Wang, Zeyu; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Yang, Yanchao ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Li, Sirui; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Ma, Weihua; National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
Wang, Kui; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Soberón, Mario; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, Mexico
Yan, Shuo; Department of Plant Biosecurity, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
Shen, Jie; Department of Plant Biosecurity, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Bravo, Alejandra; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, Mexico
Zhang, Jie; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
JAK/STAT signaling regulated intestinal regeneration defends insect pests against pore-forming toxins produced by Bacillus thuringiensis
Publication date :
18 January 2024
Journal title :
PLoS Pathogens
ISSN :
1553-7366
eISSN :
1553-7374
Publisher :
Public Library of Science
Volume :
20
Issue :
1
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NSCF - National Natural Science Foundation of China
Nougadère A, Reninger JC, Volatier JL, Leblanc JC. Chronic dietary risk characterization for pesticide residues: a ranking and scoring method integrating agricultural uses and food contamination data. Food Chem Toxicol. 2011; 49: 1484–1510. https://doi.org/10.1016/j.fct.2011.03.024 PMID: 21421018
Md Meftaul I, Venkateswarlu K, Dharmarajan R, Annamalai P, Megharaj M. Pesticides in the urban environment: A potential threat that knocks at the door. Sci Total Environ. 2020; 711: 13462. https://doi.org/10.1016/j.scitotenv.2019.134612 PMID: 31810707
Xu L, Abd El-Aty AM, Eun JB, Shim JH, Zhao J, Lei X, et al. Recent Advances in Rapid Detection Techniques for Pesticide Residue: A Review. J Agric Food Chem. 2022; 70: 13093–13117. https://doi.org/10.1021/acs.jafc.2c05284 PMID: 36210513.
Rajmohan KS, Chandrasekaran R, Varjani S. A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management. Indian J Microbiol. 2020; 60: 125–138. https://doi.org/10.1007/s12088-019-00841-x PMID: 32255845.
Crickmore N, Berry C, Panneerselvam S, Mishra R, Connor TR, Bonning BC. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J Invertebr Pathol. 2021; 186: 107438. https://doi.org/10.1016/j.jip.2020.107438 PMID: 32652083.
Tabashnik BE, Carrière Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol. 2017; 35: 926–935. https://doi.org/10.1038/nbt.3974 PMID: 29020006.
Bravo A, Gómez I, Porta H, García-Gómez BI, Rodriguez-Almazan C, Pardo L, et al. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb Biotechnol. 2013; 6: 17–26. https://doi.org/10.1111/j.1751-7915.2012.00342.x PMID: 22463726.
Los FC, Kao CY, Smitham J, McDonald KL, Ha C, Peixoto CA, et al. RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin. Cell Host Microbe. 2011; 9: 147–157. https://doi.org/10.1016/j.chom.2011.01.005 PMID: 21320697.
Brito C, Cabanes D, Sarmento Mesquita F, Sousa S. Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci. 2019; 76: 1319–1339. https://doi.org/10.1007/s00018-018-2992-8 PMID: 30591958.
He B, Chu Y, Yin M, Müllen K, An C, Shen J. Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv Mater. 2013; 25: 4580–4584. https://doi.org/10.1002/adma.201301201 PMID: 23794475.
Wang X, Ji S, Bi S, Tang Y, Zhang G, Yan S, et al. A promising approach to an environmentally friendly pest management solution: nanocarrier-delivered dsRNA towards controlling the destructive invasive pest Tuta absoluta. Environ Sci Nano. 2023; 10: 951–1210.
Micchelli CA, Perrimon N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature. 2006; 439: 475–479. https://doi.org/10.1038/nature04371 PMID: 16340959.
Castagnola A, Jurat-Fuentes JL. Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. Curr Opin Insect Sci. 2016; 15: 104–110. https://doi.org/10.1016/j.cois.2016.04. 008 PMID: 27436739.
Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, et al. A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci U S A. 2020; 117: 1514–1523. https://doi.org/10.1073/pnas.1916820117
Lee KZ, Lestradet M, Socha C, Schirmeier S, Schmitz A, Spenlé C, et al. Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack. Cell Host Microbe. 2016; 20: 716–730. https://doi.org/10.1016/j.chom.2016.10.010 PMID: 27889464.
Zhai Z, Boquete JP, Lemaitre B. Cell-Specific Imd-NF-κB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection. Immunity. 2018; 48: 897–910. https://doi.org/10.1016/j.immuni.2018.04.010 PMID: 29752064.
Tanaka S, Yoshizawa Y, Sato R. Response of midgut epithelial cells to Cry1Aa is toxin-dependent and depends on the interplay between toxic action and the host apoptotic response. FEBS J. 2012; 279: 1071–1079. https://doi.org/10.1111/j.1742-4658.2012.08499.x PMID: 22260394.
Zeng X, Hou SX. Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development. 2015; 142: 644–653. https://doi.org/10.1242/dev. 113357.
Sallé J, Gervais L, Boumard B, Stefanutti M, Siudeja K, Bardin AJ. Intrinsic regulation of enteroendocrine fate by Numb. EMBO J. 2017; 36: 1928–1945. https://doi.org/10.15252/embj.201695622 PMID: 28533229.
Mundorf J, Donohoe CD, McClure CD, Southall TD, Uhlirova M. Ets21c Governs Tissue Renewal, Stress Tolerance, and Aging in the Drosophila Intestine. Cell Rep. 2019; 27: 3019–3033. https://doi.org/10.1016/j.celrep.2019.05.025 PMID: 31167145.
Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev. 2009; 23: 2333–2344. https://doi.org/10.1101/gad.1827009 PMID: 19797770.
Beebe K, Lee WC, Micchelli CA. JAK/STAT signaling coordinates stem cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell lineage. Dev Biol. 2010; 338: 28–37. https://doi.org/10.1016/j.ydbio.2009.10.045 PMID: 19896937.
Lin G, Xu N, Xi R. Paracrine unpaired signaling through the JAK/STAT pathway controls self-renewal and lineage differentiation of Drosophila intestinal stem cells. J Mol Cell Biol. 2010; 2: 37–49. https://doi.org/10.1093/jmcb/mjp028 PMID: 19797317.
Liu W, Singh SR, Hou SX. JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. J Cell Biochem. 2010; 109: 992–999. https://doi.org/10.1002/jcb.22482 PMID: 20082318.
Zhang P, Edgar BA. Insect Gut Regeneration. Cold Spring Harb Perspect Biol. 2022; 14: a040915. https://doi.org/10.1101/cshperspect.a040915 PMID: 34312250.
Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe. 2009; 5: 200–211. https://doi.org/10.1016/j.chom.2009.01.003 PMID: 19218090.
Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell. 2009; 137: 1343–1355. https://doi.org/10.1016/j.cell.2009.05.014 PMID: 19563763.
Herrera SC, Bach EA. JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates. Development. 2019; 146. https://doi.org/10.1242/dev.167643 PMID: 30696713.
Boumard B, Bardin AJ. An amuse-bouche of stem cell regulation: Underlying principles and mechanisms from adult Drosophila intestinal stem cells. Curr Opin Cell Biol. 2021; 73: 58–68. https://doi.org/10.1016/j.ceb.2021.05.007 PMID: 34217969.
Apidianakis Y, Pitsouli C, Perrimon N, Rahme L. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A. 2009; 106: 20883–20888. https://doi.org/10.1073/pnas.0911797106 PMID: 19934041.
Biteau B, Hochmuth CE, Jasper H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell. 2008; 3: 442–455. https://doi.org/10.1016/j.stem.2008.07. 024 PMID: 18940735.
Hu DJ, Jasper H. Control of Intestinal Cell Fate by Dynamic Mitotic Spindle Repositioning Influences Epithelial Homeostasis and Longevity. Cell Rep. 2019; 28: 2807–2823. https://doi.org/10.1016/j.celrep.2019.08.014 PMID: 31509744.
Bardin AJ, Perdigoto CN, Southall TD, Brand AH, Schweisguth F. Transcriptional control of stem cell maintenance in the Drosophila intestine. Development. 2010; 137: 705–714. https://doi.org/10.1242/dev.039404 PMID: 20147375.
Valaitis AP. Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells. Insect Biochem Mol Biol. 2008; 38: 611–618. https://doi.org/10.1016/j.ibmb.2008.03.003 PMID: 18510972.
Xiang J, Bandura J, Zhang P, Jin Y, Reuter H, Edgar BA. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration. Nat Commun. 2017; 8: 15125. https://doi.org/10.1038/ncomms15125 PMID: 28485389.
Martin JL, Sanders EN, Moreno-Roman P, Jaramillo Koyama LA, Balachandra S, Du X, et al. Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation and loss. Elife. 2018; 7: e36248. https://doi.org/10.7554/eLife.36248 PMID: 30427308.
Li J, Qian J, Xu Y, Yan S, Shen J, Yin M. A facile-synthesized star polycation constructed as a highly efficient gene vector in pest management. Acs Sustainable Chemistry & Engineering. 2019; 7: 6316–6322. https://doi.org/10.1021/acssuschemeng.9b00004
Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H, et al. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood. 2008; 112: 5095–5102. https://doi.org/10.1182/blood-2007-12-129718 PMID: 18824601.
Martín-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 1998; 12: 557–570. https://doi.org/10.1101/gad.12.4.557 PMID: 9472024.
Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A. 2001; 98: 13681–13686. https://doi.org/10.1073/pnas.251194298 PMID: 11717429.
Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell. 2011; 8: 84–95. https://doi.org/10.1016/j.stem.2010.11.026 PMID: 21167805.
Gómez I, Ocelotl J, Sánchez J, Lima C, Martins E, Rosales-Juárez A, et al. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa Toxicity to Spodoptera frugiperda by Domain III Mutations Indicates There Are Two Limiting Steps in Toxicity as Defined by Receptor Binding and Protein Stability. Appl Environ Microbiol. 2018; 84:e01393–18. https://doi.org/10.1128/AEM.01393-18 PMID: 30097439.
Wang Z, Gan C, Wang J, Bravo A, Soberón M, Yang Q, et al. Nutrient conditions determine the localization of Bacillus thuringiensis Vip3Aa protein in the mother cell compartment. Microb Biotechnol. 2021; 14: 551–560. https://doi.org/10.1111/1751-7915.13719 PMID: 33252200.
Li Y, Wang Z, Romeis J. Managing the Invasive Fall Armyworm through Biotech Crops: A Chinese Perspective. Trends Biotechnol. 2021; 39: 105–107. https://doi.org/10.1016/j.tibtech.2020.07.001 PMID: 32713608.
Wang Z, Wang K, Bravo A, Soberón M, Cai J, Shu C, et al. Coexistence of cry9 with the vip3A Gene in an Identical Plasmid of Bacillus thuringiensis Indicates Their Synergistic Insecticidal Toxicity. J Agric Food Chem. 2020; 68: 14081–14090. https://doi.org/10.1021/acs.jafc.0c05304 PMID: 33180493.
Dal Peraro M, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol. 2016; 14: 77–92. https://doi.org/10.1038/nrmicro.2015.3 PMID: 26639780.
Charras G, Paluch E. Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol. 2008; 9: 730–736. https://doi.org/10.1038/nrm2453 PMID: 18628785.
Keyel PA, Loultcheva L, Roth R, Salter RD, Watkins SC, Yokoyama WM, et al. Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane. J Cell Sci. 2011; 124: 2414–2423. https://doi.org/10.1242/jcs.076182 PMID: 21693578.
Romero M, Keyel M, Shi G, Bhattacharjee P, Roth R, Heuser JE, et al. Intrinsic repair protects cells from pore-forming toxins by microvesicle shedding. Cell Death Differ. 2017; 24: 798–808. https://doi.org/10.1038/cdd.2017.11 PMID: 28186501.
Husmann M, Beckmann E, Boller K, Kloft N, Tenzer S, Bobkiewicz W, et al. Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis. FEBS Lett. 2009; 583: 337–344. https://doi.org/10.1016/j.febslet.2008.12.028 PMID: 19101547.
Bravo A, Jansens S, Peferoen M. Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects. J. Invertebr. Pathol. 1992; 60: 237–246. https://doi.org/10.1016/ 0022-2011(92)90004-N
Liang J, Balachandra S, Ngo S, O’Brien LE. Feedback regulation of steady-state epithelial turnover and organ size. Nature. 2017; 548: 588–591. https://doi.org/10.1038/nature23678 PMID: 28847000.
Wang Z, Fang L, Zhou Z, Pacheco S, Gómez I, Song F, et al. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis). J Biol Chem. 2018; 293: 11447–11458. https://doi.org/10.1074/jbc.RA118.003490 PMID: 29858245.
Zhou Z, Yang S, Shu C, Song F, Zhou X, Zhang J. Comparison and optimization of the method for Cry1Ac protoxin preparation in HD73 strain. J. Integr. Agric. 2015; 14: 1598–1603. https://doi.org/10.1016/S2095-3119(14)60950-3
Yang X, Wang Z, Geng L, Chi B, Liu R, Li H, et al. Vip3Aa domain IV and V mutants confer higher insecticidal activity against Spodoptera frugiperda and Helicoverpa armigera. Pest Manag Sci. 2022; 78: 2324–2331. https://doi.org/10.1002/ps.6858 PMID: 35243758.
Han L, Li S, Liu P, Peng Y, and Hou M. New artificial diet for continuous rearing of Chilo suppressalis (Lepidoptera: Crambidae). Ann. Entomol. Soc. Am. 2012; 105: 253–258. https://doi.org/10.1603/ AN10170
Finney D. Probit analysis. 3rd Ed., p. 333, Cambridge University Press, Cambridge, UK. 1971.
Liang GM, Tan WJ, Guo YY. Improvement of artificial feeding technology of cotton bollworm. Plant Prot. 1999; 25: 16–18. (in Chinese)
Qiu L, Hou L, Zhang B, Liu L, Li B, Deng P, et al. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. J Invertebr Pathol. 2015; 127: 47–53. https://doi.org/10.1016/j.jip.2015.02.009 PMID: 25754522.
Hui XM, Yang LW, He GL, Yang QP, Han ZJ, Li F. RNA interference of ace1 and ace2 in Chilo suppressalis reveals their different contributions to motor ability and larval growth. Insect Mol Biol. 2011; 20: 507–518. https://doi.org/10.1111/j.1365-2583.2011.01081.x PMID: 21518395.
Salem TZ, Allam WR, Thiem SM. Verifying the stability of selected genes for normalization in Q PCR experiments of Spodoptera frugiperda cells during AcMNPV infection. PLoS One. 2014; 9: e108516. https://doi.org/10.1371/journal.pone.0108516 PMID: 25313905.
Pfaffl MW, Hageleit M. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnol. Lett. 2001; 23: 275–282. https://doi.org/10.1023/A:1005658330108
Qin F, Liu W, Wu N, Zhang L, Zhang Z, Zhou X, et al. Invasion of midgut epithelial cells by a persistently transmitted virus is mediated by sugar transporter 6 in its insect vector. PLoS Pathog. 2018; 14: e1007201. https://doi.org/10.1371/journal.ppat.1007201 PMID: 30052679.
Wang Z. JAK/STAT signaling regulated intestinal regeneration defends insect pests against insecticidal proteins produced by Bacillus thuringiensis [Dataset]. Dryad. 2023; https://doi.org/10.5061/dryad. v15dv422z