protein cascade drives pancreatic cancer Nat. Commun. 14 1:CAS:528:DC%2BB3sXhvVOgtbzE 37673892 10482938 10.1038/s41467-023-40798-6 5195
D. Simsek et al. The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity Cell 169 1051 1065 1:CAS:528:DC%2BC2sXpt1agsrs%3D 28575669 5548193 10.1016/j.cell.2017.05.022
A. Thakur L. Marler A.G. Hinnebusch A network of eIF2β interactions with eIF1 and Met-tRNAi promotes accurate start codon selection by the translation preinitiation complex Nucleic Acids Res. 47 2574 2593 1:CAS:528:DC%2BC1MXhs1KrtL%2FL 30576497 10.1093/nar/gky1274
Petrychenko, V. et al. Structural basis for translational control by the human 48S initiation complex. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01378-4 (2024).
E. Cerami et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data Cancer Discov. 2 401 404 22588877 10.1158/2159-8290.CD-12-0095
M.A. Horlbeck et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation eLife 5 e19760 27661255 5094855 10.7554/eLife.19760
A. Navickas et al. An mRNA processing pathway suppresses metastasis by governing translational control from the nucleus Nat. Cell Biol. 25 892 903 1:CAS:528:DC%2BB3sXps1Knsrw%3D 37156909 10264242 10.1038/s41556-023-01141-9
M. Martin Cutadapt removes adapter sequences from high-throughput sequencing reads EMBnet J. 17 10 12 10.14806/ej.17.1.200
T. Smith A. Heger I. Sudbery UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy Genome Res. 27 491 499 1:CAS:528:DC%2BC2sXhtVaiu7fL 28100584 5340976 10.1101/gr.209601.116
A.R. Quinlan I.M. Hall BEDTools: a flexible suite of utilities for comparing genomic features Bioinformatics 26 841 842 1:CAS:528:DC%2BC3cXivFGkurc%3D 20110278 2832824 10.1093/bioinformatics/btq033
B.J. Zarnegar et al. irCLIP platform for efficient characterization of protein–RNA interactions Nat. Methods 13 489 492 1:CAS:528:DC%2BC28Xms1Ontro%3D 27111506 5477425 10.1038/nmeth.3840
O. Zhulyn et al. Evolutionarily divergent mTOR remodels translatome for tissue regeneration Nature 620 163 171 1:CAS:528:DC%2BB3sXhsFCqu7zE 37495694 11181899 10.1038/s41586-023-06365-1
R. Patro G. Duggal M.I. Love R.A. Irizarry C. Kingsford Salmon provides fast and bias-aware quantification of transcript expression Nat. Methods 14 417 419 1:CAS:528:DC%2BC2sXltVWgtL8%3D 28263959 5600148 10.1038/nmeth.4197
C. Soneson M.I. Love M.D. Robinson Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences F1000Res. 4 1521 4712774 10.12688/f1000research.7563.2
M.D. Robinson D.J. McCarthy G.K. Smyth edgeR: a Bioconductor package for differential expression analysis of digital gene expression data Bioinformatics 26 139 140 1:CAS:528:DC%2BD1MXhs1WlurvO 19910308 10.1093/bioinformatics/btp616
M.I. Love W. Huber S. Anders Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol. 15 25516281 4302049 10.1186/s13059-014-0550-8 550
Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxivhttps://doi.org/10.1101/060012 (2021).
A. Liberzon et al. Molecular signatures database (MSigDB) 3.0 Bioinformatics 27 1739 1740 1:CAS:528:DC%2BC3MXntFGktLw%3D 21546393 3106198 10.1093/bioinformatics/btr260
S. Shen et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-seq data Proc. Natl Acad. Sci. USA 111 E5593 E5601 1:CAS:528:DC%2BC2cXitVClu7fO 25480548 4280593 10.1073/pnas.1419161111
A. Dobin et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics 29 15 21 1:CAS:528:DC%2BC38XhvV2gsbnF 23104886 10.1093/bioinformatics/bts635
B. Langmead S.L. Salzberg Fast gapped-read alignment with Bowtie 2 Nat. Methods 9 357 359 1:CAS:528:DC%2BC38Xjt1Oqt7c%3D 22388286 3322381 10.1038/nmeth.1923
D. Incarnato E. Morandi L.M. Simon S. Oliviero RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications Nucleic Acids Res. 46 e97 29893890 6144828 10.1093/nar/gky486
K. Darty A. Denise Y. Ponty VARNA: interactive drawing and editing of the RNA secondary structure Bioinformatics 25 1974 1975 1:CAS:528:DC%2BD1MXovVekur8%3D 19398448 2712331 10.1093/bioinformatics/btp250
S. Guan J.C. Price S.B. Prusiner S. Ghaemmaghami A.L. Burlingame A data processing pipeline for mammalian proteome dynamics studies using stable isotope metabolic labeling Mol. Cell Proteomics 10 M111.010728 21937731 3237081 10.1074/mcp.M111.010728
K.R. Clauser P. Baker A.L. Burlingame Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching Anal. Chem. 71 2871 2882 1:CAS:528:DyaK1MXjtlWqs78%3D 10424174 10.1021/ac9810516
M.J. Goldman et al. Visualizing and interpreting cancer genomics data via the Xena platform Nat. Biotechnol. 38 675 678 1:CAS:528:DC%2BB3cXpvFGhtr4%3D 32444850 7386072 10.1038/s41587-020-0546-8
Y. Zhang F. Chen D.S. Chandrashekar S. Varambally C.J. Creighton Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways Nat. Commun. 13 1:CAS:528:DC%2BB38Xht12mu7vL 35562349 9106650 10.1038/s41467-022-30342-3 2669
E.Y. Chen et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool BMC Bioinform. 14 128 10.1186/1471-2105-14-128