Legionella pneumophila; bacterial effector; host–pathogen; metaeffector; yeast two-hybrid; Bacterial Proteins; Type IV Secretion Systems; Humans; Host-Pathogen Interactions; Protein Interaction Maps; Protein Interaction Mapping; Legionnaires' Disease/microbiology; Legionnaires' Disease/metabolism; Type IV Secretion Systems/metabolism; Type IV Secretion Systems/genetics; Legionella pneumophila/genetics; Legionella pneumophila/metabolism; Two-Hybrid System Techniques; Bacterial Proteins/metabolism; Bacterial Proteins/genetics; Legionnaires' Disease; Microbiology; Physiology; Biochemistry; Ecology, Evolution, Behavior and Systematics; Modeling and Simulation; Molecular Biology; Genetics; Computer Science Applications
Abstract :
[en] [en] UNLABELLED: Legionella pneumophila uses over 300 translocated effector proteins to rewire host cells during infection and create a replicative niche for intracellular growth. To date, several studies have identified L. pneumophila effectors that indirectly and directly regulate the activity of other effectors, providing an additional layer of regulatory complexity. Among these are "metaeffectors," a special class of effectors that regulate the activity of other effectors once inside the host. A defining feature of metaeffectors is direct, physical interaction with a target effector. Metaeffector identification, to date, has depended on phenotypes in heterologous systems and experimental serendipity. Using a multiplexed, recombinant barcode-based yeast two-hybrid technology we screened for protein-protein interactions among all L. pneumophila effectors and 28 components of the Dot/Icm type IV secretion system (>167,000 protein combinations). Of the 52 protein interactions identified by this approach, 44 are novel protein interactions, including 10 novel effector-effector interactions (doubling the number of known effector-effector interactions).
IMPORTANCE: Secreted bacterial effector proteins are typically viewed as modulators of host activity, entering the host cytosol to physically interact with and modify the activity of one or more host proteins in support of infection. A growing body of evidence suggests that a subset of effectors primarily function to modify the activities of other effectors inside the host. These "effectors of effectors" or metaeffectors are often identified through experimental serendipity during the study of canonical effector function against the host. We previously performed the first global effector-wide genetic interaction screen for metaeffectors within the arsenal of Legionella pneumophila, an intracellular bacterial pathogen with over 300 effectors. Here, using a high-throughput, scalable methodology, we present the first global interaction network of physical interactions between L. pneumophila effectors. This data set serves as a complementary resource to identify and understand both the scope and nature of non-canonical effector activity within this important human pathogen.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Mount, Harley O'Connor ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
Urbanus, Malene L ; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
Sheykhkarimli, Dayag ; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada ; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
Coté, Atina G ; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada ; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
Laval, Florent ; Université de Liège - ULiège > TERRA Research Centre > Microbial technologies ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, USA ; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA ; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
Coppin, Georges ; Université de Liège - ULiège > GIGA ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, USA ; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA ; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
Kishore, Nishka ; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada ; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
Li, Roujia; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada ; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
Spirohn-Fitzgerald, Kerstin ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, USA ; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA ; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
Petersen, Morgan O ; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada ; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
Knapp, Jennifer J ; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada ; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
Kim, Dae-Kyum ; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada ; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
Calderwood, Michael A ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, USA ; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA ; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
Vidal, Marc ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, USA ; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
Roth, Frederick P ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada ; Donnelly Centre, University of Toronto, Toronto, Ontario, Canada ; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada ; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
Ensminger, Alexander W ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada ; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
NSERC - Natural Sciences and Engineering Research Council CIHR - Canadian Institutes of Health Research WBI - Wallonie-Bruxelles International F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
H.O.M. was supported by a CGS-D fellowship from the Natural Sciences and Engineering Research Council of Canada. This work was supported by a project grant (AWE) from the Canadian Institutes of Health Research (PJT-162256). This work was supported by a Wallonie-Brussels International-World Excellence Fellowship (F.L. and G.C.), a Fonds de la Recherche Scientifique (FRS-FNRS)-T\u00E9l\u00E9vie Grant (FC31747, Cr\u00E9dit n\u00B0 7459421F) (F.L. and J.-C.T.), the Fondation L\u00E9on Fredericq (F.L. and J.-C.T.), a University of Li\u00E8ge mobility grant (F.L.), an FRS-FNRS Mobility and Congress funding (no. 40020393) (F.L.), a Jos\u00E9e and Jean Schmets Prize (F.L.), a Herman-van Beneden Prize (F.L.), and an FRS-FNRS-Fund for Research Training in Industry and Agriculture grant (FC31543, Cr\u00E9dit n\u00B0 1E00419F) (G.C.). M.V. is a Chercheur Qualifi\u00E9 Honoraire, and J.-C.T. is a Ma\u00EEtre de Recherche from the FRS-FNRS (Wallonia-Brussels Federation, Belgium). D.S., A.G.C., N.K., R.L., J.J.K., D.-K.K., and F.P.R. were supported by a Canadian Institutes of Health Research Foundation grant (FDN159926). We thank members of the Roth Lab: Marinella Gebbia for assistance with library construction and Jochen Weile, Natascha van Lieshout, Anjali Gopal, and Nozomu Yachie for bioinformatic advice. Finally, we thank members of the Ensminger Lab: Veronique Cartier-Archambault and Guangqi Zhou for help with cloning; Beth Nicholson, Jordan Lin, and John McPherson for their suggestions and careful reading of the manuscript. M.L.U. and A.W.E. conceived and designed the screen for effector\u2013effector interactions. H.O.M. constructed the library and performed the inducible BFG-Y2H screen with assistance and training from A.G.C., D.S., and M.L.U. Large-scale gateway cloning was performed by M.L.U., A.G.C., N.K., and R.L., with subsequent robotic cherry-picking by A.G.C., N.K., R.L., D.K., and J.K. Library sequencing was performed by H.O.M., D.S., A.G.C., N.K., and R.L. H.O.M. and M.L.U. analyzed the data with assistance from D.S. M.L.U. performed the Y2H confirmation experiments, M.O.P. assisted M.L.U. with data analysis and network visualization. F.L. performed the yN2H validation experiment with assistance from K.S.F. G.C. analyzed the yN2H data. M.C., J.C.T., M.V., F.P.R., and A.W.E. provided project supervision and advice. M.L.U. and A.W.E. prepared the manuscript with input from other authors. Canadian Government | Natural Sciences and Engineering Research Council of Canada (NSERC) Harley O'Connor Mount Canadian Government | Canadian Institutes of Health Research (CIHR) PJT-162256 Alexander W. Ensminger Wallonie-Bruxelles International (WBI) Florent Laval Georges Coppin Fonds De La Recherche Scientifique - FNRS (FNRS) FC31747 Florent Laval Jean-Claude Twizere Fonds De La Recherche Scientifique - FNRS (FNRS) FC31543 Georges Coppin Canadian Government | Canadian Institutes of Health Research (CIHR) FDN159926 Frederick P. Roth
Kubori T, Nagai H. 2011. Bacterial effectorinvolved temporal and spatial regulation by hijack of the host ubiquitin pathway. Front Microbiol 2:145. https://doi.org/10.3389/fmicb.2011.00145
Shames SR, Finlay BB. 2012. Bacterial effector interplay: a new way to view effector function. Trends Microbiol 20:214–219. https://doi.org/10.1016/j.tim.2012.02.007
Dean P, Mühlen S, Quitard S, Kenny B. 2010. The bacterial effectors EspG and EspG2 induce a destructive calpain activity that is kept in check by the co-delivered Tir effector. Cell Microbiol 12:1308–1321. https://doi.org/10.1111/j.1462-5822.2010.01469.x
Kubori T, Galán JE. 2003. Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115:333–342. https://doi.org/10.1016/s0092-8674(03)00849-3
Müller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS, Itzen A. 2010. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946–949. https://doi.org/10.1126/science. 1192276
Mukherjee S, Liu X, Arasaki K, McDonough J, Galán JE, Roy CR. 2011. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103–106. https://doi.org/10.1038/nature10335
Neunuebel MR, Chen Y, Gaspar AH, Backlund PS, Yergey A, Machner MP. 2011. De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333:453–456. https://doi.org/10.1126/science.1207193
Tan Y, Luo Z-Q. 2011. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475:506–509. https://doi.org/10.1038/ nature10307
Tan Y, Arnold RJ, Luo Z-Q. 2011. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 108:21212–21217. https://doi.org/10.1073/pnas. 1114023109
Kubori T, Lee J, Kim H, Yamazaki K, Nishikawa M, Kitao T, Oh B-H, Nagai H. 2022. Reversible modification of mitochondrial ADP/ATP translocases by paired Legionella effector proteins. Proc Natl Acad Sci U S A 119:e2122872119. https://doi.org/10.1073/pnas.2122872119
Fields BS, Benson RF, Besser RE. 2002. Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15:506–526. https://doi.org/10.1128/CMR.15.3.506-526.2002
Newton HJ, Ang DKY, van Driel IR, Hartland EL. 2010. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298. https://doi.org/10.1128/CMR.00052-09
Mondino S, Schmidt S, Rolando M, Escoll P, Gomez-Valero L, Buchrieser C. 2020. Legionnaires’ disease: state of the art knowledge of pathogenesis mechanisms of Legionella. Annu Rev Pathol Mech Dis 15:439–466. https://doi.org/10.1146/annurev-pathmechdis-012419-032742
Schator D, Mondino S, Berthelet J, Di Silvestre C, Ben Assaya M, Rusniok C, Rodrigues-Lima F, Wehenkel A, Buchrieser C, Rolando M. 2023. Legionella paraeffectors target chromatin and promote bacterial replication. Nat Commun 14:2154. https://doi.org/10.1038/s41467-023-37885-z
Shi X, Halder P, Yavuz H, Jahn R, Shuman HA. 2016. Direct targeting of membrane fusion by SNARE mimicry: convergent evolution of Legionella effectors. Proc Natl Acad Sci U S A 113:8807–8812. https://doi.org/10.1073/pnas.1608755113
Kubori T, Shinzawa N, Kanuka H, Nagai H. 2010. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 6:e1001216. https://doi.org/10.1371/journal.ppat.1001216
Magori S, Citovsky V. 2011. Agrobacterium counteracts host-induced degradation of its effector F-box protein. Sci Signal 4:ra69. https://doi.org/10.1126/scisignal.2002124
Urbanus ML, Quaile AT, Stogios PJ, Morar M, Rao C, Di Leo R, Evdokimova E, Lam M, Oatway C, Cuff ME, Osipiuk J, Michalska K, Nocek BP, Taipale M, Savchenko A, Ensminger AW. 2016. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol Syst Biol 12:893. https://doi.org/10.15252/msb. 20167381
Joseph AM, Shames SR. 2021. Affecting the effectors: regulation of Legionella pneumophila effector function by metaeffectors. Pathogens 10:108. https://doi.org/10.3390/pathogens10020108
Bastidas RJ, Kędzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH. 2024. The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation. Elife 12:RP87386. https://doi.org/10.7554/eLife.87386
McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR. 1977. Legionnaires’ disease — isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 297:1197–1203. https://doi.org/10.1056/NEJM197712012972202
Isberg RR, O’Connor TJ, Heidtman M. 2009. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24. https://doi.org/10.1038/nrmicro1967
Fields BS. 1996. The molecular ecology of legionellae. Trends Microbiol 4:286–290. https://doi.org/10.1016/0966-842x(96)10041-x
Rowbotham TJ. 1980. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183. https://doi.org/10.1136/jcp.33.12.1179
Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y. 2005. Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20–28. https://doi.org/10.1128/AEM.71.1.2028.2005
Faulkner G, Berk SG, Garduño E, Ortiz-Jiménez MA, Garduño RA. 2008. Passage through Tetrahymena tropicalis triggers a rapid morphological differentiation in Legionella pneumophila. J Bacteriol 190:7728–7738. https://doi.org/10.1128/JB.00751-08
Watanabe K, Nakao R, Fujishima M, Tachibana M, Shimizu T, Watarai M. 2016. Ciliate Paramecium is a natural reservoir of Legionella pneumophila. Sci Rep 6:24322. https://doi.org/10.1038/srep24322
Boamah DK, Zhou G, Ensminger AW, O’Connor TJ. 2017. From many hosts, one accidental pathogen: the diverse protozoan hosts of Legionella. Front Cell Infect Microbiol 7:477. https://doi.org/10.3389/fcimb.2017.00477
Siddiqui R, Makhlouf Z, Khan NA. 2021. The increasing importance of Vermamoeba vermiformis. J Eukaryot Microbiol 68:e12857. https://doi.org/10.1111/jeu.12857
Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T. 2009. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5:e1000508. https://doi.org/10.1371/journal.ppat.1000508
Huang L, Boyd D, Amyot WM, Hempstead AD, Luo Z-Q, O’Connor TJ, Chen C, Machner M, Montminy T, Isberg RR. 2011. The E Block motif is associated with Legionella pneumophila translocated substrates. Cell Microbiol 13:227–245. https://doi.org/10.1111/j.1462-5822.2010.01531. x
Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, Luo Z-Q. 2011. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS One 6:e17638. https://doi.org/10.1371/journal.pone.0017638
Valleau D, Quaile AT, Cui H, Xu X, Evdokimova E, Chang C, Cuff ME, Urbanus ML, Houliston S, Arrowsmith CH, Ensminger AW, Savchenko A. 2018. Discovery of ubiquitin deamidases in the pathogenic arsenal of Legionella pneumophila. Cell Rep 23:568–583. https://doi.org/10.1016/j.celrep.2018.03.060
Gan N, Nakayasu ES, Hollenbeck PJ, Luo Z-Q. 2019. Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat Microbiol 4:134–143. https://doi.org/10.1038/s41564-018-0282-8
Wan M, Sulpizio AG, Akturk A, Beck WHJ, Lanz M, Faça VM, Smolka MB, Vogel JP, Mao Y. 2019. Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain–containing Legionella effectors. Proc Natl Acad Sci USA 116:23518–23526. https://doi.org/10.1073/pnas.1916287116
Gan N, Guan H, Huang Y, Yu T, Fu J, Nakayasu ES, Puvar K, Das C, Wang D, Ouyang S, Luo Z-Q. 2020. Legionella pneumophila regulates the activity of UBE2N by deamidase‐mediated deubiquitination. EMBO J 39:e102806. https://doi.org/10.15252/embj.2019102806
Song L, Xie Y, Li C, Wang L, He C, Zhang Y, Yuan J, Luo J, Liu X, Xiu Y, Li H, Gritsenko M, Nakayasu ES, Feng Y, Luo Z-Q. 2021. The Legionella effector SdjA is a bifunctional enzyme that distinctly regulates phosphoribosyl ubiquitination. mBio 12:e0231621. https://doi.org/10.1128/mBio.02316-21
Jeong KC, Sexton JA, Vogel JP. 2015. Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog 11:e1004695. https://doi.org/10.1371/journal.ppat.1004695
Shames SR, Liu L, Havey JC, Schofield WB, Goodman AL, Roy CR. 2017. Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries. Proc Natl Acad Sci U S A 114:E10446–E10454. https://doi.org/10.1073/pnas.1708553114
Bhogaraju S, Bonn F, Mukherjee R, Adams M, Pfleiderer MM, Galej WP, Matkovic V, Lopez-Mosqueda J, Kalayil S, Shin D, Dikic I. 2019. Inhibition of bacterial ubiquitin ligases by SidJ–calmodulin catalysed glutamylation. Nature 572:382–386. https://doi.org/10.1038/s41586-019-1440-8
Black MH, Osinski A, Gradowski M, Servage KA, Pawłowski K, Tomchick DR, Tagliabracci VS. 2019. Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science 364:787–792. https://doi.org/10.1126/science.aaw7446
Gan N, Zhen X, Liu Y, Xu X, He C, Qiu J, Liu Y, Fujimoto GM, Nakayasu ES, Zhou B, Zhao L, Puvar K, Das C, Ouyang S, Luo Z-Q. 2019. Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature 572:387–391. https://doi.org/10.1038/s41586-019-1439-1
Joseph AM, Pohl AE, Ball TJ, Abram TG, Johnson DK, Geisbrecht BV, Shames SR. 2020. The Legionella pneumophila metaeffector Lpg2505 (MesI) regulates SidI-mediated translation inhibition and novel glycosyl hydrolase activity. Infect Immun 88:e00853-19. https://doi.org/10.1128/IAI.00853-19
Hsieh T-S, Lopez VA, Black MH, Osinski A, Pawłowski K, Tomchick DR, Liou J, Tagliabracci VS. 2021. Dynamic remodeling of host membranes by self-organizing bacterial effectors. Science 372:935–941. https://doi.org/10.1126/science.aay8118
McCloskey A, Perri K, Chen T, Han A, Luo Z-Q. 2021. The metaeffector MesI regulates the activity of the Legionella effector SidI through direct protein–protein interactions. Microbes Infect 23:104794. https://doi.org/10.1016/j.micinf.2021.104794
Yachie N, Petsalaki E, Mellor JC, Weile J, Jacob Y, Verby M, Ozturk SB, Li S, Cote AG, Mosca R. 2016. Pooled‐matrix protein interaction screens using Barcode Fusion Genetics. Mol Syst Biol 12:863. https://doi.org/10.15252/msb.20156660
Campodonico EM, Chesnel L, Roy CR. 2005. A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol Microbiol 56:918–933. https://doi.org/10.1111/j.1365-2958.2005.04595. x
Shohdy N, Efe JA, Emr SD, Shuman HA. 2005. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A 102:4866–4871. https://doi.org/10.1073/pnas.0501315102
de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA. 2008. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4:e1000117. https://doi.org/10.1371/journal.ppat.1000117
Heidtman M, Chen EJ, Moy M-Y, Isberg RR. 2009. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11:230–248. https://doi.org/10.1111/j.1462-5822.2008.01249.x
Shen X, Banga S, Liu Y, Xu L, Gao P, Shamovsky I, Nudler E, Luo Z-Q. 2009. Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol 11:911–926. https://doi.org/10.1111/j.1462-5822.2009.01301.x
Guo Z, Stephenson R, Qiu J, Zheng S, Luo Z-Q. 2014. A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization. Microbes Infect 16:225–236. https://doi.org/10.1016/j.micinf.2013.11.007
Fields S, Song O. 1989. A novel genetic system to detect protein–protein interactions. Nature 340:245–246. https://doi.org/10.1038/ 340245a0
Xu L, Shen X, Bryan A, Banga S, Swanson MS, Luo Z-Q. 2010. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog 6:e1000822. https://doi.org/10.1371/journal.ppat. 1000822
Belyi Y, Tartakovskaya D, Tais A, Fitzke E, Tzivelekidis T, Jank T, Rospert S, Aktories K. 2012. Elongation factor 1A is the target of growth inhibition in yeast caused by Legionella pneumophila glucosyltransferase Lgt1. J Biol Chem 287:26029–26037. https://doi.org/10.1074/jbc.M112.372672
Nevo O, Zusman T, Rasis M, Lifshitz Z, Segal G. 2014. Identification of Legionella pneumophila effectors regulated by the LetAS-RsmYZ-CsrA regulatory cascade, many of which modulate vesicular trafficking. J Bacteriol 196:681–692. https://doi.org/10.1128/JB.01175-13
Lesser CF, Miller SI. 2001. Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection. EMBO J 20:1840–1849. https://doi.org/10.1093/emboj/20.8.1840
Dong N, Niu M, Hu L, Yao Q, Zhou R, Shao F. 2016. Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol 2:16236. https://doi.org/10.1038/nmicrobiol.2016.236
Liu Y, Zhu W, Tan Y, Nakayasu ES, Staiger CJ, Luo Z-Q. 2017. A Legionella effector disrupts host cytoskeletal structure by cleaving actin. PLoS Pathog 13:e1006186. https://doi.org/10.1371/journal.ppat.1006186
He L, Lin Y, Ge Z-H, He S-Y, Zhao B-B, Shen D, He J-G, Lu Y-J. 2019. The Legionella pneumophila effector WipA disrupts host F-actin polymerisation by hijacking phosphotyrosine signalling. Cell Microbiol 21:e13014. https://doi.org/10.1111/cmi.13014
Butt TR, Ecker DJ. 1987. Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364. https://doi.org/10.1128/mr.51.3.351-364.1987
Losick VP, Haenssler E, Moy M-Y, Isberg RR. 2010. LnaB: a Legionella pneumophila activator of NF-κB. Cell Microbiol 12:1083–1097. https://doi.org/10.1111/j.1462-5822.2010.01452.x
Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al. 2005. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178. https://doi.org/10.1038/ nature04209
Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, et al. 2008. High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110. https://doi.org/10.1126/science. 1158684
Simonis N, Rual J-F, Carvunis A-R, Tasan M, Lemmens I, Hirozane-Kishikawa T, Hao T, Sahalie JM, Venkatesan K, Gebreab F, et al. 2009. Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat Methods 6:47–54. https://doi.org/10.1038/nmeth.1279
Choi SG, Olivet J, Cassonnet P, Vidalain P-O, Luck K, Lambourne L, Spirohn K, Lemmens I, Dos Santos M, Demeret C, et al. 2019. Maximizing binary interactome mapping with a minimal number of assays. Nat Commun 10:3907. https://doi.org/10.1038/s41467-019-11809-2
Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I, et al. 2009. An empirical framework for binary interactome mapping. Nat Methods 6:83–90. https://doi.org/10.1038/nmeth.1280
Rolland T, Taşan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, Yi S, Lemmens I, Fontanillo C, Mosca R, et al. 2014. A proteome-scale map of the human interactome network. Cell 159:1212–1226. https://doi.org/10.1016/j.cell.2014.10.050
Luck K, Kim D-K, Lambourne L, Spirohn K, Begg BE, Bian W, Brignall R, Cafarelli T, Campos-Laborie FJ, Charloteaux B, et al. 2020. A reference map of the human binary protein interactome. Nature 580:402–408. https://doi.org/10.1038/s41586-020-2188-x
Braun P, Tasan M, Dreze M, Barrios-Rodiles M, Lemmens I, Yu H, Sahalie JM, Murray RR, Roncari L, de Smet A-S, Venkatesan K, Rual J-F, Vandenhaute J, Cusick ME, Pawson T, Hill DE, Tavernier J, Wrana JL, Roth FP, Vidal M. 2009. An experimentally derived confidence score for binary protein-protein interactions. Nat Methods 6:91–97. https://doi.org/10.1038/nmeth.1281
Duménil G, Isberg RR. 2001. The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Mol Microbiol 40:1113–1127. https://doi.org/10.1046/j.1365-2958.2001.02454.x
Coers J, Kagan JC, Matthews M, Nagai H, Zuckman DM, Roy CR. 2000. Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol Microbiol 38:719–736. https://doi.org/10.1046/j.1365-2958.2000.02176.x
Ninio S, Zuckman-Cholon DM, Cambronne ED, Roy CR. 2005. The Legionella IcmS–IcmW protein complex is important for Dot/Icmmediated protein translocation. Mol Microbiol 55:912–926. https://doi.org/10.1111/j.1365-2958.2004.04435.x
Xu J, Xu D, Wan M, Yin L, Wang X, Wu L, Liu Y, Liu X, Zhou Y, Zhu Y. 2017. Structural insights into the roles of the IcmS–IcmW complex in the type IVb secretion system of Legionella pneumophila. Proc Natl Acad Sci U S A 114:13543–13548. https://doi.org/10.1073/pnas.1706883115
Vincent CD, Vogel JP. 2006. The Legionella pneumophila IcmS–LvgA protein complex is important for Dot/Icm-dependent intracellular growth. Mol Microbiol 61:596–613. https://doi.org/10.1111/j.13652958.2006.05243.x
Kim H, Kubori T, Yamazaki K, Kwak M-J, Park S-Y, Nagai H, Vogel JP, Oh B-H. 2020. Structural basis for effector protein recognition by the Dot/Icm Type IVB coupling protein complex. Nat Commun 11:2623. https://doi.org/10.1038/s41467-020-16397-0
Sexton JA, Pinkner JS, Roth R, Heuser JE, Hultgren SJ, Vogel JP. 2004. The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol 186:1658–1666. https://doi.org/10.1128/JB.186.6.1658-1666.2004
Vincent CD, Friedman JR, Jeong KC, Buford EC, Miller JL, Vogel JP. 2006. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol 62:1278–1291. https://doi.org/10.1111/j.1365-2958.2006.05446.x
Vincent CD, Friedman JR, Jeong KC, Sutherland MC, Vogel JP. 2012. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol 85:378–391. https://doi.org/10.1111/j.1365-2958.2012.08118.x
Sutherland MC, Nguyen TL, Tseng V, Vogel JP. 2012. The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Pathog 8:e1002910. https://doi.org/10.1371/journal.ppat.1002910
Kwak M-J, Kim JD, Kim H, Kim C, Bowman JW, Kim S, Joo K, Lee J, Jin KS, Kim Y-G, Lee NK, Jung JU, Oh B-H. 2017. Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol 2:17114. https://doi.org/10.1038/nmicrobiol.2017.114
Meir A, Chetrit D, Liu L, Roy CR, Waksman G. 2018. Legionella DotM structure reveals a role in effector recruiting to the Type 4B secretion system. Nat Commun 9:507. https://doi.org/10.1038/s41467-017-02578-x
Meir A, Macé K, Lukoyanova N, Chetrit D, Hospenthal MK, Redzej A, Roy C, Waksman G. 2020. Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nat Commun 11:2864. https://doi.org/10.1038/s41467-020-16681-z
Ghosal D, Jeong KC, Chang Y-W, Gyore J, Teng L, Gardner A, Vogel JP, Jensen GJ. 2019. Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS. Nat Microbiol 4:1173–1182. https://doi.org/10.1038/s41564-019-0427-4
Durie CL, Sheedlo MJ, Chung JM, Byrne BG, Su M, Knight T, Swanson M, Lacy DB, Ohi MD. 2020. Structural analysis of the Legionella pneumophila Dot/Icm type IV secretion system core complex. Elife 9:e59530. https://doi.org/10.7554/eLife.59530
Luo Z-Q, Isberg RR. 2004. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A 101:841–846. https://doi.org/10.1073/pnas.0304916101
Sutherland MC, Binder KA, Cualing PY, Vogel JP. 2013. Reassessing the role of DotF in the Legionella pneumophila type IV secretion system. PLoS One 8:e65529. https://doi.org/10.1371/journal.pone.0065529
Pinotsis N, Waksman G. 2017. Structure of the WipA protein reveals a novel tyrosine protein phosphatase effector from Legionella pneumophila. J Biol Chem 292:9240–9251. https://doi.org/10.1074/jbc.M117. 781948
Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O, Gilbert JA, Pupko T, Shuman HA, Segal G. 2016. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat Genet 48:167–175. https://doi.org/10.1038/ng.3481
Gomez-Valero L, Rusniok C, Carson D, Mondino S, Pérez-Cobas AE, Rolando M, Pasricha S, Reuter S, Demirtas J, Crumbach J, Descorps-Declere S, Hartland EL, Jarraud S, Dougan G, Schroeder GN, Frankel G, Buchrieser C. 2019. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc Natl Acad Sci U S A 116:2265–2273. https://doi.org/10.1073/pnas.1808016116
Franco IS, Shohdy N, Shuman HA. 2012. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 8:e1002546. https://doi.org/10.1371/journal.ppat.1002546
Bugalhão JN, Mota LJ, Franco IS. 2016. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking. Microbiologyopen 5:118–133. https://doi.org/10.1002/mbo3.316
Hervet E, Charpentier X, Vianney A, Lazzaroni J-C, Gilbert C, Atlan D, Doublet P. 2011. Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect Immun 79:1936–1950. https://doi.org/10.1128/IAI.00805-10
Michard C, Sperandio D, Baïlo N, Pizarro-Cerdá J, LeClaire L, Chadeau-Argaud E, Pombo-Grégoire I, Hervet E, Vianney A, Gilbert C, Faure M, Cossart P, Doublet P. 2015. The Legionella kinase LegK2 targets the ARP2/3 complex to inhibit actin nucleation on phagosomes and allow bacterial evasion of the late endocytic pathway. mBio 6:e00354-15. https://doi.org/10.1128/mBio.00354-15
Mount HO, Zangari F, Gingras A-C, Ensminger AW. 2022. The L. pneumophila effector PieF modulates mRNA stability through association with eukaryotic CCR4-NOT. bioRxiv. https://doi.org/10.1101/2022.06.06.494580
Jia Q, Lin Y, Gou X, He L, Shen D, Chen D, Xie W, Lu Y. 2018. Legionella pneumophila effector WipA, a bacterial PPP protein phosphatase with PTP activity. Acta Biochim Biophys Sin (Shanghai) 50:547–554. https://doi.org/10.1093/abbs/gmy042
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303
Ensminger AW. 2016. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world. Curr Opin Microbiol 29:74–80. https://doi.org/10.1016/j.mib.2015.11.002
Wang Y, Zhan Q, Wang X, Li P, Liu S, Gao G, Gao P. 2020. Insights into catalysis and regulation of non-canonical ubiquitination and deubiquitination by bacterial deamidase effectors. Nat Commun 11:2751. https://doi.org/10.1038/s41467-020-16587-w
Chua MD, Moon K, Foster LJ, Guttman JA. 2018. Whole cell and bacterial movement: the identification of the ubiquitin E2 enzyme (Ube2N) as a novel actin‐associated protein. FASEB J 32:369. https://doi.org/10.1096/fasebj.2018.32.1_supplement.369.4
Chua MD, Mineva GM, Guttman JA. 2023. Ube2N is present and functions within listeria actin-rich structures and lamellipodia: a localization and pharmacological inhibition study. Anat Rec 306:1140–1148. https://doi.org/10.1002/ar.24939
Oh K-S, Gottschalk RA, Lounsbury NW, Sun J, Dorrington MG, Baek S, Sun G, Wang Z, Krauss KS, Milner JD, Dutta B, Hager GL, Sung M-H, Fraser IDC. 2018. Dual roles for Ikaros in regulation of macrophage chromatin state and inflammatory gene expression. J Immunol 201:757–771. https://doi.org/10.4049/jimmunol.1800158
Kuehn HS, Boast B, Rosenzweig SD. 2023. Inborn errors of human IKAROS: LOF and GOF variants associated with primary immunodeficiency. Clin Exp Immunol 212:129–136. https://doi.org/10.1093/cei/ uxac109
Ge J, Xu H, Li T, Zhou Y, Zhang Z, Li S, Liu L, Shao F. 2009. A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. Proc Natl Acad Sci U S A 106:13725–13730. https://doi.org/10.1073/pnas.0907200106
Liu M, Conover GM, Isberg RR. 2008. Legionella pneumophila EnhC is required for efficient replication in tumour necrosis factor α-stimulated macrophages. Cell Microbiol 10:1906–1923. https://doi.org/10.1111/j.1462-5822.2008.01180.x
Pollock TY, Vázquez Marrero VR, Brodsky IE, Shin S. 2023. TNF licenses macrophages to undergo rapid caspase-1, -11, and -8-mediated cell death that restricts Legionella pneumophila infection. PLoS Pathog 19:e1010767. https://doi.org/10.1371/journal.ppat.1010767
Boldin MP, Mett IL, Wallach D. 1995. A protein related to a proteasomal subunit binds to the intracellular domain of the p55 TNF receptor upstream to its ‘death domain’ FEBS Lett 367:39–44. https://doi.org/10.1016/0014-5793(95)00534-g
Dunbar JD, Song HY, Guo D, Wu LW, Donner DB. 1997. Two-hybrid cloning of a gene encoding TNF receptor-associated protein 2, a protein that interacts with the intracellular domain of the type 1 TNF receptor: identity with subunit 2 of the 26S protease. J Immunol 158:4252–4259. https://doi.org/10.4049/jimmunol.158.9.4252
Finsel I, Hilbi H. 2015. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Cell Microbiol 17:935–950. https://doi.org/10.1111/cmi.12450
Larson CL, Beare PA, Howe D, Heinzen RA. 2013. Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proc Natl Acad Sci USA 110:E4770–E4779. https://doi.org/10.1073/pnas.1309195110
Mengue L, Régnacq M, Aucher W, Portier E, Héchard Y, Samba-Louaka A. 2016. Legionella pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Sci Rep 6:36448. https://doi.org/10.1038/srep36448
Sol A, Lipo E, de Jesús-Díaz DA, Murphy C, Devereux M, Isberg RR. 2019. Legionella pneumophila translocated translation inhibitors are required for bacterial-induced host cell cycle arrest. Proc Natl Acad Sci U S A 116:3221–3228. https://doi.org/10.1073/pnas.1820093116
Koegl M, Uetz P. 2007. Improving yeast two-hybrid screening systems. Brief Funct Genom Proteom 6:302–312. https://doi.org/10.1093/bfgp/ elm035
Chen Y-C, Rajagopala SV, Stellberger T, Uetz P. 2010. Exhaustive benchmarking of the yeast two-hybrid system. Nat Methods 7:667–668; https://doi.org/10.1038/nmeth0910-667
Cassonnet P, Rolloy C, Neveu G, Vidalain P-O, Chantier T, Pellet J, Jones L, Muller M, Demeret C, Gaud G, Vuillier F, Lotteau V, Tangy F, Favre M, Jacob Y. 2011. Benchmarking a luciferase complementation assay for detecting protein complexes. Nat Methods 8:990–992. https://doi.org/10.1038/nmeth.1773
Caufield JH, Sakhawalkar N, Uetz P. 2012. A comparison and optimization of yeast two-hybrid systems. Methods 58:317–324. https://doi.org/10.1016/j.ymeth.2012.12.001
Lievens S, Gerlo S, Lemmens I, De Clercq DJH, Risseeuw MDP, Vanderroost N, De Smet A-S, Ruyssinck E, Chevet E, Van Calenbergh S, Tavernier J. 2014. Kinase Substrate Sensor (KISS), a mammalian in situ protein interaction sensor. Mol Cell Proteomics 13:3332–3342. https://doi.org/10.1074/mcp.M114.041087
Trepte P, Buntru A, Klockmeier K, Willmore L, Arumughan A, Secker C, Zenkner M, Brusendorf L, Rau K, Redel A, Wanker EE. 2015. DULIP: a dual luminescence-based co-immunoprecipitation assay for interactome mapping in mammalian cells. J Mol Biol 427:3375–3388. https://doi.org/10.1016/j.jmb.2015.08.003
Trepte P, Kruse S, Kostova S, Hoffmann S, Buntru A, Tempelmeier A, Secker C, Diez L, Schulz A, Klockmeier K, Zenkner M, Golusik S, Rau K, Schnoegl S, Garner CC, Wanker EE. 2018. LuTHy: a double‐readout bioluminescence‐based two‐hybrid technology for quantitative mapping of protein–protein interactions in mammalian cells. Mol Syst Biol 14:e8071. https://doi.org/10.15252/msb.20178071
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132. https://doi.org/10. 1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
Zhang T, Lei J, Yang H, Xu K, Wang R, Zhang Z. 2011. An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast 28:795–798. https://doi.org/10.1002/yea.1905
Rao C, Benhabib H, Ensminger AW. 2013. Phylogenetic reconstruction of the Legionella pneumophila philadelphia-1 laboratory strains through comparative genomics. PLoS One 8:e64129. https://doi.org/10.1371/journal.pone.0064129
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421
Gietz RD, Schiestl RH. 2007. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:1–4. https://doi.org/10.1038/nprot.2007.17
Bickle MBT, Dusserre E, Moncorgé O, Bottin H, Colas P. 2006. Selection and characterization of large collections of peptide aptamers through optimized yeast two-hybrid procedures. Nat Protoc 1:1066–1091. https://doi.org/10.1038/nprot.2006.32
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923
Gietz RD, Schiestl RH. 2007. Highefficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34. https://doi.org/10.1038/nprot.2007.13