[en] Grain aphid (Sitobion miscanthi) is one of the most dominant and devastating insect pests in wheat, which causes substantial losses to wheat production each year. Engineering transgenic plants expressing double strand RNA (dsRNA) targeting an insect-specific gene has been demonstrated to provide an alternative environmentally friendly strategy for aphid management through plant-mediated RNA interference (RNAi). Here we identified and characterized a novel potential RNAi target gene (SmDSR33) which was a gene encoding a putative salivary protein. We then generated stable transgenic wheat lines expressing dsRNA for targeted silencing of SmDSR33 in grain aphids through plant-mediated RNAi. After feeding on transgenic wheat plants expressing SmDSR33-dsRNA, the attenuated expression levels of SmDSR33 in aphids were observed when compared to aphids feeding on wild-type plants. The decreased SmDSR33 expression levels thus resulted in significantly reduced fecundity and survival, and decreased reproduction of aphids. We also observed altered aphid feeding behaviors such as longer duration of intercellular stylet pathway and shorter duration of passive ingestion in electroneurography assays. Furthermore, both the surviving aphids and their offspring exhibited decreased survival rates and fecundity, indicating that the silencing effect could be persistent and transgenerational in grain aphids. The results demonstrated that SmDSR33 can be selected as an effective RNAi target for wheat aphid control. Silencing of an essential salivary protein gene involved in ingestion through plant-mediated RNAi could be exploited as an effective strategy for aphid control in wheat.
Disciplines :
Entomology & pest control
Author, co-author :
Zhang, Jiahui ; Université de Liège - ULiège > TERRA Research Centre ; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
Li, Huiyuan; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China ; Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
Zhong, Xue ; Université de Liège - ULiège > TERRA Research Centre ; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
Tian, Jinfu ; Université de Liège - ULiège > TERRA Research Centre ; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
Segers, Arnaud ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Xia, Lanqin; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China ; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Language :
English
Title :
Silencing an aphid-specific gene SmDSR33 for aphid control through plant-mediated RNAi in wheat.
We apologize to those whose work we were unable to cite due to space and reference limitations. Part of this work is funded by the Shennong Laboratory, Zhengzhou Henan 450002, China (SN01-2022-01), the Innovation Program of Chinese Academy of Agricultural Sciences (ZDXM03, S2021ZD03) and National Engineering Laboratory of Crop Molecular Breeding. JZ was supported by the China Scholarship Council (No. 202003250096) and GSCAAS-ULg Joint PhD Program.
Abdellatef E. Will T. Koch A. Imani J. Vilcinskas A. Kogel K. H. (2015). Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae. Plant Biotechnol. J. 13 (6), 849–857. doi: 10.1111/pbi.12322
Amdam G. V. Simões Z. L. Guidugli K. R. Norberg K. Omholt S. W. (2003). Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol. 3 (1), 1–8. doi: 10.1186/1472-6750-3-1
Atamian H. S. Chaudhary R. Cin V. D. Bao E. Girke T. Kaloshian I. (2013). In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol. Plant Microbe Interact. 26 (1), 67–74. doi: 10.1094/MPMI-06-12-0144-FI
Bachman P. M. Bolognesi R. Moar W. J. Mueller G. M. Paradise M. S. Ramaseshadri P. et al. (2013). Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Res. 22 (6), 1207–1222. doi: 10.1007/s11248-013-9716-5
Bhatia V. Bhattacharya R. (2018). Host-mediated RNA interference targeting a cuticular protein gene impaired fecundity in the green peach aphid Myzus persicae. Pest Manage. Sci. 74 (9), 2059–2068. doi: 10.1002/ps.4900
Biondi A. Desneux N. Amiens-Desneux E. Siscaro G. Zappalà L. (2013). Biology and developmental strategies of the palaearctic parasitoid Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J. Economic Entomol. 106 (4), 1638–1647. doi: 10.1603/ec12518
Bolognesi R. Ramaseshadri P. Anderson J. Bachman P. Clinton W. Flannagan R. et al. (2012). Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PloS One 7 (10), e47534. doi: 10.1371/journal.pone.0047534
Bos J. I. Prince D. Pitino M. Maffei M. E. Win J. Hogenhout S. A. (2010). A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PloS Genet. 6 (11), e1001216. doi: 10.1371/journal.pgen.1001216
Bucher G. Scholten J. Klingler M. (2002). Parental rnai in tribolium (coleoptera). Curr. Biol. 12 (3), R85–R86. doi: 10.1016/s0960-9822(02)00666-8
Castel S. E. Martienssen R. A. (2013). RNA Interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14 (2), 100–112. doi: 10.1038/nrg3355
Coleman A. D. Wouters R. H. Mugford S. T. Hogenhout S. A. (2015). Persistence and transgenerational effect of plant-mediated RNAi in aphids. J. Exp. Bot. 66 (2), 541–548. doi: 10.1093/jxb/eru450
Crespo-Herrera L. Singh R. P. Reynolds M. Huerta-Espino J. (2019). Genetics of greenbug resistance in synthetic hexaploid wheat derived germplasm. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00782
Cui N. Lu H. Wang T. Zhang W. Kang L. Cui F. (2019). Armet, an aphid effector protein, induces pathogen resistance in plants by promoting the accumulation of salicylic acid. Philos. Trans. R Soc. Lond B Biol. Sci. 374 (1767), 20180314. doi: 10.1098/rstb.2018.0314
Dong Y. Wu M. Zhang Q. Fu J. Loiacono F. V. Yang Y. et al. (2022). Control of a sap-sucking insect pest by plastid-mediated RNA interference. Mol. Plant 15 (7), 1176–1191. doi: 10.1016/j.molp.2022.05.008
Elzinga D. A. De Vos M. Jander G. (2014). Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol. Plant Microbe Interact. 27 (7), 747–756. doi: 10.1094/MPMI-01-14-0018-R
Escudero-Martinez C. Rodriguez P. A. Liu S. Santos P. A. Stephens J. Bos J. I. B. (2020). An aphid effector promotes barley susceptibility through suppression of defence gene expression. J. Exp. Bot. 71 (9), 2796–2807. doi: 10.1093/jxb/eraa043
Ghag S. B. (2017). Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens. Physiol. Mol. Plant Pathol. 100, 242–254. doi: 10.1016/j.pmpp.2017.10.003
Griebler M. Westerlund S. A. Hoffmann K. H. Meyering-Vos M. (2008). RNA Interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. J. Insect Physiol. 54 (6), 997–1007. doi: 10.1016/j.jinsphys.2008.04.019
He G. (2022). Engineering chloroplasts for insect pest control. Proc. Natl. Acad. Sci. U.S.A. 119 (22), e2205125119. doi: 10.1073/pnas.2205125119
Huvenne H. Smagghe G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56 (3), 227–235. doi: 10.1016/j.jinsphys.2009.10.004
Jaubert-Possamai S. Le Trionnaire G. Bonhomme J. Christophides G. K. Rispe C. Tagu D. (2007). Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol. 7, 63. doi: 10.1186/1472-6750-7-63
Khan S. A. Naveed Z. (2022). Aphid-plant interactions: How saliva of aphids modulates the plant responses. J. Appl. Entomologist 2 (2), 06–08.
Li X. Qu M. J. Zhang Y. Li J. W. Liu T. X. (2018). Expression of neuropeptide f gene and its regulation of feeding behavior in the pea aphid, Acyrthosiphon pisum. Front. Physiol. 9. doi: 10.3389/fphys.2018.00087
Livak K. J. Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25 (4), 402–408. doi: 10.1006/meth.2001.1262
Marré J. Traver E. C. Jose A. M. (2016). Extracellular RNA is transported from one generation to the next in Caenorhabditis elegans. Proc. Natl. Acad. Sci. 113 (44), 12496–12501. doi: 10.1073/pnas.1608959113
Miller S. C. Miyata K. Brown S. J. Tomoyasu Y. (2012). Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi. PloS One 7 (10), e47431. doi: 10.1371/journal.pone.0047431
Mutti N. S. Louis J. Pappan L. K. Pappan K. Begum K. Chen M. S. et al. (2008). A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc. Natl. Acad. Sci. U.S.A. 105 (29), 9965–9969. doi: 10.1073/pnas.0708958105
Mutti N. S. Park Y. Reese J. C. Reeck G. R. (2006). RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 6, 1–7. doi: 10.1673/031.006.3801
Naessens E. Dubreuil G. Giordanengo P. Baron O. L. Minet-Kebdani N. Keller H. et al. (2015). A secreted MIF cytokine enables aphid feeding and represses plant immune responses. Curr. Biol. 25 (14), 1898–1903. doi: 10.1016/j.cub.2015.05.047
Pan Y. Zhu J. Luo L. Kang L. Cui F. (2015). High expression of a unique aphid protein in the salivary glands of Acyrthosiphon pisum. Physiol. Mol. Plant Pathol. 92, 175–180. doi: 10.1016/j.pmpp.2015.04.006
Pitino M. Hogenhout S. A. (2013). Aphid protein effectors promote aphid colonization in a plant species-specific manner. Mol. Plant Microbe Interact. 26 (1), 130–139. doi: 10.1094/MPMI-07-12-0172-FI
Price D. R. Gatehouse J. A. (2008). RNAi-mediated crop protection against insects. Trends Biotechnol. 26 (7), 393–400. doi: 10.1016/j.tibtech.2008.04.004
Rechavi O. Lev I. (2017). Principles of transgenerational small RNA inheritance in Caenorhabditis elegans. Curr. Biol. 27 (14), R720–R730. doi: 10.1016/j.cub.2017.05.043
Rodriguez P. A. Stam R. Warbroek T. Bos J. I. (2014). Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities. Mol. Plant Microbe Interact. 27 (1), 30–39. doi: 10.1094/MPMI-05-13-0156-R
Sambrook J. Fritsch E. F. Maniatis T. (1989). Molecular cloning: a laboratory manual (Ed 2nd. New York:Cold spring harbor laboratory press).
Sanahuja G. Banakar R. Twyman R. M. Capell T. Christou P. (2011). Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9 (3), 283–300. doi: 10.1111/j.1467-7652.2011.00595.x
Sarria E. Cid M. Garzo E. Fereres A. (2009). Excel workbook for automatic parameter calculation of EPG data. Comput. Electron. Agric. 67 (1-2), 35–42. doi: 10.1016/j.compag.2009.02.006
Sun Y. Sparks C. Jones H. Riley M. Francis F. Du W. et al. (2019). Silencing an essential gene involved in infestation and digestion in grain aphid through plant-mediated RNA interference generates aphid-resistant wheat plants. Plant Biotechnol. J. 17 (5), 852–854. doi: 10.1111/pbi.13067
Tjallingii W. (1985). Electrical nature of recorded signals during stylet penetration by aphids. Entomologia experimentalis applicata 38 (2), 177–186. doi: 10.1111/j.1570-7458.1985.tb03516.x
Tjallingii W. F. (1994). Sieve element acceptance by aphids. Eur. J. Enlomol. 91, 47–52.
Wang W. Dai H. Zhang Y. Chandrasekar R. Luo L. Hiromasa Y. et al. (2015b). Armet is an effector protein mediating aphid-plant interactions. FASEB J. 29 (5), 2032–2045. doi: 10.1096/fj.14-266023
Wang E. Hunter C. P. (2017). SID-1 functions in multiple roles to support parental RNAi in Caenorhabditis elegans. Genetics 207 (2), 547–557. doi: 10.1534/genetics.117.300067
Wang D. Liu Q. Li X. Sun Y. Wang H. Xia L. (2015a). Double-stranded RNA in the biological control of grain aphid (Sitobion avenae f.). Funct. Integr. Genomics 15 (2), 211–223. doi: 10.1007/s10142-014-0424-x
Wang Z. Lü Q. Zhang L. Zhang M. Chen L. Zou S. et al. (2021). Aphid salivary protein Mp1 facilitates infestation by binding phloem protein 2-A1 in arabidopsis. Biochem. Biophys. Res. Commun. 572, 105–111. doi: 10.1016/j.bbrc.2021.07.066
Xia L. Ma Y. He Y. Jones H. D. (2012). GM wheat development in China: current status and challenges to commercialization. J. Exp. Bot. 63 (5), 1785–1790. doi: 10.1093/jxb/err342
Yang Z. Ma L. Francis F. Yang Y. Chen H. Wu H. et al. (2018). Proteins identified from saliva and salivary glands of the Chinese gall aphid Schlechtendalia chinensis. Proteomics 18 (9), 1700378. doi: 10.1002/pmic.201700378
Yu X. Wang G. Huang S. Ma Y. Xia L. (2014). Engineering plants for aphid resistance: current status and future perspectives. Theor. Appl. Genet. 127 (10), 2065–2083. doi: 10.1007/s00122-014-2371-2
Zhang Y. Fu Y. Francis F. Liu X. Chen J. (2021). Insight into watery saliva proteomes of the grain aphid, Sitobion avenae. Arch. Insect Biochem. Physiol. 106 (1), e21752. doi: 10.1002/arch.21752
Zhang Y. Liu X. Fu Y. Crespo-Herrera L. Liu H. Wang Q. et al. (2022a). Salivary effector Sm9723 of grain aphid Sitobion miscanthi suppresses plant defense and is essential for aphid survival on wheat. Int. J. Mol. Sci. 23 (13), 6909. doi: 10.3390/ijms23136909
Zhang Y. Liu X. Francis F. Xie H. Fan J. Wang Q. et al. (2022b). The salivary effector protein Sg2204 in the greenbug Schizaphis graminum suppresses wheat defence and is essential for enabling aphid feeding on host plants. Plant Biotechnol. J. 20 (11), 2187–2201. doi: 10.1111/pbi.13900
Zhang M. Zhou Y. Wang H. Jones H. Gao Q. Wang D. et al. (2013). Identifying potential RNAi targets in grain aphid (Sitobion avenae f.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants. BMC Genomics 14, 560. doi: 10.1186/1471-2164-14-560