Artificial intelligence; Computed tomography; Interstitial lung disease; Pulmonary function tests; Systemic sclerosis; Humans; Female; Male; Middle Aged; Retrospective Studies; Aged; Tomography, X-Ray Computed/methods; Predictive Value of Tests; Cohort Studies; Adult; Respiratory Function Tests/methods; Lung/diagnostic imaging; Lung/physiopathology; Scleroderma, Systemic/complications; Scleroderma, Systemic/diagnostic imaging; Lung Diseases, Interstitial/diagnostic imaging; Lung Diseases, Interstitial/physiopathology; Lung Diseases, Interstitial/diagnosis; Artificial Intelligence; Lung; Lung Diseases, Interstitial; Respiratory Function Tests; Scleroderma, Systemic; Tomography, X-Ray Computed; Pulmonary and Respiratory Medicine
Abstract :
[en] [en] BACKGROUND: Systemic sclerosis (SSc) is a rare connective tissue disease associated with rapidly evolving interstitial lung disease (ILD), driving its mortality. Specific imaging-based biomarkers associated with the evolution of lung disease are needed to help predict and quantify ILD.
METHODS: We evaluated the potential of an automated ILD quantification system (icolung®) from chest CT scans, to help in quantification and prediction of ILD progression in SSc-ILD. We used a retrospective cohort of 75 SSc-ILD patients to evaluate the potential of the AI-based quantification tool and to correlate image-based quantification with pulmonary function tests and their evolution over time.
RESULTS: We evaluated a group of 75 patients suffering from SSc-ILD, either limited or diffuse, of whom 30 presented progressive pulmonary fibrosis (PPF). The patients presenting PPF exhibited more extensive lesions (in % of total lung volume (TLV)) based on image analysis than those without PPF: 3.93 (0.36-8.12)* vs. 0.59 (0.09-3.53) respectively, whereas pulmonary functional test showed a reduction in Force Vital Capacity (FVC)(pred%) in patients with PPF compared to the others : 77 ± 20% vs. 87 ± 19% (p < 0.05). Modifications of FVC and diffusing capacity of the lungs for carbon monoxide (DLCO) over time were correlated with longitudinal radiological ILD modifications (r=-0.40, p < 0.01; r=-0.40, p < 0.01 respectively).
CONCLUSION: AI-based automatic quantification of lesions from chest-CT images in SSc-ILD is correlated with physiological parameters and can help in disease evaluation. Further clinical multicentric validation is necessary in order to confirm its potential in the prediction of patient's outcome and in treatment management.
Disciplines :
Cardiovascular & respiratory systems
Author, co-author :
Guiot, Julien ; Université de Liège - ULiège > Département des sciences cliniques > Pneumologie - Allergologie
Henket, Monique ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
GESTER, Fanny ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
André, Béatrice ; Université de Liège - ULiège > Département des sciences cliniques
Antoniou, Katerina; Laboratory of Cellular and Molecular Pneumonology, School of Medicine, University of Crete, Heraklion, Crete, Greece
Conemans, Lennart; Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
Gote-Schniering, Janine; Department of Rheumatology and Immunology, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland ; Department for BioMedical Research (DBMR), Lung Precision Medicine (LPM), University of Bern, Bern, Switzerland
Slabbynck, Hans; Department of Pneumology, ZNA Middelheim, Antwerpen, Belgium
Kreuter, Michael; Mainz Center for Pulmonary Medicine, Department of Pneumology, Department of Pulmonary, ZfT, Mainz University Medical Center and Department of Pulmonary, Critical Care and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
Sellares, Jacobo; Department of Pneumology, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
Tomos, Ioannis; Department of Pulmonary Medicine, SOTIRIA Chest Diseases Hospital of Athens, Athens, Greece
Yang, Guang; Bioengineering Department and Imperial-X, Imperial College London, London, UK ; National Heart and Lung Institute, Imperial College London, London, UK
Ribbens, Clio ; Université de Liège - ULiège > Département des sciences cliniques > Rhumatologie
Louis, Renaud ; Université de Liège - ULiège > Département des sciences cliniques > Pneumologie - Allergologie
Cottin, Vincent; National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, member of ERN-LUNG, Hospices Civils de Lyon, UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
Tomassetti, Sara; Unit of Interventional Pulmonology, Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
Smith, Vanessa; Department of Rheumatology, Ghent University Hospital, Ghent, Belgium ; Department of Internal Medicine, Ghent University, Ghent, Belgium ; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Centre (IRC), Ghent, Belgium
Walsh, Simon L F; National Heart and Lung Institute, Imperial College London, London, UK
V. Cottin K.K. Brown Interstitial lung disease associated with systemic sclerosis (SSc-ILD) Respir Res Engl 20 13 10.1186/s12931-019-0980-7
M.C. Vonk V. Smith P.P. Sfikakis M. Cutolo F. Del Galdo J.R. Seibold Pharmacological treatments for SSc-ILD: systematic review and critical appraisal of the evidence Autoimmun Rev Neth 20 102978 1:CAS:528:DC%2BB38Xmt1Sqsr0%3D 10.1016/j.autrev.2021.102978
D. Levin M.S. Osman C. Durand H. Kim I. Hemmati K. Jamani et al. Hematopoietic cell transplantation for systemic Sclerosis-A review Switzerland Cells 11
Fischer A, du Bois R. Interstitial lung disease in connective tissue disorders. Lancet (London, England). Engl; 2012;380:689–98.
S. O’Reilly Metabolic perturbations in systemic sclerosis Curr Opin Rheumatol United States 34 91 4 10.1097/BOR.0000000000000824
F. van den Hoogen D. Khanna J. Fransen S.R. Johnson M. Baron A. Tyndall et al. 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative Ann Rheum Dis Engl 72 1747 55 10.1136/annrheumdis-2013-204424
E.C. LeRoy C. Black R. Fleischmajer S. Jablonska T. Krieg T.A.J. Medsger et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis J Rheumatol Can 15 202 5 1:STN:280:DyaL1c3gtVWnsg%3D%3D
D. Khanna D.P. Tashkin C.P. Denton E.A. Renzoni S.R. Desai J. Varga Etiology Risk factors, and biomarkers in systemic sclerosis with interstitial lung disease Am J Respir Crit Care Med United States 201 650 60 1:CAS:528:DC%2BB3cXhvVamsLbP 10.1164/rccm.201903-0563CI
P. Moinzadeh F. Bonella M. Oberste J. Weliwitage N. Blank G. Riemekasten et al. Impact of systemic sclerosis-Associated interstitial lung Disease With and without Pulmonary Hypertension on Survival: a large cohort study of the German Network for systemic sclerosis Chest 165 1 132 45 10.1016/j.chest.2023.08.013 37582424
Distler O, Assassi S, Cottin V, Cutolo M, Danoff SK, Denton CP et al. Predictors of progression in systemic sclerosis patients with interstitial lung disease. Eur Respir J Engl; 2020;55.
E. Dack A. Christe M. Fontanellaz L. Brigato J.T. Heverhagen A.A. Peters et al. Artificial Intelligence and interstitial lung disease: diagnosis and prognosis Invest Radiol United States 58 602 9
S. Soffer A.S. Morgenthau O. Shimon Y. Barash E. Konen B.S. Glicksberg et al. Artificial Intelligence for Interstitial Lung Disease Analysis on chest computed tomography: a systematic review Acad Radiol Elsevier 29 S226 35 10.1016/j.acra.2021.05.014
T. Handa K. Tanizawa T. Oguma R. Uozumi K. Watanabe N. Tanabe et al. Novel Artificial Intelligence-based technology for chest computed Tomography Analysis of Idiopathic Pulmonary Fibrosis Ann Am Thorac Soc United States 19 399 406 10.1513/AnnalsATS.202101-044OC
Frix A-N, Cousin F, Refaee T, Bottari F, Vaidyanathan A, Desir C et al. Radiomics in Lung diseases Imaging: state-of-the-art for clinicians. J Pers Med. 2021.
Schniering J, Maciukiewicz M, Gabrys HS, Brunner M, Blüthgen C, Meier C et al. Computed tomography-based radiomics decodes prognostic and molecular differences in interstitial lung disease related to systemic sclerosis. Eur Respir J Engl; 2022;59.
K. Martini B. Baessler M. Bogowicz C. Blüthgen M. Mannil S. Tanadini-Lang et al. Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: proof of concept Eur Radiol Ger 31 1987 98 1:STN:280:DC%2BB3s%2FotlGhtg%3D%3D 10.1007/s00330-020-07293-8
Walsh SLF, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Lancet Respir Med. Else; 2018;6:837–45.
O. Bonhomme B. André F. Gester D. de Seny C. Moermans I. Struman et al. Biomarkers in systemic sclerosis-associated interstitial lung disease: review of the literature Rheumatol (Oxford) Engl 58 1534 46 1:CAS:528:DC%2BB3cXhvVemur3P 10.1093/rheumatology/kez230
A. Makol V. Nagaraja C. Amadi J.V. Pugashetti E. Caoili D. Khanna Recent innovations in the screening and diagnosis of systemic sclerosis-associated interstitial lung disease Expert Rev Clin Immunol Engl 19 613 26 1:CAS:528:DC%2BB3sXntlKgsr8%3D 10.1080/1744666X.2023.2198212
Hoffmann-Vold A-M, Maher TM, Philpot EE, Ashrafzadeh A, Distler O. Assessment of recent evidence for the management of patients with systemic sclerosis-associated interstitial lung disease: a systematic review. ERJ open Res Engl. 2021;7.
K.R. Flaherty A.U. Wells V. Cottin A. Devaraj S.L.F. Walsh Y. Inoue et al. Nintedanib in progressive fibrosing interstitial lung diseases N Engl J Med 381 1718 27 1:CAS:528:DC%2BC1MXitFWktrzL 10.1056/NEJMoa1908681 31566307
Stanojevic S, Kaminsky DA, Miller M, Thompson B, Aliverti A, Barjaktarevic I et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2021;2101499.
Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126.
T.W. MacFarland J.M. Yates T.W. MacFarland J.M. Yates Wilcoxon matched-pairs signed-ranks test BT - introduction to nonparametric statistics for the Biological sciences using R Cham Springer International Publishing 133 75
M.P. Fay M.A. Proschan Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules Stat Surv 4 1 39 10.1214/09-SS051 20414472 2857732
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: learning dense volumetric segmentation from sparse annotation. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2016.
O. Ronneberger P. Fischer T. Brox N. Navab J. Hornegger W.M. Wells A.F. Frangi U-Net: Convolutional Networks for Biomedical Image Segmentation BT - Medical Image Computing and Computer-assisted intervention – MICCAI 2015 Cham Springer International Publishing 234 41
J. Widell M. Lidén Interobserver variability in high-resolution CT of the lungs Eur J Radiol Open 7 100228 10.1016/j.ejro.2020.100228 32258248 7115039
T. Watadani F. Sakai T. Johkoh S. Noma M. Akira K. Fujimoto et al. Interobserver Variability in the CT Assessment of Honeycombing in the lungs Radiol Radiological Soc North Am 266 936 44
Z.A. Aziz A.U. Wells D.M. Hansell G.A. Bain S.J. Copley S.R. Desai et al. HRCT diagnosis of diffuse parenchymal lung disease: inter-observer variation Thorax 59 506 11 1:STN:280:DC%2BD2c3pvVKjtQ%3D%3D 10.1136/thx.2003.020396 15170034 1747041
M. Occhipinti S. Bosello L.G. Sisti G. Cicchetti C. de Waure T. Pirronti et al. Quantitative and semi-quantitative computed tomography analysis of interstitial lung disease associated with systemic sclerosis: a longitudinal evaluation of pulmonary parenchyma and vessels PLoS ONE 14 1 18 10.1371/journal.pone.0213444
G.T. Axelsson G. Gudmundsson Interstitial lung abnormalities - current knowledge and future directions Eur Clin Respir J 8 1994178 10.1080/20018525.2021.1994178 34745461 8567914
Agarwala S, Kale M, Kumar D, Swaroop R, Kumar A, Kumar Dhara A et al. Deep learning for screening of interstitial lung disease patterns in high-resolution CT images. Clin Radiol. The Royal College of Radiol; 2020;75:481.e1-481.e8.
Mergen V, Kobe A, Blüthgen C, Euler A, Flohr T, Frauenfelder T et al. Deep learning for automatic quantification of lung abnormalities in COVID-19 patients: first experience and correlation with clinical parameters. Eur J Radiol Open. 2020;7.
Walsh SLF, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Lancet Respir Med. Else; 2018;6:837–45.
T.T. Ho T. Kim W.J. Kim C.H. Lee K.J. Chae S.H. Bak et al. A 3D-CNN model with CT-based Parametric response mapping for classifying COPD subjects Sci Rep Nat Publishing Group UK 11 1 12
S.A. Si-Mohamed M. Nasser M. Colevray O. Nempont P.-J. Lartaud A. Vlachomitrou et al. Automatic quantitative computed tomography measurement of longitudinal lung volume loss in interstitial lung diseases Eur Radiol 32 4292 303 1:CAS:528:DC%2BB38XmsFWjtb4%3D 10.1007/s00330-021-08482-9 35029730 9123030
H. Sun M. Liu H. Kang X. Yang P. Zhang R. Zhang et al. Quantitative analysis of high-resolution computed tomography features of idiopathic pulmonary fibrosis: a structure-function correlation study Quant Imaging Med Surg China 12 3655 65 10.21037/qims-21-1232
D. Temiz Karadag O. Cakir S. San A. Yazici E. Ciftci A. Cefle Association of quantitative computed tomography ındices with lung function and extent of pulmonary fibrosis in patients with systemic sclerosis Clin Rheumatol 41 513 21 10.1007/s10067-021-05918-x 34528186
H. Barnes S.M. Humphries P.M. George D. Assayag I. Glaspole J.A. Mackintosh et al. Machine learning in radiology: the new frontier in interstitial lung diseases Lancet Digit Heal Engl 5 e41 50 1:CAS:528:DC%2BB3sXis1Sls7g%3D 10.1016/S2589-7500(22)00230-8
S.D. Nathan K.C. Meyer IPF clinical trial design and endpoints Curr Opin Pulm Med United States 20 463 71 10.1097/MCP.0000000000000091
Cottin V. Interstitial lung disease: new challenges and evolving phenotypes. Eur Respir Rev. 2010;19:91 LP – 93.
N.S.L. Goh S.R. Desai S. Veeraraghavan D.M. Hansell S.J. Copley T.M. Maher et al. Interstitial lung disease in systemic sclerosis: a simple staging system Am J Respir Crit Care Med United States 177 1248 54 10.1164/rccm.200706-877OC
Jeny F, Brillet P-Y, Kim Y-W, Freynet O, Nunes H, Valeyre D. The place of high-resolution computed tomography imaging in the investigation of interstitial lung disease. Expert Rev Respir Med. Taylor & Francis; 2019;13:79–94.
Nagy T, Toth NM, Palmer E, Polivka L, Csoma B, Nagy A, et al. Clinical predictors of lung-function decline in systemic-sclerosis-Associated interstitial lung disease patients with normal spirometry. Biomedicines. Switzerland; 2022. p. 10.
L. Li S. Gao Q. Fu R. Liu Y. Zhang X. Dong et al. A preliminary study of lung abnormalities on HRCT in patients of rheumatoid arthritis–associated interstitial lung disease with progressive fibrosis Clin Rheumatol 38 3169 78 10.1007/s10067-019-04673-4 31302858
A. Kazantzi L. Costaridou S. Skiadopoulos P. Korfiatis A. Karahaliou D. Daoussis et al. Automated 3D Ιnterstitial Lung Disease Εxtent quantification: performance evaluation and correlation to PFTs J Digit Imaging 27 380 91 10.1007/s10278-013-9670-z 24448918 4026466
Occhipinti M, Bruni C, Camiciottoli G, Bartolucci M, Bellando-Randone S, Bassetto A et al. Quantitative analysis of pulmonary vasculature in systemic sclerosis at spirometry-gated chest CT. Ann Rheum Dis. 2020;79:1210–17.